Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Chemical Analysis
2.2. Statistical Analysis
2.3. Isoscape and Electric Conductivity Maps
2.4. Snow Covered Area Analysis
3. Results
3.1. Source Differentiation Using Natural Tracers
3.2. Quantification of Glacier, Snow and Groundwater Contribution to the Upper Aconcagua River Basin
3.2.1. Snow System
3.2.2. Glacial Environment
3.2.3. Periglacial Environment
3.2.4. Groundwater
3.2.5. Stagnant Waters
4. Discussion
4.1. Water Source Discrimination and Quantification
4.2. Geochemical Water Information to be Used in Climate Change Adaptation and Territorial Resilience Planning
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Contribución Nacional Tentativa De Chile (Indc) Para El Acuerdo Climático París; 2015. Available online: https://mma.gob.cl/wp-content/uploads/2015/09/INDC_1609c1.pdf (accessed on 15 September 2020).
- Boisier, J.P.; Aceituno, P. Changes in surface and upper-air temperature along the arid coast of Northern Chile. In Proceedings of the 8 ICSHMO, Foz de Iguaçu, Brazil, 24–28 April 2006. [Google Scholar]
- Falvey, M.; Garreaud, R.D. Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J. Geophys. Res. Atmos. 2009, 114, 1–16. [Google Scholar] [CrossRef]
- Carrasco, J.F.; Osorio, R.; Casassa, G. Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J. Glaciol. 2008, 54, 538–550. [Google Scholar] [CrossRef] [Green Version]
- Boisier, J.P.; Rondanelli, R.; Garreaud, R.D.; Muñoz, F. Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys. Res. Lett. 2016, 43, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Muñoz, A.A.; Klock-Barría, K.; Alvarez-Garreton, C.; Aguilera-Betti, I.; González-Reyes, Á.; Lastra, J.A.; Chávez, R.O.; Barría, P.; Christie, D.; Rojas-Badilla, M.; et al. Water crisis in Petorca Basin, Chile: The combined effects of a mega-drought and water management. Water 2020, 12, 648. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.S.; Keimig, F.T.; Diaz, H.F. Projected temperature changes along the American cordillera and the planned GCOS network. Geophys. Res. Lett. 2004, 31, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.; Intergovernmental Panel on Climate Change, Working Group I. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; ISBN 9781107661820. [Google Scholar]
- CR2 Report to the Nation. The 2010–2015 Mega-Drought: A Lesson for the Future. Inf. Nación 2015. Available online: www.cr2.cl/megasequia (accessed on 15 September 2020).
- Nacional Estadísticas, I. De Síntesis De Resultados Censo 2017; Instituto Nacional de Estadísticas (INE): Santiago, Chile, 2018; Available online: https://www.censo2017.cl/descargas/home/sintesis-de-resultados-censo2017.pdf (accessed on 15 September 2020).
- Política Nacional para los Recursos Hídricos 2015; Grafnika Impresores: Santiago, Chile, 2015. Available online: https://www.interior.gob.cl/media/2015/04/recursos_hidricos.pdf (accessed on 15 September 2020).
- Webb, M.J.; Winter, J.M.; Spera, S.A.; Chipman, J.W.; Osterberg, E.C. Water, agriculture, and climate dynamics in central Chile’s Aconcagua River Basin. Phys. Geogr. 2020, 1–21. [Google Scholar] [CrossRef]
- DGA. Información Hídrica de las Cuencas Priorizadas, Fichas Temáticas, Cuenca Aconcagua; Dirección General de Aguas: Santiago, Chile, 2015; Available online: https://www.mop.cl/Prensa/Documents/08_Rio_Aconcagua.pdf (accessed on 15 September 2020).
- Janke, J.R.; Ng, S.; Bellisario, A. An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile. Geomorphology 2017, 296, 142–152. [Google Scholar] [CrossRef]
- DGA. Cuenca del Aconcagua: Diagnostico y Clasificacion de los Cursos y Cuerpos de Agua Segun Objetivos de Calidad; Dirección General de Aguas: Santiago, Chile, 2004; Available online: https://web.archive.org/web/20150924102033/http://www.sinia.cl/1292/articles-31018_Bueno.pdf (accessed on 15 September 2020).
- Compagnucci, R.H.; Vargas, W.M. Inter-annual variability of the Cuyo rivers’ streamflow in the Argentinean Andean mountains and ENSO events. Int. J. Climatol. 1998, 18, 1593–1609. [Google Scholar] [CrossRef]
- Masiokas, M.H.; Villalba, R.; Luckman, B.H.; Le Quesne, C.; Aravena, J.C. Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: Large-scale atmospheric influences and implications for water resources in the region. J. Clim. 2006, 19, 6334–6352. [Google Scholar] [CrossRef]
- Leiva, J.C. Recent fluctuations of the Argentinian glaciers. Glob. Planet. Change 1999, 22, 169–177. [Google Scholar] [CrossRef]
- Crespo, S.; Fernandoy, F.; Cara, L.; Klarian, S.; Lavergne, C. First snow, glacier and groundwater contribution quantification in the Upper Mendoza River basin using 2H and 18O. Isotopes Environ. Health Stud. 2020. [Google Scholar] [CrossRef] [PubMed]
- Glaciares. 2015. Available online: http://www.ide.cl/index.php/medio-ambiente/item/1665-glaciares-2015 (accessed on 31 July 2020).
- Snowmelt-Runoff Simulation Model of a Central Chile Andean basin with Relevant Orographic Effects—Resultados de su Búsqueda—Bases de Datos Bibliográficos Pascal y Francis. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8327953 (accessed on 28 July 2020).
- Rivera, A.; Acuna, C.; Casassa, G.; Bown, F. Use of remotely sensed and field data to estimate the contribution of Chilean glaciers to eustatic sea-level rise. Ann. Glaciol. 2002, 34, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Dussaillant, I.; Berthier, E.; Brun, F.; Masiokas, M.; Hugonnet, R.; Favier, V.; Rabatel, A.; Pitte, P.; Ruiz, L. Two decades of glacier mass loss along the Andes. Nat. Geosci. 2019, 12, 802–808. [Google Scholar] [CrossRef]
- Masiokas, M.H.; Rivera, A.; Espizua, L.E.; Villalba, R.; Delgado, S.; Aravena, J.C. Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 242–268. [Google Scholar] [CrossRef]
- Ruiz Pereira, S.F.; Veettil, B.K. Glacier decline in the Central Andes (33 °S): Context and magnitude from satellite and historical data. J. South Am. Earth Sci. 2019, 94, 102249. [Google Scholar] [CrossRef]
- Bown, F.; Rivera, A.; Acuña, C. Recent glacier variations at the Aconcagua basin, central Chilean Andes. Ann. Glaciol. 2008, 48, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Ragettli, S.; Immerzeel, W.W.; Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. USA 2016, 113, 9222–9227. [Google Scholar] [CrossRef] [Green Version]
- Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. Global isoscapes for δ 18 O and δ 2 H in precipitation: Improved prediction using regionalized climatic regression models. Hydrol. Earth Syst. Sci 2013, 17, 1–16. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Chesson, L.A.; Valenzuela, L.O.; Tipple, B.J.; Martinelli, L.A. Stable isotopes trace the truth: From adulterated foods to crime scenes. Elements 2015, 11, 259–264. [Google Scholar] [CrossRef]
- Lachniet, M.S.; Lawson, D.E.; Stephen, H.; Sloat, A.R.; Patterson, W.P. Isoscapes of δ 18 O and δ 2 H reveal climatic forcings on Alaska and Yukon precipitation. Water Resour. Res. 2016, 52, 6575–6586. [Google Scholar] [CrossRef] [Green Version]
- Crespo, S.; Aranibar, J.; Gomez, L.; Schwikowski, M.; Bruetsch, S.; Cara, L.; Villalba, R. Ionic and stable isotope chemistry as indicators of water sources to the Upper Mendoza River basin, Central Andes of Argentina. Hydrol. Sci. J. 2017, 62, 588–605. [Google Scholar] [CrossRef] [Green Version]
- Lambs, L. Correlation of conductivity and stable isotope 18O for the assessment of water origin in river system. Chem. Geol. 2000, 164, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Lambs, L.; Loubiat, M.; Richardson, W. The use of stable isotope to evaluate water mixing and water use by flood plain trees along the Garonne valley. Isotopes Environ. Health Stud. 2003, 39, 301–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, T.; He, Y.; Zhu, G.; Zhang, N.; Du, J.; Wang, C. Characteristics of water stable isotopes and hydrograph separation in Baishui catchment during the wet season in Mt.Yulong region, south western China. Hydrol. Process. 2013, 27, 3641–3648. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Pablo Boisier, J.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010-2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Friendly, M. Corrgrams: Exploratory displays for correlatigon matrices. Am. Stat. 2002, 56, 316–324. [Google Scholar] [CrossRef]
- Dray, S.; Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Steven, M.H.H.; Wagner, H. Vegan: Community Ecology Package; R Package Version 2.0-7: Vienna, Austria, 2013. [Google Scholar]
- Pinheiro, J. Nlme: Linear and Nonlinear Mixed-Effects Models, R Package Version 3.1-103; 2013, Volume 3, p. 111. Available online: http://cran.r-project.org/web/packages/nlme/index.html (accessed on 15 September 2020).
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer Science+Business Media: New York, NY, USA, 2009. [Google Scholar]
- Crawley, M.J. The R Book; John Wiley & Sons, Ltd.: Chichester, UK, 2007; ISBN 9780470515075. [Google Scholar]
- Parnell, A.; Inger, R. Stable Isotope Mixing Models in R with Simmr. Available online: https://cran.r-project.org/web/packages/simmr/vignettes/simmr.html (accessed on 16 September 2020).
- Taucare, M.; Daniele, L.; Viguier, B.; Vallejos, A.; Arancibia, G. Groundwater resources and recharge processes in the Western Andean Front of Central Chile. Sci. Total Environ. 2020, 722. [Google Scholar] [CrossRef]
- Taucare, M.; Viguier, B.; Daniele, L.; Heuser, G.; Arancibia, G.; Leonardi, V. Connectivity of fractures and groundwater flows analyses into the Western Andean Front by means of a topological approach (Aconcagua Basin, Central Chile). Hydrogeol. J. 2020. [Google Scholar] [CrossRef]
- QGIS Development Team 2020. Open Source Geospatial Foundation. 2020. Available online: http://qgis.osgeo.org (accessed on 15 September 2020).
- Hall, D.K.; Riggs, G.A. Normalized-difference snow index (Ndsi). Encycl. Earth Sci. Ser. 2011, 779–780. [Google Scholar] [CrossRef] [Green Version]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K.; Salomonson, V.V. MODIS Sea Ice Products User Guide to Collection 5; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2006; Volume 49. Available online: https://modis-snow-ice.gsfc.nasa.gov/uploads/siug_c5.pdf (accessed on 15 September 2020).
- Cara, L.; Masiokas, M.; Viale, M.; Villalba, R. Análisis De La Cobertura Nival De La Cuenca Superior Del Río Mendoza a Partir De Imágenes Modis. Meteorológica 2016, 41, 21–36. [Google Scholar]
- Ohlanders, N.; Rodriguez, M.; McPhee, J. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt. Hydrol. Earth Syst. Sci. 2013, 17, 1035–1050. [Google Scholar] [CrossRef] [Green Version]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- DGA MOP—Chile. Available online: https://snia.mop.gob.cl/BNAConsultas/reportes (accessed on 9 December 2019).
- Trombotto, D.; Ahumada, A. Los Fenomenos Periglaciales. Identificación, Determinación y Aplicación; Fondo. Miguel Lillo.; Opera Lilloana: Tucumán, Argentina, 2005; ISBN 950-668-010-8. [Google Scholar]
- Dirección general de aguas, Ministerio de Obras Públicas. Boletin no498, Información Pluviométrica, Fluviométrica, Estado de Embalses y Aguas Subterráneas. 2019. Available online: https://dga.mop.gob.cl/productosyservicios/informacionhidrologica/Informacin%20Mensual/Boletin_10_Octubre_2019.pdf (accessed on 15 September 2020).
- Ministerio del Interior y Seguridad Pública. CVE 1616675—Diario Oficial de la República de Chile; Ministerio del Interior y Seguridad Pública: Santiago de Chile, Chile, 2019; Available online: https://www.diariooficial.interior.gob.cl/publicaciones/2019/07/10/42400/01/1616675.pdf (accessed on 15 September 2020).
- Rodriguez, M.; Ohlanders, N.; Pellicciotti, F.; Williams, M.; McPhee, J. Estimating runoff from a glaciarized catchment using natural tracers in the semi-arid Andes cordillera. Hydrol. Process. 2016, 30, 3609–3626. [Google Scholar] [CrossRef]
- Rocha, A.S.; Giering, Y.V. Caracterización glaciológica de Chile Glaciological characterization of Chile. 2017, 24, 3–24. [Google Scholar]
- DGA 2020. Región de Valparaiso—Gobierno de Chile. Available online: http://pronostico.dga.cl/detalle5Region.html#embalse (accessed on 2 September 2020).
Variable | Mean [δ18O‰] | SD | CI (2.5–97.5%) | p-Value |
---|---|---|---|---|
Glacial | −17.70 | 0.74 | −19.16 & −16.24 | |
Periglacial | 1.21 | 1.17 | −1.08 & 3.51 | 0.301 |
Groundwater | 4.71 | 0.91 | 2.92 & 6.50 | <0.001 |
Snow catchment | 3.44 | 0.89 | 1.70 & 5.19 | <0.001 |
Variable | Mean [µS cm−1] | SD | CI (2.5–97.5%) | p-Value |
---|---|---|---|---|
Glacial | 134.3 | 106.8 | −75.10 & 343.75 | |
Periglacial | 878.8 | 164.9 | 555.72 & 1201.97 | <0.001 |
Groundwater | 496.1 | 131.8 | 237.82 & 754.33 | <0.001 |
Snow catchment | −10.4 | 129.3 | −263.90 & 243.15 | 0.936 |
Water Source | δ18O ‰ | SD | δ2H ‰ | SD | δ d‰ | SD | EC µS cm−1 | SD | n | Mean Altitude/Depth |
---|---|---|---|---|---|---|---|---|---|---|
Glacial | −17.70 | 0.19 | −128.89 | 1.37 | 12.74 | 0.54 | 133 | 11 | 5 | 4173 |
Periglacial | −16.49 | 0.51 | −121.40 | 2.90 | 10.50 | 1.79 | 1013 | 359 | 6 | 3712 |
Snow catchment | −14.25 | 0.81 | −107.27 | 7.73 | 6.76 | 3.03 | 124 | 59 | 7 | 3328 |
Groundwater | −13.03 | 1.52 | −97.76 | 10.88 | 6.47 | 1.35 | 584 | 170 | 7 | 857/−93 |
Water Source/Season | A | SD A | B 19-49 | SD B | C 51 | SD C | Analysis Average | Analysis SD | Dif. | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Summer 2018 | A−C | B−C | A−B | ||||||||
Glacial | 0.34 | 0.14 | 0.21 | 0.17 | 0.18 | 0.11 | 0.25 | 0.14 | 0.17 | 0.04 | 0.13 |
Periglacial | 0.23 | 0.12 | 0.14 | 0.11 | 0.16 | 0.09 | 0.17 | 0.11 | 0.07 | 0.03 | −0.03 |
Snow | 0.24 | 0.14 | 0.40 | 0.22 | 0.37 | 0.18 | 0.33 | 0.18 | −0.13 | −0.04 | 0.06 |
Groundwater | 0.19 | 0.11 | 0.25 | 0.17 | 0.30 | 0.15 | 0.25 | 0.14 | −0.11 | −0.04 | 0.00 |
Autumn 2018 | |||||||||||
Glacial | 0.30 | 0.14 | 0.19 | 0.14 | 0.19 | 0.11 | 0.22 | 0.13 | 0.11 | 0.00 | 0.11 |
Periglacial | 0.30 | 0.16 | 0.20 | 0.15 | 0.21 | 0.11 | 0.24 | 0.14 | 0.09 | 0.00 | 0.10 |
Snow | 0.22 | 0.13 | 0.29 | 0.19 | 0.29 | 0.16 | 0.27 | 0.16 | −0.07 | 0.00 | −0.07 |
Groundwater | 0.19 | 0.10 | 0.32 | 0.19 | 0.32 | 0.16 | 0.28 | 0.15 | −0.13 | 0.00 | −0.13 |
Winter 2018 | |||||||||||
Glacial | 0.30 | 0.13 | 0.13 | 0.09 | 0.12 | 0.08 | 0.18 | 0.10 | 0.18 | 0.01 | 0.17 |
Periglacial | 0.23 | 0.13 | 0.12 | 0.07 | 0.09 | 0.06 | 0.15 | 0.09 | 0.14 | 0.02 | 0.11 |
Snow | 0.26 | 0.15 | 0.29 | 0.17 | 0.42 | 0.20 | 0.33 | 0.18 | −0.16 | −0.13 | −0.03 |
Groundwater | 0.21 | 0.12 | 0.46 | 0.16 | 0.37 | 0.17 | 0.34 | 0.15 | −0.16 | 0.09 | −0.25 |
Spring 2018 | |||||||||||
Glacial | 0.21 | 0.10 | 0.22 | 0.20 | 0.10 | 0.07 | 0.18 | 0.12 | 0.11 | 0.12 | −0.01 |
Periglacial | 0.11 | 0.07 | 0.12 | 0.11 | 0.08 | 0.05 | 0.10 | 0.08 | 0.04 | 0.05 | −0.01 |
Snow | 0.52 | 0.17 | 0.44 | 0.26 | 0.51 | 0.22 | 0.49 | 0.22 | 0.01 | −0.07 | 0.08 |
Groundwater | 0.16 | 0.11 | 0.22 | 0.18 | 0.32 | 0.19 | 0.23 | 0.16 | −0.16 | −0.10 | −0.06 |
Summer 2019 | |||||||||||
Glacial | 0.29 | 0.13 | 0.22 | 0.18 | 0.16 | 0.10 | 0.22 | 0.14 | 0.13 | 0.07 | 0.07 |
Periglacial | 0.24 | 0.13 | 0.15 | 0.11 | 0.14 | 0.08 | 0.17 | 0.11 | 0.10 | 0.01 | 0.10 |
Snow | 0.26 | 0.15 | 0.37 | 0.22 | 0.37 | 0.18 | 0.33 | 0.18 | −0.11 | −0.01 | −0.11 |
Groundwater | 0.21 | 0.12 | 0.26 | 0.18 | 0.33 | 0.16 | 0.27 | 0.15 | −0.12 | −0.07 | −0.05 |
Autumn 2019 | |||||||||||
Glacial | 0.24 | 0.13 | 0.19 | 0.15 | 0.16 | 0.10 | 0.20 | 0.13 | 0.08 | 0.04 | 0.05 |
Periglacial | 0.19 | 0.13 | 0.18 | 0.13 | 0.14 | 0.08 | 0.17 | 0.11 | 0.05 | 0.04 | 0.01 |
Snow | 0.36 | 0.18 | 0.30 | 0.20 | 0.35 | 0.18 | 0.34 | 0.19 | 0.00 | −0.05 | 0.05 |
Groundwater | 0.21 | 0.13 | 0.33 | 0.20 | 0.35 | 0.16 | 0.30 | 0.16 | −0.14 | −0.03 | −0.11 |
Site | Glacial | SD | Periglacial | SD | Snow | SD | Groundwater | SD |
---|---|---|---|---|---|---|---|---|
Inca lagoon | 0.14 | 0.10 | 0.03 | 0.02 | 0.76 | 0.11 | 0.06 | 0.04 |
Del Nacimiento wetland | 0.46 | 0.16 | 0.30 | 0.13 | 0.12 | 0.09 | 0.12 | 0.11 |
Juncal Norte wetland | 0.45 | 0.14 | 0.08 | 0.07 | 0.35 | 0.15 | 0.12 | 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespo, S.A.; Lavergne, C.; Fernandoy, F.; Muñoz, A.A.; Cara, L.; Olfos-Vargas, S. Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments. Water 2020, 12, 2630. https://doi.org/10.3390/w12092630
Crespo SA, Lavergne C, Fernandoy F, Muñoz AA, Cara L, Olfos-Vargas S. Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments. Water. 2020; 12(9):2630. https://doi.org/10.3390/w12092630
Chicago/Turabian StyleCrespo, Sebastián Andrés, Céline Lavergne, Francisco Fernandoy, Ariel A. Muñoz, Leandro Cara, and Simón Olfos-Vargas. 2020. "Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments" Water 12, no. 9: 2630. https://doi.org/10.3390/w12092630
APA StyleCrespo, S. A., Lavergne, C., Fernandoy, F., Muñoz, A. A., Cara, L., & Olfos-Vargas, S. (2020). Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments. Water, 12(9), 2630. https://doi.org/10.3390/w12092630