Land Application of Biosolids in Europe: Possibilities, Con-Straints and Future Perspectives
Abstract
:1. Introduction
2. Limits for Pollutants and Pathogens in Sludge
3. Discussion
3.1. Emerging Pollutants
3.2. Fate and Effects of Microplastics in Sludge-Amended Soils
3.3. P-recovery from Sludge
3.4. Pathogens
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land Application of Biosolids in the USA: A Review. Appl. Environ. Soil Sci. 2012, 2012, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gianico, A.; Braguglia, C.M.; Mascolo, G.; Mininni, G. Partitioning of nutrients and micropollutants along the sludge treatment line: A case study. Environ. Sci. Pollut. Res. 2013, 20, 6256–6265. [Google Scholar] [CrossRef] [PubMed]
- Garcìa-Gil, J.C.; Plaza, C.; Senesi, N.; Brunetti, G. Effects of sewage sludge amendment on humic acids and microbiological properties of a semiarid Mediterranean soil. Biol. Fertil. Soils 2004, 39, 320–328. [Google Scholar]
- European Commission. Report of the Ad hoc Working Group on defining critical raw materials. Report on Critical Raw Materials for the EU. 2017. Available online: https://ec.europa.eu/transparency/regdoc/rep/1/2017/EN/COM-2017-490-F1-EN-MAIN-PART-1.PDF (accessed on 4 January 2021).
- Hernandez, T.; Moreno, J.I.; Costa, F. Influence of sewage sludge application on crop yields and heavy metals availability. Soil Sci. Plant Nutr. 2000, 37, 201–210. [Google Scholar] [CrossRef]
- Korboulewsky, N.; Dupouyet, S.; Bonin, G. Environmental risks of applying sewage sludge compost to vineyards: Carbon, heavy metals, nitrogen, and phosphorus accumulation. J. Environ. Qual. 2002, 31, 1522–1527. [Google Scholar] [CrossRef]
- Gómez-Canela, C.; Barth, J.A.C.; Lacorte, S. Occurrence and fate of perfluorinated compounds in sewage sludge from Spain and Germany. Environ. Sci. Pollut. Res. 2012, 19, 4109–4119. [Google Scholar] [CrossRef]
- Ternes, T.; Joss, A.; Siegrist, H. Scrutinizing pharmaceuticals and personal care products in wastewater treatment. The complexity of these hazards should not be underestimated. Environ. Sci. Technol. 2004, 38, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Harrison, E.Z.; Oakes, S.R.; Hysell, M.; Hay, A. Organic chemicals in sewage sludges. Sci. Total Environ. 2006, 367, 481–497. [Google Scholar] [CrossRef] [Green Version]
- Roig, N.; Sierra, J.; Nadal, M.; Martí, E.; Navalón-Madrigal, P.; Schuhmacher, M.; Domingo, J.L. Relationship between pollutant content and ecotoxicity of sewage sludges from Spanish wastewater treatment plants. Sci. Total Environ. 2012, 425, 99–109. [Google Scholar] [CrossRef]
- Usman, K.; Khan, S.; Ghulam, S.; Khan, M.U.; Khan, N.; Khan, M.A.; Khalil, S.K. Sewage sludge: An important biological resource for sustainable agriculture and its environmental implications. Am. J. Plant Sci. 2012, 3, 1708–1721. [Google Scholar] [CrossRef] [Green Version]
- Fijalkowski, K.; Rorat, A.; Grobelak, A.; Kacprzak, M.J. The presence of contamination in sewage sludge–the current situation. J. Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci. Total Environ. 2019, 671, 411–420. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. In Closing the loop-An EU Action Plan for the Circular Economy; European Commission: Brussels, Belgium, 2015; p. 21. [Google Scholar]
- European Commission. DG Environment Ex-Post Evaluation of Certain Waste Stream Directives Final Report; DG Environment: Brussels, Belgium, 2014; p. 373. [Google Scholar]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019: Laying down Rules on the Making Available on the Market of EU Fertilizing Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009 (accessed on 4 January 2021).
- Waste to Energy Communication–The Role of Waste to Energy in the Circular Economy–EC 26/01/2017-COM (2017) 34 Final. Available online: https://ec.europa.eu/environment/waste/waste-to-energy.pdf (accessed on 4 January 2021).
- CEC 1986. Council Directive of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, when Sewage Sludge is Used in Agriculture (86/278/EEC). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31986L0278 (accessed on 4 January 2021).
- Hudcová, H.; Vymazal, J.; Rozkošný, M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 2019, 14, 104–120. [Google Scholar] [CrossRef]
- European Commission. Working Document on Sludge, 3rd Draft; ENV.E.3/LM, European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods-A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Bianchini, A.; Bonfiglioli, L.; Pellegrini, M.; Saccani, C. Sewage sludge management in Europe: A critical analysis of data quality. Int. J. Environ. Waste Manag. 2016, 18, 226. [Google Scholar] [CrossRef]
- Clarke, B.O.; Smith, S.R. Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ. Int. 2011, 37, 226–247. [Google Scholar] [CrossRef]
- Umlauf, G.; Christoph, E.H.; Lanzini, L.; Savolainen, R.; Skejo, H.; Bidoglio, G.; Clemens, J.; Goldbach, H.; Scherer, H. PCDD/F and dioxin-like PCB profiles in soils amended with sewage sludge, compost, farmyard manure, and mineral fertilizer since 1962. Environ. Sci. Pollut. Res. 2011, 18, 461–470. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Marie-Christine, M.; Cunha-Queda, C. Sewage Sludge, Compost and other representative Organic Wastes as Agricultural Soil Amendments: Benefits versus Limiting Factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Zennegg, M.; Munoz, M.; Schmid, P.; Gerecke, A.C. Temporal trends of persistent organic pollutants in digested sewage sludge (1993–2012). Environ. Inter. 2013, 60, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Bedoux, G.; Roig, B.; Thomas, O.; Dupont, V.; Bot, B.L. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment Environ. Sci. Pollut. Res. 2012, 19, 1044–1065. [Google Scholar] [CrossRef] [PubMed]
- Commission regulation (EU) no. 358/2014 of 9 April 2014 amending annexes II and V to regulation (EC) No 1223/2009 of the European Parliament and of the Council on Cosmetic Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32014R0358 (accessed on 4 January 2021).
- Castiglioni, S.; Valsecchi, S.; Polesello, S.; Rusconi, M.; Melis, M.; Palmiotto, M.; Manenti, A.; Davoli, E.; Zuccato, E. Sources and fate of perfluorinated compounds in the aqueous environment and in drinking water of a highly urbanized and industrialized area in Italy. J. Hazard Mater. 2015, 282, 51–60. [Google Scholar] [CrossRef]
- Alder, A.C.; Van der Voet, J. Occurrence and point source characterization of perfluoroalkyl acids in sewage sludge. Chemosphere 2015, 129, 62–73. [Google Scholar] [CrossRef]
- Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ. Res. 2019, 169, 326–341. [Google Scholar] [CrossRef]
- Wen, B.; Li, L.; Zhang, H.; Ma, Y.; Shan, X.Q.; Zhang, S. Field study on the uptake and translocation of perfluoroalkyl acids (PFAAs) by wheat (Triticum aestivum L.) grown in biosolids-amended soils. Environ. Pollut. 2014, 184, 547–554. [Google Scholar] [CrossRef]
- ESWI. Study on waste related issues of newly listed POPs and candidate POPs. In Final Report under the Framework Contract No ENV.G.4/FRA/2007/0066; ESWI: Berlare, Belgium, 2011. [Google Scholar]
- DÜMV Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln (Düngemittelverordnung–DüMV). Available online: https://www.gesetze-im-internet.de/d_mv_2012/BJNR248200012.html (accessed on 4 January 2021).
- Piehl, S.; Leibne1, A.; Löder, M.G.J.; Dris, R.; Bogner, C.; Laforsch, C. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci. Rep. 2018, 8, 17950. [Google Scholar] [CrossRef] [Green Version]
- Horton, A.A.; Svendsen, C.; Williams, R.J.; Spurgeon, D.J.; Lahive, E. Large microplastic particles in sediments of tributaries of the river Thames, UK–abundance, sources and methods for effective quantification. Mar. Pollut. Bull. 2017, 114, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, L.; Mei, Q.; Dong, B.; Dai, X.; Ding, G.; Zeng, E.Y. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res. 2018, 142, 75–85. [Google Scholar] [CrossRef]
- Mohajerani, A.; Karabatak, B. Microplastics and pollutants in biosolids have contaminated agricultural soils: An analytical study and a proposal to cease the use of biosolids in farmlands and utilise them in sustainable bricks. Waste Manag. 2020, 107, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Zubris, K.A.V.; Richards, B.K. Synthetic fibers as an indicator of land application of sludge. Environ. Pollut. 2005, 138, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xie, Y.; Liu, J.; Zhong, S.; Qian, Y.; Gao, P. An Overlooked Entry Pathway of Microplastics into Agricultural Soils from Application of Sludge-Based Fertilizers. Environ. Sci. Technol. 2020, 54, 4248–4255. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Shim, W.J.; Hong, L. Methods of analysing chemicals associated with microplastics: A review. Anal. Methods 2017, 9, 1361–1368. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; He, M.; Tsang, D.C.W.; Gupta, J.; Khan, E.; Harrad, S.; Hou, D.; Ok, Y.S.; Bolan, N.S. Microplastics as pollutants in agricultural soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar] [CrossRef]
- Van den Berg, P.; Huerta-Lwanga, E.; Corradini, F.; Geissen, V. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ. Pollut. 2020, 261, 114198. [Google Scholar] [CrossRef]
- Weithmann, N.; Möller, J.N.; Löder, M.G.J.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, H.; Tsuneda, S. Phosphorus Recovery and Recycling; Springer Nature Singapore Pte Ltd.: Singapore, 2019; ISBN 978-981-10-8030-2; ISBN 978-981-10-8031-9 (eBook); Available online: https://doi.org/10.1007/978-981-10-8031-9 (accessed on 4 January 2021).
- Saveyn, H.; Eder, P. End-of-Waste Criteria for BIODEGRADABLE Waste Subjected to Biological Treatment (Compost & Digestate): Technical Proposals; EUR Scientific and Technical Research Series; European Commission EUR 26425, Joint Research Centre, IPTS-Institute for Prospective Technological Studies, Publications Office of the European Union: Luxembourg, 2014; ISBN 978-92-79-35062-7. Available online: http://ftp.jrc.es/EURdoc/JRC87124.pdf (accessed on 4 January 2021).
- Mininni, G.; Blanch, A.R.; Lucena, F.; Berselli, S. EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environ. Sci. Pollut. Res. 2015, 22, 7361–7374. [Google Scholar] [CrossRef]
- ORBIT/ECN. Compost Production and Use in the EU, Final Report of ORBIT e.V./European Compost Network ECN to European Commission; Joint Research Centre: Ispra, Italy, 2008. [Google Scholar]
- Huygens, D.; Saveyn, H.G.M.; Tonini, D.; Eder, P.; Delgado Sancho, L. Technical proposals for selected new fertilizing materials under the Fertilizing Products Regulation (Regulation (EU) 2019/1009). Process and quality criteria, and assessment of environmental and market impacts for precipitated phosphate salts & derivates, thermal oxidation materials & derivates and pyrolysis & gasification materials. In JRC Science for Policy Reports; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Desmidt, E.; Ghyselbrecht, K.; Zhang, Y.; Pinoy, L.; Van der Bruggen, B.; Verstraete, W.; Rabaey, K.; Meesschaert, B. Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 336–384. [Google Scholar] [CrossRef]
- Schaum, C. Phosphorus: Polluter and Resource of the Future: Removal and Recovery from Wastewater; IWA Publishing: London, UK, 2018; p. 590, ISBN 9781780408354, eISBN 9781780408361; Available online: https://www.iwapublishing.com/books/9781780408354/phosphorus-polluter-and-resource-future-removal-and-recovery-wastewater (accessed on 4 January 2021).
- Hazard, B.; Jabornig, S.; Wutscher, K.; Zepke, F. The Euphore Process. An Advanced Process for the Disposal of Sewage Sludge with Co-current Recovery of Phosphorus. In Proceedings of the European Biosolids and Organic Resources Conference, Leeds, UK, 13–14 November 2018; Available online: http://sfcu.at/wp-content/uploads/2018/11/EuPhoRe-Process1.pdf (accessed on 4 January 2021).
- Cohen, Y. Ash2Phos–Clean commercial P products from sludge ash–Easy Mining Sweden. In Proceedings of the 3rd European Nutrient Event, Rimini, Italy, 8–9 November 2018. [Google Scholar]
- Smith, H.M.; Fantinel, F. Realising the circular economy in wastewater infrastructure-the role of governance. In Proceedings of the International Symposium for Next Generation Infrastructure, London, UK, 11–13 September 2017; Available online: https://www.smart-plant.eu/images/news/SmithFantinel-ISNGI2017.pdf (accessed on 4 January 2021).
- Umweltbundesamt Sewage Sludge Management in Germany; Umweltbundesamt c/o GVP Postfach 30 03 61: Bonn, Germany, 2015; p. 104. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/sewage_sludge_management_in_germany.pdf (accessed on 4 January 2021).
- WHO. Coronavirus Disease 2019 (COVID-19) Situation Report 2020; Report’s number 50. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200310-sitrep-50-covid-19.pdf?sfvrsn=55e904fb_2 (accessed on 24 July 2020).
- Randazzo, W.; Truchado, P.; Ferrando, E.C.; Simon, P.; Allende, A.; Sanchez, G. SARS-CoV-2 RNA titers in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020, 181, 115942. [Google Scholar] [CrossRef]
- Lodder, W.; de Roda Husman, A.M. SARS-CoV-2 in wastewater: Potential health risk, but also data source. Lancet Gastroenterol. Hepatol. 2020. [Google Scholar] [CrossRef]
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and vitality of SARS-CoV-2 virus in wastewaters and rivers. Medrxiv 2020 Prepr. 2020. [Google Scholar] [CrossRef]
- Balboa, S.; Mauricio-Iglesias, M.; Rodriguez, S.; Martínez-Lamas, L.; Vasallo, F.J.; Regueiro, B.; Lema, J.M. The fate of Sars-CoV-2 in WWTPs points out the sludge line as a suitable spot for monitoring. Medrxiv 2020 Prepr. 2020. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Collivignarelli, C.; Carnevale Miino, M.; Abbà, A.; Pedrazzani, R.; Bertanza, G. SARS-CoV-2 in sewer systems and connected facilities. Process Saf. Environ. Prot. 2020. in press. Available online: https://www.sciencedirect.com/science/article/pii/S0957582020315998?via%3Dihub (accessed on 9 July 2020).
Directive 86/278/EEC | Cd | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|
Sludge (mg/kg dw) | 20–40 | 1000–1750 | 16–25 | 300–400 | 750–1200 | 2500–4000 |
Sludge-treated soil (mg/kg dw of soil) (6 < pHsoil < 7) | 1–3 | 50–140 | 1–1.5 | 30–75 | 50–300 | 150–300 |
State | Salmonella sp. | Other Pathogens 1 |
---|---|---|
Bulgaria | no occurrence in 20 g | Escherichia coli < 100 MPN/g Helminths eggs and larvae, 1unit/kg dw Clostridium perfringens < 300 MPN/g |
Czech Republic | no occurrence in 50 g | Escherichia coli or Enterococci < 103 cfu/g (4 samples from 5) < 5 × 103 cfu/g (1 sample from 5) |
Denmark | no occurrence | Faecal streptococci < 100/g |
Finland | no occurrence in 25 g | Escherichia coli < 1000 cfu, < 100 cfu in greenhouse cultivation |
France | 8 MPN/10 g dw | Enterovirus < 3 MPCN/10 g dw Helminths eggs < 3/10 g dw |
Italy | 1000 MPN/g dw | |
Lithuania | - | Escherichia coli ≤ 1000 cfu/g Clostridium perfringens ≤100,000 cfu/g Helminths eggs and larvae, 0 units/kg Enterobacteria, 0 cfu/g |
Luxembourg | - | Enterococci < 100/g Helminths eggs cannot be contagious |
Poland | no occurrence in 100 g | - |
Portugal | no occurrence in 50 g | Escherichia coli < 1000 cfu/g |
Austria (Carinthia) | no occurrence in 1 g | Enterococci < 103/g |
Austria (Lower Austria) | no occurrence in 1 g | Escherichia coli < 100 cfu no Helminths eggs |
Austria (Steiermark) | no occurrence in 1 g | Enterococci < 103/g |
Slovakia | - | Thermotolerant coliforms < 2 × 106 cfu/g dw Faecal streptococci < 2 × 106 cfu/g dw |
State | AOX | DEHP | LAS | NP/NPE | PAH | PCB | PCDD/F (ngTEQ/kgdw) | C5–C40 |
---|---|---|---|---|---|---|---|---|
EC [19] | 500 | 100 | 2600 | 50 | 6 2 | 0.8 6 | 100 | - |
Austria (Carinthia) | 500 | - | - | - | 6 2 | 1 | 50 | - |
Austria (Lower Austria) | 500 | - | - | - | - | - | - | - |
Austria (Steiermark) 1 | 500 | - | - | - | 6 3 | - | - | - |
Austria (Voralberg) | - | - | - | - | - | 0.2 10 | 100 | - |
Austria (Upper Austria) | 500 | - | - | - | - | - | - | - |
Belgium | - | - | - | - | - | 0.8 6 | - | - |
Bulgaria | - | - | - | 6.5 | 1 | - | - | |
Croatia | - | - | - | - | - | 0.2 8 | 100 | - |
Czech Republic | 500 | - | - | - | 10 4 | 0.6 6 | - | - |
Denmark | - | 50 | 1300 | 10 | 3 2 | - | - | - |
France | - | - | - | - | Fluoranthene 5 benzo(b)fluoranthene 2.5 benzo(a)pyrene 2 | 0.8 6 | - | - |
Germany | 500 | - | - | - | - | 0.2 9 | 100 | - |
Hungary | - | - | - | - | 10 3 | 1 6 | - | 4000 |
Italy 13 | - | - | - | - | 6 | 0.8 12 | 25 11 | 1000 10 |
Luxembourg | - | - | - | - | 20 3 | 0.2 7 | 20 | - |
Portugal | - | - | 5000 | 450 | 6 | 0.8 | 100 | - |
Romania | 500 | - | - | - | 5 5 | 0.8 6 | - | - |
Sweden | - | - | - | 50 | 3 2 | 0.4 6 | - | - |
Type of Sludge | E. coli | Salmonella | Fecal Coliforms |
---|---|---|---|
Non treated | 1 × 106–1 × 107 CFU/g dw | 100–1000 | 1 × 107–1 × 109 MPN/g dw |
Conventionally treated | 1 × 104–1 × 105 CFU g dw | 3–100 | 3 × 104–6 × 106 MPN/g dw |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gianico, A.; Braguglia, C.M.; Gallipoli, A.; Montecchio, D.; Mininni, G. Land Application of Biosolids in Europe: Possibilities, Con-Straints and Future Perspectives. Water 2021, 13, 103. https://doi.org/10.3390/w13010103
Gianico A, Braguglia CM, Gallipoli A, Montecchio D, Mininni G. Land Application of Biosolids in Europe: Possibilities, Con-Straints and Future Perspectives. Water. 2021; 13(1):103. https://doi.org/10.3390/w13010103
Chicago/Turabian StyleGianico, Andrea, Camilla Maria Braguglia, Agata Gallipoli, Daniele Montecchio, and Giuseppe Mininni. 2021. "Land Application of Biosolids in Europe: Possibilities, Con-Straints and Future Perspectives" Water 13, no. 1: 103. https://doi.org/10.3390/w13010103
APA StyleGianico, A., Braguglia, C. M., Gallipoli, A., Montecchio, D., & Mininni, G. (2021). Land Application of Biosolids in Europe: Possibilities, Con-Straints and Future Perspectives. Water, 13(1), 103. https://doi.org/10.3390/w13010103