Fuzzy Optimization Model for Waste Load Allocation in a River with Total Maximum Daily Load (TMDL) Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fuzzy Optimization Model
3. Results and Discussion
3.1. Calibration of the Water Quality Model
3.2. Waste Load Allocation Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Arbabi, M.; Elzinga, J. A general linear approach to stream water quality modeling. Water Resour. Res. 1975, 11, 191–196. [Google Scholar] [CrossRef]
- Burn, D.H.; Yulianti, J.S. Waste-load allocation using genetic algorithms. J. Water Resour. Plan. Manag. 2001, 127, 121–129. [Google Scholar] [CrossRef]
- Cho, J.H.; Seok Sung, K.; Ryong Ha, S. A river water quality management model for optimising regional wastewater treatment using a genetic algorithm. J. Environ. Manag. 2004, 73, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Lee, J.H. Multi-objective waste load allocation model for optimizing waste load abatement and inequality among waste dischargers. Water Air Soil Pollut. 2014, 225. [Google Scholar] [CrossRef]
- Collette, Y.; Siarry, P. Multiobjective Optimization: Principles and Case Studies; Springer: Berlin, Germany, 2003; pp. 99–107. ISBN 3540401822. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.; Zhang, H. A fuzzy max-min decision bi-level fuzzy programming model for water resources optimization allocation under uncertainty. Water 2018, 10, 488. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wang, H.; Yu, L.; Li, Y.; Fan, Y.; Zhang, J.; Zhang, J. Multi-preference based interval fuzzy-credibility optimization for planning the management of multiple water resources with multiple water-receiving cities under uncertainty. J. Hydrol. 2020. [Google Scholar] [CrossRef]
- Bector, C.R.; Goulter, I. Multiobjective water resources investment planning under budgetary uncertainty and fuzzy environment. Eur. J. Oper. Res. 1995. [Google Scholar] [CrossRef]
- Sasikumar, K.; Mujumdar, P.P. Fuzzy optimization model for water quality management of a river system. J. Water Resour. Plan. Manag. 1998, 124, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, O.; Gnanendran, S.K.; Ohgaki, S. River quality management under stochastic streamflow. J. Environ. Eng. 1986, 112, 185–198. [Google Scholar] [CrossRef]
- Elleuch, M.A.; Anane, M.; Euchi, J.; Frikha, A. Hybrid fuzzy multi-criteria decision making to solve the irrigation water allocation problem in the Tunisian case. Agric. Syst. 2019, 176. [Google Scholar] [CrossRef]
- Loucks, D.P. Models for management applications. In Mathematical Modeling for Water-Quality: Streams, Lakes and Reservoirs; ILASA Series; Orlob, G.T., Ed.; Wiley: New York, NY, USA, 1983; Volume 12, pp. 468–509. [Google Scholar]
- Ghosh, S.; Mujumdar, P.P. Fuzzy waste load allocation model: A multiobjective approach. J. Hydroinform. 2010, 12, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Huang, G.H. Two-stage fuzzy chance-constrained programming: Application to water resources management under dual uncertainties. Stoch. Environ. Res. Risk Assess. 2009, 23, 349–359. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.P.; Huang, G.H.; Dong, C. Interval-parameter chance-constrained fuzzy multi-objective programming for water pollution control with sustainable wetland management. Procedia Environ. Sci. 2012, 13, 2316–2335. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.L.; Xia, D.X.; Ji, L.; Huang, G.H. An inexact stochastic-fuzzy optimization model for agricultural water allocation and land resources utilization management under considering effective rainfall. Ecol. Indic. 2018, 92, 301–311. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, J.H. Automatic calibration and selection of optimal performance criterion of a water quality model for a river controlled by total maximum daily load (TMDL). Water Sci. Technol. 2019, 79, 2260–2270. [Google Scholar] [CrossRef]
- Novotny, V. Water Quality: Diffuse Pollution and Watershed Management; John Wiley & Sons: New York, NY, USA, 2003; ISBN 0-471-39633-8. [Google Scholar]
- Cho, J.-H. Waste load allocation method for total maximum daily load program of a polluted river. J. Environ. Impact Assess. 2013, 22, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Bellman, R.E.; Zadeh, L.A. Decision-making in a fuzzy environment. Manag. Sci. 1970, 17, B-141–B-164. [Google Scholar] [CrossRef]
- Sakawa, M. Genetic algorithms and fuzzy multiobjective optimization. Oper. Res. Comput. Sci. Interfaces Ser. 2002, 14, 1–286. [Google Scholar] [CrossRef]
- Zimmermann, H.J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1978, 1, 45–55. [Google Scholar] [CrossRef]
- Amid, A.; Ghodsypour, S.H.; O’Brien, C. A weighted maxmin model for fuzzy multi-objective supplier selection in a supply chain. Int. J. Prod. Econ. 2011, 131, 139–145. [Google Scholar] [CrossRef]
- Carroll, D.L. Fortran Genetic Algorithm (GA) Driver. 2020. Available online: http://www.cuaerospace.com/Technology/Genetic-Algorithm/GA-Driver-Free-Version (accessed on 1 February 2019).
- Mujumdar, P.P.; Vemula, V.R.S. Fuzzy waste load allocation model: Simulation-optimization approach. J. Comput. Civ. Eng. 2004, 18, 120–131. [Google Scholar] [CrossRef]
- Ghosh, S.; Mujumdar, P.P. Risk minimization in water quality control problems of a river system. Adv. Water Resour. 2006, 29, 458–470. [Google Scholar] [CrossRef]
- Withanachchi, S.S.; Ghambashidze, G.; Kunchulia, I.; Urushadze, T.; Ploeger, A. A paradigm shift in water quality governance in a transitional context: A critical study about the empowerment of local governance in Georgia. Water 2018, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Kayser, G.L.; Amjad, U.; Dalcanale, F.; Bartram, J.; Bentley, M.E. Drinking water quality governance: A comparative case study of Brazil, Ecuador, and Malawi. Environ. Sci. Policy 2015, 48, 186–195. [Google Scholar] [CrossRef] [Green Version]
Point Source | Reduction Rate (%) | Allocated Load (kg BODu/day) | Remark |
---|---|---|---|
PS1 | 31.11 | 46.4 | |
PS2 | 7.77 | 3.4 | |
PS3 | 99.41 | 13.3 | Jangseong WWTP |
PS4 | 36.57 | 27.7 | |
PS5 | 73.76 | 146.3 | Wangdongcheon |
PS6 | 14.35 | 60.3 | |
PS7 | 51.27 | 117.7 | |
PS8 | 6.96 | 10.0 | |
PS9 | 21.59 | 207.0 | Seobangcheon |
PS10 | 66.94 | 73.5 | |
PS11 | 50.47 | 245.6 | Yongcheon |
PS12 | 99.55 | 1.8 | Damyang WWTP |
PS13 | 34.76 | 28.8 | |
PS14 | 63.06 | 241.6 | Orecheon |
PS15 | 2.91 | 29.8 | Jeongamgang |
PS16 | 73.71 | 32.3 | |
PS17 | 52.34 | 56.8 | |
PS18 | 37.06 | 15.9 | |
PS19 | 80.54 | 14.6 | |
PS20 | 37.94 | 123.1 | |
PS21 | 17.39 | 14.9 | |
PS22 | 14.03 | 12.2 | |
PS23 | 54.62 | 121.7 | |
PS24 | 98.96 | 932.1 | Gwangju 1 WWTP |
PS25 | 2.91 | 23.0 | |
PS26 | 25.84 | 26.8 | |
PS27 | 99.25 | 142.5 | Gwangju 2 WWTP |
PS28 | 3.94 | 14.9 | |
PS29 | 35.53 | 27.7 | |
Total | 2811.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.H.; Lee, J.H. Fuzzy Optimization Model for Waste Load Allocation in a River with Total Maximum Daily Load (TMDL) Planning. Water 2020, 12, 2618. https://doi.org/10.3390/w12092618
Cho JH, Lee JH. Fuzzy Optimization Model for Waste Load Allocation in a River with Total Maximum Daily Load (TMDL) Planning. Water. 2020; 12(9):2618. https://doi.org/10.3390/w12092618
Chicago/Turabian StyleCho, Jae Heon, and Jong Ho Lee. 2020. "Fuzzy Optimization Model for Waste Load Allocation in a River with Total Maximum Daily Load (TMDL) Planning" Water 12, no. 9: 2618. https://doi.org/10.3390/w12092618
APA StyleCho, J. H., & Lee, J. H. (2020). Fuzzy Optimization Model for Waste Load Allocation in a River with Total Maximum Daily Load (TMDL) Planning. Water, 12(9), 2618. https://doi.org/10.3390/w12092618