Comparison Study of Multiple Precipitation Forcing Data on Hydrological Modeling and Projection in the Qujiang River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Spatial Attribute Data
2.3. Meteorological Data
2.4. Climate Projection Data
2.5. SWAT Model Construction
2.6. Performance Metrics for Precipitation and Streamflow
3. Results
3.1. Comparison of the Precipitation Estimation
3.2. Daily Streamflow Simulation Results
3.3. Monthly Streamflow Simulation Results
3.4. Future Runoff Projections
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, D.; Xu, Z.; Li, Z.; Yuan, X.; Wang, L.; Miao, C.; Tian, F.; Tian, L.; Long, D.; Tang, Q.; et al. Progress and prospect of hydrological sciences. Prog. Geogr. 2018, 37, 36–45. [Google Scholar]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Mishra, A.K. Effect of rain gauge density over the accuracy of rainfall: A case study over Bangalore, India. Springerplus 2013, 2, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conti, F.L.; Hsu, K.L.; Noto, L.V.; Sorooshian, S. Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea. Atmos. Res. 2014, 138, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhu, Q.; Yang, Z.; Wang, H. Evaluation and hydrological application of CMADS against TRMM 3B42V7, PERSIANN-CSR, NCEP-CFSR, and gauge-based datasets in Xiang River Basin of China. Water 2018, 10, 1225. [Google Scholar] [CrossRef] [Green Version]
- Seyyedi, H.; Anagnostou, E.N.; Beighley, E.; Mccollum, J. Hydrologic evaluation of satellite and reanalysis precipitation datasets over a mid-latitude basin. Atmos. Res. 2015, 164–165, 37–48. [Google Scholar] [CrossRef]
- Zhu, Q.; Xuan, W.D.; Liu, L.; Xu, Y.P. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEPCFSR over humid regions in China. Hydrol. Process. 2016, 30, 3061–3083. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos. Res. 2017, 196, 151–163. [Google Scholar] [CrossRef]
- Zhong, R.; Chen, X.; Lai, C.; Wang, Z.; Lian, Y.; Yu, H.; Wu, X. Drought monitoring utility of satellite-based precipitation products across mainland China. J. Hydrol. 2019, 568, 343–359. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Huffman, G.J. The Transition in Multi-Satellite Products from TRMM to GPM (TMPA to IMERG). Available online: https://gpm.nasa.gov/sites/default/files/document_files/TMPA-to-IMERG_transition_191101.pdf. (accessed on 24 March 2020).
- Darand, M.; Amanollahi, J.; Zandkarimi, S. Evaluation of the performance of trmm multi-satellite precipitation analysis (TMPA) estimation over Iran. Atmos. Res. 2017, 190, 121–127. [Google Scholar] [CrossRef]
- Li, Y.; Guo, B.; Wang, K.; Wu, G.; Shi, C. Performance of TRMM Product in Quantifying Frequency and Intensity of Precipitation during Daytime and Nighttime across China. Remote Sens. 2020, 12, 740. [Google Scholar] [CrossRef] [Green Version]
- Sorooshian, S.; Aghakouchak, A.; Arkin, P.; Eylander, J.; Foufoulageorgiou, E.; Harmon, R.; Hendrickx, J.M.H.; Imam, B.; Kuligowski, R.; Skahill, B. Advanced Concepts on Remote Sensing of Precipitation at Multiple Scales. Bull. Am. Meteorol. Soc. 2011, 92, 1353–1357. [Google Scholar] [CrossRef]
- Meng, J.; Li, L.; Hao, Z.; Wang, J.; Shao, Q. Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the source region of Yellow River. J. Hydrol. 2014, 509, 320–332. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.; Gao, B.; Jiao, Y.; Hong, Y.; Xu, T. Multiscale hydrologic applications of the latest satellite precipitation products in the Yangtze river basin using a distributed hydrologic model. J. Hydrometeorol. 2015, 16, 407–426. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Wen, J.; Qiu, C.; Tan, J. Accuracy evaluation of two high-resolution satellite-based rainfall products: Trmm 3b42v7 and cmorph in shanghai. Water 2018, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. Integrated Multi-Satellite Retrievals for GPM (IMERG) Technical Documentation. Available online: https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf. (accessed on 24 March 2020).
- Zhang, C.; Chen, X.; Shao, H.; Chen, S.; Liu, T.; Chen, C.; Ding, Q.; Du, H. Evaluation and Intercomparison of High-Resolution Satellite Precipitation Estimates—GPM, TRMM, and CMORPH in the Tianshan Mountain Area. Remote Sens. 2018, 10, 1543. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, E.; Seol, K. Validation of Integrated MultisatellitE Retrievals for GPM (IMERG) by using gauge-based analysis products of daily precipitation over East Asia. Theor. Appl. Climatol. 2019, 137, 2497–2512. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, B.; Shi, C.; Cui, W.; Zhao, C.; Liu, Y.; Ren, L.; Zhang, L.; Zhu, Y.; Chen, T. Evaluation of hydrological utility of IMERG Final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China. J. Hydrol. 2018, 567, 696–711. [Google Scholar] [CrossRef]
- Yu, C.; Hu, D.; Liu, M.; Wang, S.; Di, Y. Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation products in China area. Atmos. Res. 2020, 241, 104952. [Google Scholar] [CrossRef]
- Wei, G.; Lü, H.T.; Crow, W.; Zhu, Y.; Wang, J.; Su, J. Evaluation of Satellite-Based precipitation products from IMERG V04A and V03D, CMORPH and TMPA with Gauged Rainfall in Three Climatologic Zones in China. Remote Sens. 2018, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Lu, H.; Zhu, Y.; Cui, Y.; Wang, X. Evaluating the hydrological utility of latest IMERG products over the upper Huaihe River Basin, China. Atmos. Res. 2019, 225, 17–29. [Google Scholar] [CrossRef]
- Chen, H.; Yong, B.; Shen, Y.; Liu, J.; Zhang, J. Comparison analysis of six purely satellite-derived global precipitation estimates. J. Hydrol. 2019, 581, 124376. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H. Significance of the China meteorological assimilation driving datasets for the SWAT Model (CMADS) of East Asia. Water 2017, 9, 765. [Google Scholar] [CrossRef]
- Meng, X.; Shi, C.; Liu, S.; Wang, H.; Lei, X.; Liu, Z.; Ji, X.; Cai, S.; Zhao, Q. CMADS datasets and its application in watershed hydrological simulation: A case study of the heihe river basin. Pearl River 2016, 37, 1–19. [Google Scholar]
- Cao, Y.; Zhang, J.; Yang, M.; Lei, X.; Guo, B.; Yang, L.; Yang, L.; Zeng, Z.; Qu, J. Application of SWAT model with CMADS data to estimate hydrological elements and parameter uncertainty based on SUFI-2 algorithm in the Lijiang River Basin, China. Water 2018, 10, 742. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.; Li, L.; Jun, K. Evaluation of multi-satellite precipitation products for streamflow simulations: A case study for the han river basin in the Korean Peninsula, East Asia. Water 2018, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Wang, H.; Zhang, X.; Liu, G. Evaluation and analysis of grid precipitation fusion products in jinsha river basin based on china meteorological assimilation datasets for the SWAT Model. Water 2019, 11, 253. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Wang, H.; Lei, X.; Cai, S. Simulation, validation, and analysis of the Hydrological components of Jing and Bo River Basin based on the SWAT model driven by CMADS. Acta Ecol. Sin. 2017, 37, 7114–7127. [Google Scholar]
- Guo, B.; Zhang, J.; Xu, T.; Croke, B.; Jakeman, A.; Song, Y.; Yang, Q.; Lei, X.; Liao, W. Applicability assessment and uncertainty analysis of multi-precipitation datasets for the simulation of hydrologic models. Water 2018, 10, 1611. [Google Scholar] [CrossRef] [Green Version]
- Simpkins, G. Hydrology: Increasing river flood risk. Nat. Clim. Chang. 2017, 7, 172. [Google Scholar] [CrossRef]
- Guo, T.; Mehan, S.; Gitau, M.W.; Wang, Q.; Kuczek, T.; Flanagan, D.C. Impact of number of realizations on the suitability of simulated weather data for hydrologic and environmental applications. Stoch. Env. Res. Risk A 2017, 32, 2405–2421. [Google Scholar] [CrossRef]
- Ochoa, A.; Pineda, L.; Willems, P.; Crespo, P. Evaluation of TRMM 3B42 (TMPA) precipitation estimates and WRF retrospective precipitation simulation over the Pacific-Andean basin into Ecuador and Peru. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 411–449. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.N.; Ding, Y.J.; Zhao, C.C.; Wang, J. Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmos. Res. 2019, 218, 347–363. [Google Scholar] [CrossRef]
- Bao, Y.; Wen, X. Projection of China’s near- and long-term climate in a new high-resolution daily downscaled dataset NEX-GDDP. J. Meteorol. Res. 2017, 31, 236–249. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J.; Li, H. Future changes in precipitation extremes over China using the NEX-GDDP high-resolution daily downscaled data-set. Atmos. Ocean. Sci. Lett. 2017, 10, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Allen, P.M. Continental scale simulation of the hydrologic balance. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 15. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, S.; Jia, H. Hydrologic simulation in NPS models: Case of application of swat in Luxi watershed. Res. Environ. Sci. 2003, 16, 29–32. [Google Scholar]
- Tan, M.L.; Gassman, P.W.; Srinivasan, R.; Arnold, J.G.; Yang, X. Review of SWAT Studies in Southeast Asia: Applications, Challenges and Future Directions. Water 2019, 11, 914. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Johnson, C.A.; Van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, J.; Zhang, M. Impacts of Climate Change on Runoff in Qujiang River Basin Based on SWAT Model. In Proceedings of the 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics 2018), Hangzhou, China, 6–9 August 2018. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Wilby, R.L.; Harris, I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour. Res. 2006, 42, 02419. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Barnhart, B.L. SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds. J. Hydrol. 2014, 519, 2081–2090. [Google Scholar] [CrossRef] [Green Version]
Dataset | Time Resolution | Spatial Resolution | Time Series Length | Numbers of Sites | Data Source |
---|---|---|---|---|---|
Gauged | 1 day | 2008–2015 | 16 | http://data.cma.cn/ | |
CMADS | 1 day | 1/3° × 1/3° | 2008–2015 | 110 | http://www.cmads.org/ |
IMERG | 1 day | 0.1° × 0.1° | 2008–2015 | 870 | https://gpm.nasa.gov/ |
TRMM | 1 day | 0.25° × 0.25° | 2008–2015 | 169 | https://pmm.nasa.gov/ |
Parameter | Type | Description | Method | Range |
---|---|---|---|---|
CN2 | Management input file (.mgt) | Initial SCS runoff curve number for moisture condition II | r 1 | −2 to 2 |
ALPHA_BF | Groundwater input file (.gw) | Baseflow alpha factor (1/days) | v 2 | 0 to 1 |
SOL_AWC | Sol input file (.sol) | Available water capacity of the soil layer (mmH2O/mmsoil) | r | 0 to 1 |
SOL_K | Sol input file (.sol) | Saturated hydraulic conductivity (mm/hour) | r | 0 to 5 |
ESCO | HRU input file (.hru) | Soil evaporation compensation factor | r | 0.01 to 1 |
GW_REVAP | Groundwater input file (.gw) | Groundwater “revap” coefficient | v | 0.02 to 0.2 |
SFTMP | Basin input file (.bsn) | Snowfall temperature (°C) | v | −20 to 20 |
SMTMP | Basin input file (.bsn) | Snow melt base temperature (°C) | v | −20 to 20 |
CH_K2 | Main channel input file (.rte) | Effective hydraulic conductivity in main channel alluvium (mm/hour) | v | 0.02 to 50 |
CH_N2 | Main channel input file (.rte) | Manning’s “n” value for the main channel | v | 0.02 to 0.3 |
GW_DELAY | Groundwater input file (.gw) | Groundwater delay time (days) | v | 30 to 450 |
GWQMN | Groundwater input file (.gw) | Threshold depth of water in the shallow aquifer required for return flow to occur (mmH2O) | v | 0 to 2 |
SURLAG | Basin input file (.bsn) | Surface runoff lag coefficient | v | 0.05 to 24 |
RMSE (mm/day) | PBIAS | |||||||
---|---|---|---|---|---|---|---|---|
BX | QLT | FT | LDX | BX | QLT | FT | LDX | |
TRMM | 10.03 | 8.89 | 8.37 | 6.49 | 8.99% | 16.83% | 10.43% | 17.18% |
IMERG | 10.04 | 9.58 | 9.35 | 7.80 | −2.70% | 1.99% | −3.47% | 0.41% |
CMADS | 8.59 | 7.83 | 7.37 | 5.96 | 4.33% | 4.38% | −2.83% | −5.41% |
RCP4.5 | RCP8.5 | |||||||
---|---|---|---|---|---|---|---|---|
LDX | FT | QLT | BX | LDX | FT | QLT | BX | |
Prec (mm) | 1079.41 | 1077.84 | 1070.73 | 1052.39 | 1045.43 | 1047.14 | 1040.32 | 1023.10 |
Tmax (°C) | 21.18 | 21.93 | 21.74 | 21.74 | 21.46 | 22.19 | 22.00 | 22.00 |
Tmin (°C) | 13.82 | 15.02 | 14.91 | 14.74 | 14.06 | 15.25 | 15.13 | 14.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhang, J.; Meng, X.; Zhou, Y.; Lai, Y.; Cao, Y. Comparison Study of Multiple Precipitation Forcing Data on Hydrological Modeling and Projection in the Qujiang River Basin. Water 2020, 12, 2626. https://doi.org/10.3390/w12092626
Song Y, Zhang J, Meng X, Zhou Y, Lai Y, Cao Y. Comparison Study of Multiple Precipitation Forcing Data on Hydrological Modeling and Projection in the Qujiang River Basin. Water. 2020; 12(9):2626. https://doi.org/10.3390/w12092626
Chicago/Turabian StyleSong, Yongyu, Jing Zhang, Xianyong Meng, Yuyan Zhou, Yuequn Lai, and Yang Cao. 2020. "Comparison Study of Multiple Precipitation Forcing Data on Hydrological Modeling and Projection in the Qujiang River Basin" Water 12, no. 9: 2626. https://doi.org/10.3390/w12092626
APA StyleSong, Y., Zhang, J., Meng, X., Zhou, Y., Lai, Y., & Cao, Y. (2020). Comparison Study of Multiple Precipitation Forcing Data on Hydrological Modeling and Projection in the Qujiang River Basin. Water, 12(9), 2626. https://doi.org/10.3390/w12092626