Nano-TiO2 Phototoxicity in Fresh and Seawater: Daphnia magna and Artemia sp. as Proxies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. nTiO2 and Organic Sunscreens
2.3. Aquatic Organisms
2.3.1. Daphnia magna
2.3.2. Artemia sp.
3. Phototoxicity Experiments
3.1. Daphnia magna Bioassays
3.2. Artemia sp. Bioassays
4. Results
4.1. Phototoxicity of nTiO2 towards D. magna
4.2. nTiO2 Phototoxicity towards Artemia sp.
5. Discussion
6. Conclusions
- (I)
- Toxicity on this organism was increased when nTiO2 and irradiation were combined.
- (II)
- When the UV irradiation time is extended, the phototoxicity potential of the nTiO2 increases at higher concentrations.
- (III)
- A concentration-dependent immobilization process was observed in the simultaneous exposure to 48 h of UV irradiation at 100 mg/L nTiO2.
- (I)
- Exposure to short irradiation time and low nTiO2 showed no phototoxicity.
- (II)
- Exposure to irradiation, nTiO2, and a mixture of organic UV filters, a notorious increment of the immobilization rate was observed.
- (III)
- A concentration-dependent immobilization process was observed when this organism was exposed to 48 h of UV radiation and 100 mg/L of nTiO2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Artemia sp. | A. sp. |
Benzophenone 3 | BP3 |
Daphnia magna | D. magna |
Dynamic light scattering | DLS |
Ethyl 4-aminobenzoate | EtPABA |
Median Effective Concentration | EC50 |
Methanol | MeOH |
Nano-particles of titanium dioxide | nTiO2 |
Octocrylene | OC |
Reactive halogen species | RHS |
Reactive oxygen species | ROS |
Simulated solar radiation | SSR |
Titanium Dioxide | TiO2 |
Transmission electron microscopy | TEM |
Ultraviolet | UV |
Ultraviolet A | UVA |
Ultraviolet C | UVC |
References
- Roco, M.C. Erratum to: The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years. J. Nanopart. Res. 2011, 13, 1335. [Google Scholar] [CrossRef] [Green Version]
- Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 2012, 14, 1109. [Google Scholar]
- Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. J. Catal. 2001, 203, 82–86. [Google Scholar] [CrossRef]
- Schulz, J.; Hohenberg, H.; Pflücker, F.; Gärtner, E.; Will, T.; Pfeiffer, S.; Wepf, R.A.; Wendel, V.; Gers-Barlag, H.; Wittern, K.-P. Distribution of sunscreens on skin. Adv. Drug Deliv. Rev. 2002, 54, S157–S163. [Google Scholar] [CrossRef]
- Gamer, A.; Leibold, E.; Van Ravenzwaay, B. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol. Vitr. 2006, 20, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Cross, S.E.; Innes, B.; Roberts, M.S.; Tsuzuki, T.; Robertson, T.A.; McCormick, P. Human Skin Penetration of Sunscreen Nanoparticles: In-vitro Assessment of a Novel Micronized Zinc Oxide Formulation. Skin Pharmacol. Physiol. 2007, 20, 148–154. [Google Scholar] [CrossRef]
- Sánchez-Quiles, D.; Tovar-Sánchez, A. Are sunscreens a new environmental risk associated with coastal tourism? Environ. Int. 2015, 83, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Boxall, A.B.A.; Rudd, M.A.; Brooks, B.W.; Caldwell, D.J.; Choi, K.; Hickmann, S.; Innes, E.; Ostapyk, K.; Staveley, J.P.; Verslycke, T.; et al. Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions? Environ. Heal. Perspect. 2012, 120, 1221–1229. [Google Scholar] [CrossRef]
- Whatmore, R.W. Nanotechnology—What is it? Should we be worried? Occup. Med. 2006, 56, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Brunet, L.; Lyon, D.Y.; Hotze, E.M.; Alvarez, P.J.J.; Wiesner, M.R. Comparative Photoactivity and Antibacterial Properties of C60Fullerenes and Titanium Dioxide Nanoparticles. Environ. Sci. Technol. 2009, 43, 4355–4360. [Google Scholar] [CrossRef]
- Menard, A.; Drobne, D.; Jemec, A. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ. Pollut. 2011, 159, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.J.; Roe, K.L.; Hansel, C.M.; Voelker, B.M. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms. Front. Chem. 2016, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Z.; Yin, Y.-G.; Wang, J.; Cao, D.; Liu, J. Formation of organobromine and organoiodine compounds by engineered TiO2 nanoparticle-induced photohalogenation of dissolved organic matter in environmental waters. Sci. Total Environ. 2018, 631–632, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Porcar-Santos, O.; Cruz-Alcalde, A.; López-Vinent, N.; Zanganas, D.; Sans, C. Photocatalytic degradation of sulfamethoxazole using TiO2 in simulated seawater: Evidence for direct formation of reactive halogen species and halogenated by-products. Sci. Total. Environ. 2020, 736, 139605. [Google Scholar] [CrossRef]
- Okupnik, A.; Pflugmacher, S. Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO2 nanoparticles. Environ. Toxicol. Chem. 2016, 35, 2859–2866. [Google Scholar] [CrossRef]
- Cherchi, C.; Gu, A.Z. Impact of Titanium Dioxide Nanomaterials on Nitrogen Fixation Rate and Intracellular Nitrogen Storage in Anabaena variabilis. Environ. Sci. Technol. 2010, 44, 8302–8307. [Google Scholar] [CrossRef]
- Hund-Rinke, K.; Simon, M. Ecotoxic Effect of Photocatalytic Active Nanoparticles (TiO2) on Algae and Daphnids (8 pp). Environ. Sci. Pollut. Res. 2006, 13, 225–232. [Google Scholar] [CrossRef]
- Wiench, K.; Wohlleben, W.; Hisgen, V.; Radke, K.; Salinas, E.; Zok, S.; Landsiedel, R. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 2009, 76, 1356–1365. [Google Scholar] [CrossRef]
- De la Vega, A.C.S.; Molins-Delgado, D.; Barceló, D.; Díaz-Cruz, M.S. Nanosized titanium dioxide UV filter increases mixture toxicity when combined with parabens. Ecotoxicol. Environ. Saf. 2019, 184, 109565. [Google Scholar] [CrossRef]
- Barata, C.; Baird, D.J. Phenotypic plasticity and constancy of life-history traits in laboratory clones of Daphnia magna Straus: Effects of neonatal length. Funct. Ecol. 1998, 12, 442–452. [Google Scholar] [CrossRef]
- Bustos, N.; Cruz-Alcalde, A.; Iriel, A.; Cirelli, A.F.; Sans, C. Sunlight and UVC-254 irradiation-induced photodegradation of organophosphorus pesticide dichlorvos in aqueous matrices. Sci. Total Environ. 2019, 649, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, F.; Sun, T.; Nowack, B. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Pollut. 2013, 181, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Gago-Ferrero, P.; Díaz-Cruz, M.S.; Barceló, D. An overview of UV-absorbing compounds (organic UV filters) in aquatic biota. Anal. Bioanal. Chem 2012, 404. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, J.R.; Rocha, A.C.; Camacho, C.; Eljarrat, E.; Peris, A.; Aminot, Y.; Readman, J.W.; Boti, V.I.; Nannou, C.; Kapsi, M.; et al. Persistent and emerging pollutants assessment on aquaculture oysters (Crassostrea gigas) from NW Portuguese coast (Ria De Aveiro). Sci. Total Environ. 2019, 666, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Lovern, S.B.; Klaper, R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (c60) nanoparticles. Environ. Toxicol. Chem. 2006, 25, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-T.; Klaine, S.J.; Kim, S.D. Acute and Chronic Response of Daphnia magna Exposed to TiO2 Nanoparticles in Agitation System. Bull. Environ. Contam. Toxicol. 2014, 93, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Johari, S.; Asghari, S. Acute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus. J. Adv. Environ. Health Res. 2015, 3, 111–119. [Google Scholar] [CrossRef]
- Amador-Castro, F.; Rodriguez-Martinez, V.; Carrillo-Nieves, D. Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. Sci Total. Environ. 2020, 749, 141576. [Google Scholar] [CrossRef]
- Ahamed, A.; Liang, L.; Lee, M.Y.; Bobacka, J.; Lisak, G. Too small to matter? Physicochemical transformation and toxicity of engineered nTiO2, nSiO2, nZnO, carbon nanotubes, and nAg. J. Hazard. Mater. 2021, 404, 124107. [Google Scholar] [CrossRef]
- Clemente, Z.; Castro, V.L.; Jonsson, C.M.; Fraceto, L.F. Minimal levels of ultraviolet light enhance the toxicity of TiO2 nanoparticles to two representative organisms of aquatic systems. J. Nanopart. Res. 2014, 16, 2559. [Google Scholar] [CrossRef]
- Matsuo, S.; Anraku, Y.; Yamada, S.; Honjo, T.; Matsuo, T.; Wakita, H. Effects of photocatalytic reactions on marine plankton: Titanium dioxide powder as catalyst on the body surface. J. Environ. Sci. Heal. Part. A 2001, 36, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Marcone, G.P.; Oliveira, A.C.; Almeida, G.; Umbuzeiro, G.D.A.; Jardim, W.F. Ecotoxicity of TiO2 to Daphnia similis under irradiation. J. Hazard. Mater. 2012, 211–212, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Brennan, A.; Diamond, S.A. Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environ. Toxicol. Chem. 2012, 31, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.; Navas, J.M.; Soares, A.M.V.M.; Barata, C. Oxidative stress effects of titanium dioxide nanoparticle aggregates in zebrafish embryos. Sci. Total Environ. 2014, 470, 379–389. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Gustafsson, J.; Cronholm, P.; Möller, L. Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicol. Lett. 2009, 188, 112–118. [Google Scholar] [CrossRef]
- Zhu, X.; Chang, Y.; Chen, Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 2010, 78, 209–215. [Google Scholar] [CrossRef]
- Ates, M.; Daniels, J.; Arslan, Z.; Farah, I.O. Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: Assessment of nanoparticle aggregation, accumulation, and toxicity. Environ. Monit. Assess. 2012, 185, 3339–3348. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Brennan, A.; Diamond, S.A. Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka. Environ. Toxicol. Chem. 2012, 31, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
Total Time Exposure Bioassay with Daphnia magna | ||||||||
---|---|---|---|---|---|---|---|---|
Concentration (mg/L) | Pre-Exposed to nTiO₂ (h) | Dark Cicle | SSR (h) | Acute Toxicity Test (h) | ||||
24 | 48 | Total Time (h) | ||||||
Group A | 0.1, 1, 10 | 24 | 6 | ✗ | ✓ | ✓ | 78 | |
Group B | 0.1, 1, 10 | 24 | ✗ | 6 | ✓ | ✓ | 78 |
Combinations Used with Artemia sp. | |||
---|---|---|---|
Component | Concentration (mg/L) | ||
Concentrations of nTiO2 in combination with the concentration of the mixture of UV filters | Mix 1 | TiO2 | 0.000018 |
BP3 | 0.01 | ||
OC | |||
EtPABA | |||
Mix 2 | TiO2 | 0.1 | |
BP3 | 0.1 | ||
OC | |||
EtPABA | |||
Mix 3 | TiO2 | 1 | |
BP3 | 1 | ||
OC | |||
EtPABA | |||
Mix 4 | TiO2 | 10 | |
BP3 | 3 | ||
OC | |||
EtPABA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soler de la Vega, A.C.; Cruz-Alcalde, A.; Sans Mazón, C.; Barata Martí, C.; Diaz-Cruz, M.S. Nano-TiO2 Phototoxicity in Fresh and Seawater: Daphnia magna and Artemia sp. as Proxies. Water 2021, 13, 55. https://doi.org/10.3390/w13010055
Soler de la Vega AC, Cruz-Alcalde A, Sans Mazón C, Barata Martí C, Diaz-Cruz MS. Nano-TiO2 Phototoxicity in Fresh and Seawater: Daphnia magna and Artemia sp. as Proxies. Water. 2021; 13(1):55. https://doi.org/10.3390/w13010055
Chicago/Turabian StyleSoler de la Vega, Ana C., Alberto Cruz-Alcalde, Carmen Sans Mazón, Carlos Barata Martí, and M. Silvia Diaz-Cruz. 2021. "Nano-TiO2 Phototoxicity in Fresh and Seawater: Daphnia magna and Artemia sp. as Proxies" Water 13, no. 1: 55. https://doi.org/10.3390/w13010055
APA StyleSoler de la Vega, A. C., Cruz-Alcalde, A., Sans Mazón, C., Barata Martí, C., & Diaz-Cruz, M. S. (2021). Nano-TiO2 Phototoxicity in Fresh and Seawater: Daphnia magna and Artemia sp. as Proxies. Water, 13(1), 55. https://doi.org/10.3390/w13010055