TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Doped TiO2
2.3. Characterization
2.4. Photocatalytic Tests
2.5. Analytical Determination
3. Results and Discussions
3.1. Material Characterization
3.2. Effect of the Method Used for Catalyst Synthesis on Its Photocatalytic Performance
3.3. Investigation of the Photocatalytic Activity of Palladium- and Gold-Doped Titania Nanoparticles Synthesized by the IWI Method
3.4. Evaluation of TiO2 and TiO2-Pd/IWI Nanoparticle Efficiency on the Elimination of 2,4 DNP and R6G
3.5. Investigation of Catalyst Recyclability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Favier, L.; Harja, M.; Simion, A.I.; Rusu, L.; Kadmi, Y.; Pacala, M.L.; Bouzaza, A. Advanced oxidation process for the removal of chlorinated phenols in aqueous suspensions. J. Environ. Prot. Ecol. 2016, 17, 1132–1141. [Google Scholar]
- Cardoso, J.C.; Bessegato, G.G.; Zanoni, M.V.B. Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res. 2016, 98, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favier, L.; Rusu, L.; Simion, A.I.; Hlihor, R.; Pacala, M.L.; Augustyniak, A. Efficient degradation of clofibric acid through a heterogeneous photocatalytic oxidation process. Environ. Eng. Manag. J. 2019, 18, 1683–1692. [Google Scholar] [CrossRef]
- Lutic, D.; Petrovschi, D.; Ignat, M.; Creţescu, I.; Bulai, G. Mesoporous cerium-doped titania for the photocatalytic removal of persistent dyes. Catal. Today 2018, 306, 300–309. [Google Scholar] [CrossRef]
- Ahmed, S.; Rasul, M.G.; Brown, R.; Hashib, M.A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Environ. Manag. 2011, 92, 311–330. [Google Scholar] [CrossRef] [Green Version]
- Vrinceanu, N.; Hlihor, R.M.; Simion, A.I.; Rusu, L.; Fekete-Kertész, I.; Barka, N.; Favier, L. New Evidence of the Enhanced Elimination of a Persistent Drug Used as a Lipid Absorption Inhibitor by Advanced Oxidation with UV-A and Nanosized Catalysts. Catalysts 2019, 9, 761. [Google Scholar] [CrossRef] [Green Version]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Madjene, F.; Aoudjit, L.; Igoud, S.; Lebik, H.; Boutra, B. A review: Titanium dioxide photocatalysis for water treatment. Trans. J. Sci. Technol. 2013, 3, 1857–8047. [Google Scholar]
- Elhalil, A.; Elmoubarki, R.; Sadiq, M.; Abdennouri, M.; Kadmi, Y.; Favier, L.; Qourzal, S.; Barka, N. Enhanced photocatalytic degradation of caffeine as a model pharmaceutical pollutant by Ag-ZnO-Al2O3 nanocomposite. Desalin. Water Treat. 2017, 94, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Favier, L.; Simion, A.I.; Matei, E.; Grigoras, C.G.; Kadmi, Y.; Bouzaza, A. Photocatalytic oxidation of a hazardous phenolic compound over TiO2 in a batch system. Environ. Eng. Manag. J. 2016, 15, 1059–1067. [Google Scholar] [CrossRef]
- Giahi, M.; Pathania, D.; Agarwal, S.; Ali, G.A.; Chong, K.F.; Gupta, V.K. Preparation of Mg-doped TiO2 nanoparticles for photocatalytic degradation of some organic pollutants. Studia UBB Chem. 2019, 64, 7–18. [Google Scholar] [CrossRef]
- Favier, L.; Harja, M. TiO2/fly ash nanocomposite for photodegradation of persistent organic pollutant. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O., Martínez, L., Kharisov, B., Eds.; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Mansour, S.A.; Farha, A.H.; Kotkata, M.F. Sol–Gel Synthesized Co-Doped Anatase TiO2 Nanoparticles: Structural, Optical, and Magnetic Characterization. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1375–1382. [Google Scholar] [CrossRef]
- Sachs, M.; Pastor, E.; Kafizas, A.; Durrant, J.R. Evaluation of surface state mediated charge recombination in anatase and rutile TiO2. J. Phys. Chem. Lett. 2016, 7, 3742–3746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harja, M.; Sescu, A.M.; Favier, L.; Lutic, D. Doping Titanium Dioxide with Palladium for Enhancing the Photocatalytic Decontamination and Mineralization of a Refractory Water Pollutant. Rev. Chim. 2020, 71, 145–152. [Google Scholar] [CrossRef]
- Alaoui, O.T.; Herissan, A.; Le Quoc, C.; el Mehdi Zekri, M.; Sorgues, S.; Remita, H.; Colbeau-Justin, C. Elaboration, charge-carrier lifetimes and activity of Pd-TiO2 photocatalysts obtained by gamma radiolysis. J. Photochem. Photobiol. A 2012, 242, 34–43. [Google Scholar] [CrossRef]
- Maicu, M.; Hidalgo, M.C.; Colón, G.; Navío, J.A. Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. J. Photochem. Photobiol. A 2011, 217, 275–283. [Google Scholar] [CrossRef]
- De Castro, C.G.; Duduman, C.N.; Harja, M.; Lutic, D.; Juzsakova, T.; Cretescu, I. New TiO2-Ag nanoparticles used for organic compounds degradation. Environ. Eng. Manag. J. 2019, 18, 1755–1763. [Google Scholar]
- Duduman, C.N.; Harja, M.; Barrena Pérez, M.I.; de Castro, C.G.; Lutic, D.; Kotova, O.; Cretescu, I. Preparation and characterization of nanocomposite material based on TiO2-Ag for environmental applications. Environ. Eng. Manag. J. 2018, 17, 925–936. [Google Scholar]
- Mohammad-Salehi, H.; Hamadanian, M.; Safardoust-Hojaghan, H. Visible-Light Induced Photodegradation of Methyl Orange via Palladium Nanoparticles Anchored to Chrome and Nitrogen Doped TiO2 Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1457–1465. [Google Scholar] [CrossRef]
- Sakthivel, S.; Shankar, M.V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan, V. Enhancement of photocatalytic activity by metal deposition: Characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 2004, 38, 3001–3008. [Google Scholar] [CrossRef]
- Khaoulani, S.; Chaker, H.; Cadet, C.; Bychkov, E.; Cherif, L.; Bengueddach, A.; Fourmentin, S. Wastewater treatment by cyclodextrin polymers and noble metal/mesoporous TiO2 photocatalysts. C. R. Chim. 2015, 18, 23–31. [Google Scholar] [CrossRef]
- Wang, R.; Tang, T.; Wei, Y.; Dang, D.; Huang, K.; Chen, X.; Yin, H.; Tao, X.; Lin, Z.; Dang, Z.; et al. Photocatalytic debromination of polybrominated diphenyl ethers (PBDEs) on metal doped TiO2 nanocomposites: Mechanisms and pathways. Environ. Int. 2019, 127, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Ribao, P.; Corredor, J.; Rivero, M.J.; Ortiz, I. Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. J. Hazard. Mater. 2019, 372, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.F.; Lopes, A.; Bednarczyk, K.; Gmurek, M.; Stelmachowski, M.; Zaleska-Medynska, A.; Quinnta-Ferreira, E.; Costa, R.; Quinnta-Ferreira, R.; Martins, R.C. Effect of noble metals (Ag, Pd, Pt) loading over the efficiency of TiO2 during photocatalytic ozonation on the toxicity of parabens. ChemEngineering 2018, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Tang, Y.; Jiang, Z.; Hao, Z.; Tang, H.; Wong, P.K. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Appl. Catal. A Gen. 2003, 253, 389–396. [Google Scholar] [CrossRef]
- Iliev, V.; Tomova, D.; Bilyarska, L.; Eliyas, A.; Petrov, L. Photocatalytic properties of TiO2 modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution. Appl. Catal. B 2006, 63, 266–271. [Google Scholar] [CrossRef]
- Klein, M.; Nadolna, J.; Gołąbiewska, A.; Mazierski, P.; Klimczuk, T.; Remita, H.; Zaleska-Medynska, A. The effect of metal cluster deposition route on structure and photocatalytic activity of mono-and bimetallic nanoparticles supported on TiO2 by radiolytic method. Appl. Surf. Sci. 2016, 378, 37–48. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.C.; Juang, R.S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Delannoy, L.; El Hassan, N.; Musi, A.; Le To, N.N.; Krafft, J.M.; Louis, C. Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. J. Phys. Chem. B 2006, 110, 22471–22478. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Zhao, Z.Y. Interfacial properties and band alignment of noble-metal/anatase TiO2 (101) hetero-structures. Comput. Mater. Sci. 2018, 151, 160–173. [Google Scholar] [CrossRef]
- Baatzi, C.; Prüße, U. Preparation of gold catalysts for glucose oxidation by incipient wetness. J. Catal. 2007, 249, 34–40. [Google Scholar] [CrossRef]
- Stucchi, M.; Bianchi, C.L.; Argirusis, C.; Pifferi, V.; Neppolian, B.; Cerrato, G.; Boffito, D.C. Ultrasound assisted synthesis of Ag-decorated TiO2 active in visible light. Ultrason. Sonochem. 2018, 40, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, F.; Haghighi, M.; Vafaeian, Y.; Estifaee, P. Hydrogen production via CO2 reforming of methane over ZrO2-Doped Ni/ZSM-5 nanostructured catalyst prepared by ultrasound assisted sequential impregnation method. J. Power Sources 2014, 272, 816–827. [Google Scholar] [CrossRef]
- Rajoriya, S.; Bargole, S.; Saharan, V.K. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway. Ultrason. Sonochem. 2017, 34, 183–194. [Google Scholar] [CrossRef]
- Sescu, A.M.; Harja, M.; Lutic, D.; Favier, L.; Ciobanu, G. Photocatalytic activity of dopped TiO2 over organic compounds degradation. Ann. Acad. Rom. Sci. Ser. Phys. Chem. Sci. 2019, 4, 69–75. [Google Scholar]
- Shoukat, S.; Rehman, W.; Haq, S.; Waseem, M.; Shah, A. Synthesis and characterization of zinc stannate nanostructures for the adsorption of chromium (VI) ions and photo-degradation of rhodamine 6G. Mater. Res. Express 2019, 6, 115052. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Iqbal, H.M.; Hu, H.; Zhang, X. Reaction mechanism and degradation pathway of rhodamine 6G by photocatalytic treatment. Water Air Soil Pollut. 2017, 228, 291. [Google Scholar] [CrossRef]
- Georgekutty, R.; Seery, M.K.; Pillai, S.C. A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism. J. Phys. Chem. C 2008, 112, 13563–13570. [Google Scholar] [CrossRef] [Green Version]
- Hanaor, D.A.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, Ü.; Küçükbay, H.; Çelikesir, S.T.; Akkurt, M.; Büyükgüngör, O. Synthesis of novel benzimidazole salts and microwave-assisted catalytic activity of in situ generated Pd nanoparticles from a catalyst system consisting of benzimidazol salt, Pd (OAc)_2, and base in a Suzuki-Miyaura reaction. Turk. J. Chem. 2013, 37, 721–733. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.R.; Vivekanandhan, S.; Misra, M.; Mohanty, A.; Satyanarayana, N. Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J. Biomater. Nanobiotechnol. 2012, 3, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Afsari, M.; Youzbashi, A.A.; Nuranian, H.; Zahraee, S.M. Remarkable improvement of visible light photocatalytic activity of TiO2 nanotubes doped sequentially with noble metals for removing of organic and microbial pollutants. Mater. Res. Bull. 2017, 94, 15–21. [Google Scholar] [CrossRef]
- Ren, X.; Song, Y.; Liu, A.; Zhang, J.; Yang, P.; Zhang, J.; An, M. Experimental and theoretical studies of DMH as a complexing agent for a cyanide-free gold electroplating electrolyte. RSC Adv. 2015, 5, 64997–65004. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Esterle, A.; Sharma, N.C.; Sahi, S.V. Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res. Lett. 2014, 9, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suram, S.K.; Newhouse, P.F.; Gregoire, J.M. High throughput light absorber discovery, Part 1: An algorithm for automated tauc analysis. ACS Comb. Sci. 2016, 18, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Dominguez, S.; Bringas, E.; Rivero, M.J.; Ortiz, I.; Dionysiou, D.D. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 2017, 310, 407–427. [Google Scholar] [CrossRef]
- Ziylan-Yavas, A.; Mizukoshi, Y.; Maeda, Y.; Ince, N.H. Supporting of pristine TiO2 with noble metals to enhance the oxidation and mineralization of paracetamol by sonolysis and sonophotolysis. Appl. Catal. B Environ. 2015, 172–173, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Ding, Q.; Wang, Y.; OuYang, X.; Liu, L.; Li, J.; Wang, B. Carrier Transfer and Capture Kinetics of the TiO2/Ag2V4O11 Photocatalyst. Nanomaterials 2020, 10, 828. [Google Scholar] [CrossRef]
- Lutic, D.; Creţescu, I. Optimization study of rhodamine 6G removal from aqueous solutions by photocatalytic oxidation. Rev. Chim. 2016, 67, 134–138. [Google Scholar]
- Ambati, R.; Gogate, P.R. Ultrasound assisted synthesis of iron doped TiO2 catalyst. Ultrason. Sonochem. 2018, 40, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, S.P.; Kale, D.P.; Kar, S.; Shirsath, S.R.; Bhanvase, B.A.; Saharan, V.K.; Sonawane, S.H. Ultrasound assisted preparation of rGO/TiO2 nanocomposite for effective photocatalytic degradation of methylene blue under sunlight. Nano-Struct. Nano-Objects 2020, 2, 100407. [Google Scholar] [CrossRef]
- Van de Moortel, W.; Kamali, M.; Sniegowski, K.; Braeken, L.; Degrève, J.; Luyten, J.; Dewil, R. How Photocatalyst Dosage and Ultrasound Application Influence the Photocatalytic Degradation Rate of Phenol in Water: Elucidating the Mechanisms Behind. Water 2020, 12, 1672. [Google Scholar] [CrossRef]
- Bobirică, C.; Bobirică, L.; Râpă, M.; Matei, E.; Predescu, A.M.; Orbeci, C. Photocatalytic Degradation of Ampicillin Using PLA/TiO2 Hybrid Nanofibers Coated on Different Types of Fiberglass. Water 2020, 12, 176. [Google Scholar] [CrossRef] [Green Version]
- Elsalamony, R.A.; Mahmoud, S.A. Preparation of nanostructured ruthenium doped titania for the photocatalytic degradation of 2-chlorophenol under visible light. Arab. J. Chem. 2017, 10, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Harja, M.; Sescu, A.M.; Favier, L.; Lutic, D.; Ciobanu, G. Photodegradation of rhodamine 6G in presence of Ag/TiO2 photocatalyst. Proc. Book Sect. Sustain. Environ. Technol. 2018. [Google Scholar] [CrossRef]
- Iliev, V.; Tomova, D.; Rakovsky, S. Nanosized N-doped TiO2 and gold modified semiconductors—Photocatalysts for combined UV-visible light destruction of oxalic acid in aqueous solution. Desalination 2010, 260, 101–106. [Google Scholar] [CrossRef]
- Begum, T.; Gogoi, P.K.; Bora, U. Photocatalytic degradation of crystal violet dye on the surface of Au doped TiO2 nanoparticle. Indian J. Chem. Technol. 2017, 24, 97–101. [Google Scholar]
- Bai, X.; Lv, L.; Zhang, X.; Hua, Z. Synthesis and photocatalytic properties of palladium-loaded three dimensional flower-like anatase TiO2 with dominant {0 0 1} facets. J. Colloid Interface Sci. 2016, 467, 1–9. [Google Scholar] [CrossRef]
- Yu, H.; Wang, X.; Sun, H.; Huo, M. Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO2 nanotube film. J. Hazard. Mater. 2010, 184, 753–758. [Google Scholar] [CrossRef]
- Loganathan, K.; Bommusamy, P.; Muthaiahpillai, P.; Velayutham, M. The syntheses, characterizations, and photocatalytic activities of silver, platinum, and gold doped TiO2 nanoparticles. Environ. Eng. Res. 2011, 16, 81–90. [Google Scholar] [CrossRef]
- Mehrjouei, M.; Müller, S.; Möller, D. Catalytic and photocatalytic ozonation of tert-butyl alcohol in water by means of falling film reactor: Kinetic and cost-effectiveness study. Chem. Eng. J. 2014, 248, 184–190. [Google Scholar] [CrossRef]
- Urkude, K.; Thakare, S.R.; Gawande, S. An energy efficient photocatalytic reduction of 4-nitrophenol. J. Environ. Chem. Eng. 2014, 2, 759–764. [Google Scholar] [CrossRef]
- Andronic, L.; Isac, L.; Miralles-Cuevas, S.; Visa, M.; Oller, I.; Duta, A.; Malato, S. Pilot-plant evaluation of TiO2 and TiO2-based hybrid photocatalysts for solar treatment of polluted water. J. Hazard. Mater. 2016, 320, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.E.; Sierra, M.; Cuevas, E.; García, R.D.; Esparza, P. Photocatalysis with solar energy: Sunlight—Responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Sol. Energy 2016, 135, 527–535. [Google Scholar] [CrossRef]
- Sescu, A.M.; Harja, M.; Favier, L.; Berthou, L.O.; de Castro, C.G.; Pui, A.; Lutic, D. Zn/La Mixed Oxides Prepared by Coprecipitation: Synthesis, Characterization and Photocatalytic Studies. Materials 2020, 13, 4916. [Google Scholar] [CrossRef]
- Barzan, M.; Hajiesmaeilbaigi, F. Investigation the concentration effect on the absorption and fluorescence properties of Rhodamine 6G dye. Optik 2018, 159, 157–161. [Google Scholar] [CrossRef]
Material | Preparation Procedure | Reaction Conditions | Elimination Efficiency | Ref |
---|---|---|---|---|
Mesoporous TiO2 doped with Pd and Au | Sol-gel | Simulated wastewater with 8.71 mg/L Total Organic Carbon (TOC), 15 W UV lamp | 93% (Au/TiO2) | [22] |
Pd-, Pt-, Ag- or Cu-doped TiO2 (P-25) | US treatment and UV light in water-propanol | 2,2′,4,4′-tetrabromodiphenyl ether, 300 W UV lamp | 100% on 5%Pd-TiO2 | [23] |
0.5% Pt/P-25 10% Ag/P-25 | Impregnation from polyol solutions under reflux | Dichloroacetic acid (DCA), 150 W UV lamp | 70%, 62% t-BuOH in 5 h * | [24] |
1%Pt/TiO2/SiO2 (a)1%Pd/TiO2/SiO2 (b)1%Ag/TiO2/SiO2 | Photodeposition in acetic acid suspensions of TiO2/SiO2 containing PdCl2 or H2PtCl6·6H2O under UV (8 W lamp) for 15 h | Brilliant red (K-2G), cationic blue (CBX), 300 W UV lamp | K-2G 280% rate increase on (a), 30% rate increase on (b) | [26] |
0.5% and 1% Ag and Pt/P-25 | Photodeposition in methanol (Ag) and oxalic acid solution (Pt) under UV-C (4W lamp) for 5 h | Oxalic acid, 9 W UV-A lamp | 70–85% on doped samples, 40% on P-25 | [27] |
0.1% Ag and/or 0.1% Pd and Pt/P-25 | Radiolysis | Toluene phenol, 63 mW UV-LED, or Vis-LED | 50–97% or 60–100% depending on the doping | [28] |
TiO2 and Pd/TiO2 | Sol-gel method (Ti isopropoxide and Pd nitrate) | Methylene blue, methyl orange, 100 W UV lamp | 83.4 and 75.3% mineralization after 180 min | [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sescu, A.M.; Favier, L.; Lutic, D.; Soto-Donoso, N.; Ciobanu, G.; Harja, M. TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions. Water 2021, 13, 19. https://doi.org/10.3390/w13010019
Sescu AM, Favier L, Lutic D, Soto-Donoso N, Ciobanu G, Harja M. TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions. Water. 2021; 13(1):19. https://doi.org/10.3390/w13010019
Chicago/Turabian StyleSescu, Amalia Maria, Lidia Favier, Doina Lutic, Nicolas Soto-Donoso, Gabriela Ciobanu, and Maria Harja. 2021. "TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions" Water 13, no. 1: 19. https://doi.org/10.3390/w13010019
APA StyleSescu, A. M., Favier, L., Lutic, D., Soto-Donoso, N., Ciobanu, G., & Harja, M. (2021). TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions. Water, 13(1), 19. https://doi.org/10.3390/w13010019