Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
4. Results and Discussion
4.1. Pre-Operation Kolleru
4.2. Post-“Operation Kolleru”
4.3. Accuracy Assessment
4.4. Analysis of Land-Use Changes for Three Decades
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yihdego, Y.; Webb, J. Assessment of wetland hydrological dynamics in a modified catchment basin: Case of Lake Buninjon, Victoria, Australia. Water Environ. Res. J. 2017, 89, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M. Ecology of Shallow Lakes; Springer: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Scheffer, M.; Jeppesen, E. Regime Shifts in Shallow Lakes. Ecosystems 2007, 10, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, M.; Nees, E.V. Shallow lakes theory revisited: Various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 2007, 584, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Bassi, N.; Kumar, M.D.; Sharma, A.; Saradhi, P.P. Status of wetlands in India: A review of extent, ecosystem benefits, threats, and management strategies. J. Hydrol. Reg. Stud. 2014, 2, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Karthe, D.; Büche, T.; Chifflard, P. Editorial: Hydrogeography-linking water resources and their management to physical and anthropogenic catchment processes. Die Erde 2018, 149, 1–7. [Google Scholar]
- Sun, Z.; Groll, M.; Opp, C. Lake-catchment interactions and their responses to hydrological extremes. Quat. Int. 2018, 475, 1–3. [Google Scholar] [CrossRef]
- Yihdego, Y.; Webb, J. An empirical water budget model as a tool to identify the impact of land-use change in stream flow in southeastern Australia. Water Resour. Manag. J. 2013, 27, 4941–4958. [Google Scholar] [CrossRef]
- Elliott, S.; Brigham, M.; Lee, K.; Banda, J.; Choy, S.; Gefell, D.; Minarik, T.; Moore, J.; Jorgenson, Z. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence. PLoS ONE 2017, 12, e0182868. [Google Scholar] [CrossRef]
- Ma, R.; Wang, B.; Lu, S.; Zhang, Y.; Yin, L.; Huang, J.; Deng, S.; Wang, Y.; Yu, G. Characterization of pharmaceutically active compounds in Dongting Lake, China: Occurrencem chiral profiling and environmental risk. Sci. Total Environ. 2016, 557, 268–275. [Google Scholar] [CrossRef]
- Schindler, D. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006, 51, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.; Joye, S.; Howarth, R. Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr. 2006, 51, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.; Tilman, G.; Nekola, J. Eutrophication: Imapacts of excess nutrients inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 176–196. [Google Scholar] [CrossRef]
- Taylor, S.D.; He, Y.; Hiscock, K.M. Modeling the impacts of agricultural management practices on river water quality in Eastern England. J. Environ. Manag. 2016, 180, 147–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, S.; Housley, L.; Back, J.; King, R. Freshwater eutrophication drives sharp reductions in temporal beta diversity. Ecology 2018, 99, 47–56. [Google Scholar] [CrossRef]
- Smith, V. Eutrphication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Bakker, E.; von Donk, E.; Immers, A. Lake restoration by in-lake iron addition: A synopsis of iron impact on aquatic organisms and shallow lake ecosystems. Aquat. Ecol. 2016, 50, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Kowalczewska-Madura, K.; Dondajewska, R.; Gołdyn, R.; Rosińska, J.; Podsiadłowski, S. Internal phosphorus loading as the response to complete and then limited sustainable restoration of a shallow lake. Ann. Limnol. Int. J. Lim. 2019, 55, 4. [Google Scholar] [CrossRef]
- Bartout, P.; Touchart, L.; Terasmaa, J.; Choffel, Q.; Marzecova, A.; Koff, T.; Kapanen, G.; Qsair, Z.; Maleval, V.; Millot, C.; et al. A new approach to inventorying bodies of water, from local to globla scale. Die Erde 2015, 146, 245–258. [Google Scholar]
- Verpoorter, C.; Kutser, T.; Seekell, D.; Tranvik, L. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Gross, M. The world’s vanishing lakes. Curr. Biol. 2017, 27, R43–R46. [Google Scholar] [CrossRef]
- Host, G.; Kovalenko, K.; Brown, T.; Ciborowski, J.; Johnson, L. Risk-based classification and interactive map of watersheds contributing anthropogenic stress to Laurentian Great Lakes coastal ecosystems. J. Great Lakes Res. 2019, 45, 609–618. [Google Scholar] [CrossRef]
- Chaudhari, S.; Felfelani, F.; Shin, S.; Pokhrel, Y. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. J. Hydrol. 2018, 560, 342–353. [Google Scholar] [CrossRef]
- Dunalska, J.; Wiśniewski, G. Can we stop the degradation of lakes? Innovative approaches in lake restoration. Ecol. Eng. 2016, 95, 714–722. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of Central Asia during the past 30 years. Environ. Monit. Assess. 2010, 178, 247–256. [Google Scholar] [CrossRef]
- They, N.; Amado, A.; Cotner, J. Redfield ratios in inland waters: Higher biological control of C:N:P ratios in tropical semi-arid high water residence time lakes. Front. Microbiol. 2017, 8, 1505. [Google Scholar] [CrossRef] [Green Version]
- Rosińska, J.; Gołdyn, R. Changes in macrophyte communities in Lake Swarzędzkie after the first year of restoration. Arch. Pol. Fish. 2015, 23, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Kozak, A.; Rosińska, J.; Gołdyn, R. Changes in the phytoplankton structure due to prematurely limited restoration treatments. Pol. J. Environ. Stud. 2018, 27, 1097–1103. [Google Scholar] [CrossRef]
- Gołdyn, R.; Messyasz, B.; Domek, P.; Windhorst, W.; Hugenschmidt, C.; Nicoara, M.; Plavan, G. The response of Lake Durowskie ecosystem to restoration measures. Carpath. J. Earth Environ. 2013, 8, 43–48. [Google Scholar]
- Karthe, D.; Chalov, S.; Borchardt, D. Water resources and their management in central Asia in the early twenty-first century: Status, challenges, and future prospects. Environ. Earth Sci. 2015, 73, 487–499. [Google Scholar] [CrossRef]
- Grochowska, J.; Brzozowska, R.; Parszuto, K.; Tandyrak, R. Modifications in the trophic state of an urban lake, restored by different methods. J. Elem. 2017, 22, 43–53. [Google Scholar] [CrossRef]
- Grochowska, J.; Brzozowska, R.; Łopata, M.; Dunalska, J. The influence of restoration methods on the longevity of changes in the thermal and oxygen dynamics in degraded lake. Oceanol. Hydrobiol. Stud. 2015, 44, 18–27. [Google Scholar] [CrossRef]
- Jeppesen, E.; Meerhoff, M.; Jacobsen, B.; Hansen, R.; Sondergaard, M.; Jensen, J.; Lauridsen, T.; Mazzeo, N.; Branco, C. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with laek size and climate. Hydrobiologia 2007, 581, 269–285. [Google Scholar] [CrossRef]
- Hilt, S.; Gross, E.; Hupfer, M.; Morscheid, H.; Mahlmann, J.; Melzer, A.; Poltz, J.; Sandrock, S.; Scharf, E.; Schneider, S.; et al. Restoration of submerged vegetation in shallow eutrophic lakes—A guideline and state of the art in Germany. Limnologica 2006, 36, 155–171. [Google Scholar] [CrossRef] [Green Version]
- Nagabhatla, N.; Pattnaik, C.; Sellamuttu, S.; Prasad, S.; Wickramasuriya, R.; Finlayson, M. Investigation of aquaculture dynamics at a Ramsar site, using earth observation systems in conjunction with a socio-economic assessment. Lakes Reserv. Res. Manag. 2009, 14, 325–336. [Google Scholar] [CrossRef]
- Mohamed, H.; Negm, A.; Zahran, M.; Saavedra, O. Bathymetry determination from high resolution satellite imagery using ensemble learning algorithms in shallow lakes: Case study El-Burullus Lake. Int. J. Environ. Sci. Dev. 2016, 7, 295. [Google Scholar] [CrossRef] [Green Version]
- Lyzenga, D. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef]
- Loveland, T.; Irons, J. Landsat-8: The pland, the reality, and the legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.; Zhang, G.; Qin, Y.; Biradar, T.D.C.; Moore, B., III. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.N.; Krishna, G.M.; Malini, B. Kolleru lake is vanishing—A revelation through digital image processing of IRS-1D LISS III sensor data. Curr. Sci. 2004, 86, 1312–1316. [Google Scholar]
- Rao, A. Polycyclic Aromatic Hydrocarbons in Sediments from Kolleru Wetland in India. Bull. Environ. Contam. Toxicol. 2003, 70, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, K.; Chary, N.; Kamala, C.; Raj, S.; Rao, A. Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish. Environ. Int. 2004, 29, 1001–1008. [Google Scholar] [CrossRef]
- Azeez, P.A.; Kumar, A.; Choudhury, B.C.; Sastry, V.N.K.; Upadhyay, S.; Reddy, K.M.; Rao, K.K. Report on the Proposal for Downsizing the Kolleru Wildlife Sanctuary (+5 to +3 Feet Contour); The Ministry of Environment and Forests Government of India: New Delhi, India, 2011. [Google Scholar]
- Barman, R.P. The fishes of the Kolleru Lake, Andhra Pradesh, India, with comments on their conservation. Rec. Zool. Sur. India 2004, 103, 83–89. [Google Scholar]
- Kolli, M.K.; Opp, C.; Groll, M. Mapping of potential groundwater recharge zones in the Kolleru lake Catchment, India, by using remote sensing and GIS techniques. Nat. Resour. 2020, 11, 127–145. [Google Scholar] [CrossRef] [Green Version]
- Kolli, M.K.; Opp, C.; Groll, M. Identification of critical diffuse pollution sources in an ungauged catchment by using the SWAT model—A case study of Kolleru Lake, East Coast of India. AJGR 2020, 3, 53–68. [Google Scholar] [CrossRef]
- Kumar, K.C.V.; Demudu, G.; Hema, M.B.; Rao, K.N.; Kubo, S. Geospatial analysis of the changing environment of Kolleru lake, the largest freshwater wetland in India. Wetland 2016, 36, 745–758. [Google Scholar] [CrossRef]
- Jayanthi, M.; Rekha, P.N.; Kavitha, N.; Ravichandran, P. Assessment of impact of aquaculture on Kolleru Lake (India) using remote sensing and Geographical Information System. Aquac. Res. 2006, 37, 1617–1626. [Google Scholar] [CrossRef]
- Pattanaik, C.; Prasad, S.N.; Nagabhatla, N.; Sellamuthu, S.S. A case study of Kolleru Wetland (Ramsar site), India using remote sensing and GIS. IUP J. Earth Sci. 2010, 4, 70–77. [Google Scholar]
- Harikrishna, K.; Appala, R.N.; Venkateswara, R.V.; Jaisankar, G.; Amminedu, E. Land Use/Land Cover patterns in and around Kolleru Lake, Andhra Pradesh, India Using Remote Sensing and GIS Techniques. Int. J. Remote Sens. Geosci. 2013, 2, 2319–3484. [Google Scholar]
- Adhikari, S.; Ghosh, L.; Giri, B.; Ayyappan, S.S.; Ghosh, L.; Giri, B.; Ayyappan, S. Distributions of metals in the food web of fishponds of Kolleru Lake, India. Eotoxicol. Environ. Saf. 2009, 72, 1242–1248. [Google Scholar] [CrossRef]
- Amaraneni, S. Persistence of pesticides in water, sediment, and fish from fish farms in Kolleru Lake, India. J. Sci. Food Agric. 2002, 82, 918–923. [Google Scholar] [CrossRef]
- Sharma, S.; Sujatha, D.; Govil, P. Chemical and isotopic study of water and sediments from Kolleru Lake, Andhra Pradesh, India. Geochim. Cosmochim. Acta 2006, 70, A128. [Google Scholar] [CrossRef]
- Sreenivasa, R.; Pillala, R. The concentration of pesticides in sediments from Kolleru Lake in India. Pest. Manag. Sci. 2001, 57, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Amaraneni, S. Distribution of pesticides, PAHs, and heavy metals in prawn ponds near Kolleru Lake wetland, India. Environ. Int. 2006, 32, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Amaraneni, S.; Pillala, R. Concentrations of pesticide residues in tissues of fish from Kolleru Lake in India. Environ. Taxicol. 2001, 16, 550–556. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- McFeeters, S. Using the Normalized Difference Water Index (NDWI) within a Geographic Information System to detect swimming pools for mosquito abatement: A practical approach. Remote Sens. 2013, 5, 3544–3561. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Lane, C.; Li, X.; Zhao, K.; Zhou, Y.; Clinton, N.; DeVries, B.; Golden, H.; Lang, M. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sens. Environ. 2019, 228, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gao, B. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Afshar, M.; Briso, B.; Huang, W.; Mirzadeh, S.; White, L.; Banks, S.; Montgomery, J.; Hopkinson, C. Canadian wetland inventory using Google Earth Engine: The first map and premilinary results. Remote Sens. 2019, 11, 842. [Google Scholar] [CrossRef] [Green Version]
- Luscier, J.; Thompson, W.; Wilson, J.; Gorham, B.; Dragut, L. Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plots. Front. Ecol. Environ. 2006, 4, 408–413. [Google Scholar] [CrossRef] [Green Version]
- Sellamuttu, S.; Silva, S.D.; Nagabhatla, N.; Finlayson, C.; Pattanaik, C.; Prasad, N. The Ramsar Conventions wise use concept in theory and practice: An inter-disciplinary investigaion of practice in Kolleru lake, India. J. Int. Wildl. Law Policy 2012, 15, 228–250. [Google Scholar] [CrossRef]
Accuracy Assessment (1999) | |||||||
---|---|---|---|---|---|---|---|
Types | Urban | Paddy | Weed | Marshy Land | Lake Open Area | Fishponds | Producer’s Accuracy |
Urban | 126 | 6 | 0 | 5 | 2 | 8 | 85.71 |
Paddy | 3 | 2595 | 203 | 44 | 2 | 3 | 91.05 |
Weed | 0 | 231 | 1553 | 65 | 3 | 0 | 83.85 |
Marshy land | 0 | 67 | 71 | 1283 | 3 | 46 | 87.27 |
Lake open area | 7 | 8 | 11 | 63 | 21 | 21 | 16.03 |
Fishponds | 2 | 3 | 0 | 52 | 4 | 1548 | 96.21 |
Consumers accuracy | 91.30 | 89.17 | 84.49 | 84.85 | 60.01 | 95.20 | |
Overall accuracy: 88.42%, Kappa coefficient: 0.84 | |||||||
Accuracy Assessment (2008) | |||||||
Types | Urban | Paddy | Weed | Marshy Land | Lake Open Area | Fishponds | Producer’s Accuracy |
Urban | 76 | 2 | 0 | 0 | 0 | 0 | 97.43 |
Paddy | 6 | 758 | 38 | 20 | 0 | 1 | 92.10 |
Weed | 0 | 66 | 1007 | 23 | 0 | 0 | 91.87 |
Marshy land | 0 | 29 | 30 | 2069 | 1 | 19 | 96.32 |
Lake open area | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
Fishponds | 0 | 0 | 0 | 16 | 0 | 2393 | 99.33 |
Consumers accuracy | 92.68 | 88.65 | 93.67 | 96.68 | 0 | 99.17 | |
Overall accuracy: 95.99%, Kappa coefficient: 0.94 | |||||||
Accuracy Assessment (2018) | |||||||
Types | Urban | Paddy | Weed | Marshy Land | Lake Open Area | Fishponds | Producer’s Accuracy |
Urban | 117 | 2 | 1 | 25 | 0 | 0 | 80.68 |
Paddy | 3 | 241 | 24 | 44 | 0 | 0 | 77.24 |
Weed | 0 | 12 | 1005 | 107 | 2 | 4 | 88.93 |
Marshy land | 12 | 32 | 127 | 1386 | 2 | 10 | 88.33 |
Lake open area | 1 | 1 | 4 | 16 | 32 | 0 | 59.25 |
Fishponds | 1 | 0 | 7 | 12 | 1 | 519 | 96.11 |
Consumers accuracy | 87.31 | 83.68 | 86.04 | 87.16 | 86.48 | 97.37 | |
Overall accuracy: 88%, Kappa coefficient: 0.82 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolli, M.K.; Opp, C.; Karthe, D.; Groll, M. Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine. Water 2020, 12, 2493. https://doi.org/10.3390/w12092493
Kolli MK, Opp C, Karthe D, Groll M. Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine. Water. 2020; 12(9):2493. https://doi.org/10.3390/w12092493
Chicago/Turabian StyleKolli, Meena Kumari, Christian Opp, Daniel Karthe, and Michael Groll. 2020. "Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine" Water 12, no. 9: 2493. https://doi.org/10.3390/w12092493
APA StyleKolli, M. K., Opp, C., Karthe, D., & Groll, M. (2020). Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine. Water, 12(9), 2493. https://doi.org/10.3390/w12092493