Food Webs and Fish Size Patterns in Insular Lakes Partially Support Climate-Related Features in Continental Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling
2.3. Data Analysis
3. Results
3.1. Environmental Characteristics
3.2. Biota and Size Structure
3.3. Potential Predation Pressure on Zooplankton and Cascading Effects
3.4. Food Web Metrics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCarty, J.P. Ecological consequences of recent climate change. Conserv. Biol. 2001, 15, 320–331. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Meerhoff, M.; Davidson, T.A.; Trolle, D.; Søndergaard, M.; Lauridsen, T.L.; Beklioglu, M.; Brucet, S.; Volta, P.; González-Bergonzoni, I.; et al. Climate change impacts on lakes: An integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J. Limnol. 2014, 73, 88–111. [Google Scholar] [CrossRef] [Green Version]
- Moss, B.; Mckee, D.; Atkinson, D.; Collings, S.E.; Eaton, J.W.; Gill, A.B.; Harvey, I.; Hatton, K.; Heyes, T.; Wilson, D. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. J. Appl. Ecol. 2003, 40, 782–792. [Google Scholar] [CrossRef] [Green Version]
- Liboriussen, L.; Landkildehus, F.; Meerhoff, M.; Bramm, M.E.; Søndergaard, M.; Christoffersen, K.; Richardson, K.; Søndergaard, M.; Lauridsen, T.; Jeppesen, E. Global warming: Design of a flow-through shallow lake mesocosm climate experiment. Limnol. Oceanogr-Meth. 2005, 3, 1–9. [Google Scholar] [CrossRef]
- Stewart, R.I.; Dossena, M.; Bohan, D.A.; Jeppesen, E.; Kordas, R.L.; Ledger, M.E.; Meerhoff, M.; Moss, B.; Mulder, C.; Shurin, J.B.; et al. Mesocosm experiments in ecological climate change research. Adv. Ecol. Res. 2013, 48, 71–181. [Google Scholar] [CrossRef] [Green Version]
- Trolle, D.; Hamilton, D.P.; Pilditch, C.; Duggan, I.C.; Jeppesen, E. Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management. Environ. Modell. Softw. 2011, 26, 354–370. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, F.; Sprechmann, P.; Metzeltin, D.; Scafati, L.; Melendi, D.L.; Volkheimer, W.; Mazzeo, N.; Hiller, A.; Von Tumpling, W.; Scasso, F. Holocene trophic state changes in relation to sea level variation in Lake Blanca, SE Uruguay. J. Paleolimnol. 2004, 31, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Daufresne, M.; Boët, P. Climate change impacts on structure and diversity of fish communities in rivers. Glob. Chang. Biol. 2007, 13, 2467–2478. [Google Scholar] [CrossRef]
- Meerhoff, M.; Teixeira-de Mello, F.; Kruk, C.; Alonso, C.; González-Bergonzoni, I.; Pacheco, J.P.; Lacerot, G.; Arim, M.; Beklioglu, M.; Brucet, S.; et al. Environmental warming in shallow lakes: A review of potential changes in community structure as evidenced from space-for-time substitution approach. Adv. Ecol. Res. 2012, 46, 259–349. [Google Scholar] [CrossRef]
- Jeppesen, E.; Mehner, T.; Winfield, I.J.; Kangur, K.; Sarvala, J.; Gerdeaux, D.; Rask, M.; Malmquist, H.J.; Holmgren, K.; Volta, P.; et al. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 2012, 694, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Blanck, A.; Lamouroux, N. Large-scale intraspecific variation in life-history traits of 44 European freshwater fish. J. Biogeogr. 2007, 34, 862–875. [Google Scholar] [CrossRef]
- Lappalainen, J.; Tarkan, A.S.; Harrod, C. A meta-analysis of latitudinal variations in life-history traits of roach, Rutilus rutilus, over its geographical range: Linear or non-linear relationships? Freshw. Biol. 2008, 53, 1491–1501. [Google Scholar] [CrossRef]
- Vidal, N.; Teixeira de Mello, F.; González-Bergonzoni, I.; López-Rodríguez, A.; Tesitore, G.; Pais, J.; Stebniki, S.; Silva, I.; D’Anatro, A. Long-term study of the reproductive timing of the Neotropical catfish Iheringichthys labrosus (Lütken, 1874): Influence of temperature and river discharge. Ecol. Freshw. Fish. 2020, 29, 334–345. [Google Scholar] [CrossRef]
- Daufresne, M.; Lengfellner, K.; Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12788–12793. [Google Scholar] [CrossRef] [Green Version]
- Meerhoff, M.; Clemente, J.M.; Teixeira-de Mello, F.; Iglesias, C.; Pedersen, A.R.; Jeppesen, E. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Glob. Chang. Biol. 2007, 13, 1888–1897. [Google Scholar] [CrossRef]
- Teixeira-de Mello, F.; Meerhoff, M.; Pekcan-Hekim, Z.; Jeppesen, E. Littoral fish community structure and dynamics differ substantially in shallow lakes under contrasting climates. Freshw. Biol. 2009, 54, 1202–1215. [Google Scholar] [CrossRef]
- Teixeira de Mello, F.; Meerhoff, M.; Baattrup-Pedersen, A.; Maigaard, T.; Kristensen, P.B.; Andersen, T.K.; Clemente, J.M.; Fosalba, C.; Kristensen, E.A.; Masdeu, M.; et al. Community structure of fish in lowland streams differ substantially between subtropical and temperate climates. Hydrobiologia 2012, 684, 143–160. [Google Scholar] [CrossRef]
- Emmrich, M.; Pédron, S.; Brucet, S.; Winfield, I.J.; Jeppesen, E.; Volta, P.; Argillier, C.; Lauridsen, T.L.; Holmgren, K.; Hesthagen, T.; et al. Geographical patterns in the body size structure of European lake fish assemblages along abiotic and biotic gradients. J. Biogeogr. 2014, 41, 2221–2233. [Google Scholar] [CrossRef] [Green Version]
- Huss, M.; Lindmark, M.; Jacobson, P.; van Dorst, R.M.; Gårdmark, A. Experimental evidence of gradual size-dependent shifts in body size and growth of fish in response to warming. Glob. Chang. Biol. 2019, 25, 2285–2295. [Google Scholar] [CrossRef] [Green Version]
- Arranz, I.U.; Mehner, T.; Benejam, L.; Argillier, C.; Holmgren, K.; Jeppesen, E.; Lauridsen, T.L.; Volta, P.J.; Winfield, I.J.; Brucet, S. Density-dependent effects override temperature as drivers of intraspecific size-structure in six lake fish species across Europe. In Proceedings of the Aquatic Sciences Meeting ASLO 2015, Grenada, Spain, 22–27 February 2015; p. 1. [Google Scholar]
- Abell, R.; Thieme, M.L.; Revenga, C.; Bryer, M.; Kottelat, M.; Bogutskaya, N.; Coad, B.; Mandrak, N.; Balderas, S.C.; Bussing, W.; et al. Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience 2008, 58, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Moss, B. Climate change, nutrient pollution and the bargain of Dr Faustus. Freshw. Biol. 2010, 55, 175–187. [Google Scholar] [CrossRef]
- González-Bergonzoni, I.; Meerhoff, M.; Davidson, T.; Teixeira-de Mello, F.; Baattrup-Pedersen, A.; Jeppesen, E. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 2012, 15, 492–503. [Google Scholar] [CrossRef]
- Gyllström, M.; Hansson, L.A.; Jeppesen, E.; Criado, F.; García Gross, E.; Irvine, K.; Kairesalo, T.; Kornijow, R.; Miracle, M.R.; Nykänen, M.; et al. The role of climate in shaping zooplankton communities of shallow lakes. Limnol. Oceanogr. Lett. 2005, 50, 2008–2021. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Søndergaard, M.; Mazzeo, N.; Meerhoff, M.; Branco, C.; Huszar, V.; Scasso, F. Lake restoration and biomanipulation in temperate lakes. In Restoration and Management of Tropical Eutrophic Lakes; Reddy, V., Ed.; Oxford and IBH Publishing Co.: New Delhi, India, 2005; pp. 331–349. [Google Scholar]
- Meerhoff, M.; Iglesias, C.; Teixeira-de Mello, F.T.; Clemente, J.M.; Jensen, E.; Lauridsen, T.L.; Jeppesen, E. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw. Biol. 2007, 52, 1009–1021. [Google Scholar] [CrossRef]
- Kosten, S.; Lacerot, G.; Jeppesen, E.; da Motta Marques, D.; van Nes, E.H.; Mazzeo, N.; Scheffer, M. Effects of submerged vegetation on water clarity across climates. Ecosystems 2009, 12, 1117–1129. [Google Scholar] [CrossRef] [Green Version]
- Elton, C. Animal Ecology; Sidgewick & Jackson: London, UK, 1927. [Google Scholar]
- Lindeman, R.L. The trophic-dynamic aspect of ecology. Ecology 1942, 23, 399–417. [Google Scholar] [CrossRef]
- Schoener, T.W. Food webs from the small to the large: The Robert H. MacArthur Award Lecture. Ecology 1989, 70, 1559–1589. [Google Scholar] [CrossRef]
- Arim, M.; Bozinovic, F.; Marquet, P.A. On the relationship between trophic position, body mass and temperature: Reformulating the energy limitation hypothesis. Oikos 2007, 116, 1524–1530. [Google Scholar] [CrossRef]
- Beisner, B.E.; McCauley, E.; Wrona, F.J. The influence of temperature and food chain length on plankton predator prey dynamics. Can. J. Fish. Aquat. Sci. 1997, 54, 586–595. [Google Scholar] [CrossRef]
- Petchey, O.L.; Mc Phearson, P.T.; Casey, T.M.; Morin, P.J. Environmental warming alters food-web structure and ecosystem function. Nature 1999, 402, 69–72. [Google Scholar] [CrossRef]
- Jardine, T.D. A top predator forages low on species-rich tropical food chains. Freshw. Sci. 2016, 35, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Layman, C.A.; Arrington, D.A.; Montaña, C.G.; Post, D.M. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 2007, 88, 42–48. [Google Scholar] [CrossRef]
- De Niro, M.J.; Epstein, S. Influence of the diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 1981, 45, 341–351. [Google Scholar] [CrossRef]
- McCutchan, J.H.; Lewis, W.M.; Kendall, C.; McGrath, C.C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 2003, 102, 378–390. [Google Scholar] [CrossRef]
- Belle, S.; Hiltunen, E.; Nilsson, J.L.; Goedkoop, W. Effects of temperature on food isotopic integrity and trophic fractionation in Chironomus riparius in laboratory experiments. Hydrobiologia 2020, 847, 1257–1267. [Google Scholar] [CrossRef] [Green Version]
- Bade, D.L.; Carpenter, S.R.; Cole, J.J.; Hanson, P.C.; Hesslein, R.H. Controls of d13C-DIC in lakes: Geochemistry, lake metabolism, and morphometry. Limnol. Oceanogr. 2004, 49, 1160–1172. [Google Scholar] [CrossRef]
- Perga, M.E.; Gerdeaux, D. Changes in the δ13C of pelagic food webs: The influence of lake area and trophic status on the isotopic signature of whitefish (Coregonus lavaretus). Can. J. Fish. Aquat. Sci. 2004, 61, 1485–1492. [Google Scholar] [CrossRef]
- Brönmark, C. Effects of tench and perch on interactions in a freshwater, benthic food chain. Ecology 1994, 75, 1818–1828. [Google Scholar] [CrossRef]
- Mancinelli, G.; Costantini, M.; Rossi, L. Cascading effects of predatory fish exclusion on the detritus-based food web of a lake littoral zone (Lake Vico, central Italy). Oecologia 2002, 133, 402–411. [Google Scholar] [CrossRef]
- Epanchin, P.N.; Knapp, R.A.; Lawler, S.P. Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies. Ecology 2010, 91, 2406–2415. [Google Scholar] [CrossRef]
- González-Bergonzoni, I.; Landkildehus, F.; Meerhoff, M.; Lauridsen, T.L.; Özkan, K.; Davidson, T.A.; Mazzeo, N.; Jeppesen, E. Fish determine macroinvertebrate food webs and assemblage structure in Greenland subarctic streams. Freshw. Biol. 2014, 59, 1830–1842. [Google Scholar] [CrossRef]
- Christoffersen, K. Previous studies of freshwater biota in Faroese lakes. In Annales Societatis Scientiarum Faeroensis; Jeppesen, C., Bloch, E., Eds.; Supplementum, Føroya Fródskaparfelag: Tórshavn, Faroes Island, 2002; pp. 7–13. [Google Scholar]
- Ribeiro, F.; Collares-Pereira, M.J.; Moyle, P.B. Non-native fish in the fresh waters of Portugal, Azores and Madeira Islands: A growing threat to aquatic biodiversity. Fisheries Manag. Ecol. 2009, 16, 255–264. [Google Scholar] [CrossRef]
- Malmquist, H.J.; Ingimarsson, F.; Jóhannsdóttir, E.E.; Gíslason, D.; Snorrason, S.S. Biology of brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) in four Faroese lakes. Ann. Soc. Sci. Færoensis Suppl. 2002, 36, 94–113. [Google Scholar]
- McCauley, E. The estimation of the abundance and biomass of zooplankton in samples. In Dowing, A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters; Blackwell Science Publisher: Oxford, UK, 1984; pp. 228–265. [Google Scholar]
- Jespersen, A.M.; Christoffersen, K. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Arch. Hydrobiol. 1987, 109, 445–454. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Koroleff, F. Determination of Total Phosphorus in Natural Waters by Means of Persulphate Oxidation; Interlab Report 3; Conseil Permanent International pour l’Exploration de la Mer: Copenhagen V, Denmark, 1970. [Google Scholar]
- Solorzano, L.; Sharp, J.H. Determination of total dissolved nitrogen in natural waters. Limnol. Oceanogr. 1980, 25, 751–754. [Google Scholar] [CrossRef]
- Krueger, K.L.; Hubert, W.A.; Price, R.M. Tandem-set fyke nets for sampling benthic fishes in lakes. N. Am. J. Fish. Manag. 1998, 18, 154–160. [Google Scholar] [CrossRef]
- CEN European Committee for Standardization. Water Quality—Sampling of Fish with Multi-Mesh Gill Nets; EN 14757; CEN European Committee for Standardization: Brussels, Belgium, 2005; p. 27. [Google Scholar]
- Post, D.M.; Layman, C.A.; Arrington, D.A.; Takimoto, G.; Quattrochi, J.; Montana, C.G. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 2007, 152, 179–189. [Google Scholar] [CrossRef]
- Logan, J.M.; Jardine, T.D.; Miller, T.J.; Bunn, S.E.; Cunjak, R.A.; Lutcavage, M.E. Lipid corrections in carbon and nitrogen stable isotope analyses: Comparison of chemical extraction and modelling methods. J. Anim. Ecol. 2008, 77, 838–846. [Google Scholar] [CrossRef]
- Fry, B. Stable isotope diagrams of freshwater food webs. Ecology 1991, 72, 2293–2297. [Google Scholar] [CrossRef]
- Post, D.M. Using stable isotopes to estimate trophic position: Models methods and assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- Vanderklift, M.A.; Ponsard, S. Sources of variation in consumer-diet δ15N enrichment: A meta-analysis. Oecologia. 2003, 136, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, M.; Johansson, L.S.; Lauridsen, T.L.; Jørgensen, T.B.; Liboriussen, L.; Jeppesen, E. Submerged macrophytes as indicators of the ecological quality of lakes. Freshw. Biol. 2010, 55, 893–908. [Google Scholar] [CrossRef]
- Froese, R.; Pauly, D. FishBase. Version (06/2016). 2016. Available online: www.fishbase.org (accessed on 13 May 2021).
- Jeppesen, E.; Jensen, J.P.; Søndergaard, M. Response of phytoplankton, zooplankton and fish to re-oligotrophication: An 11-year study of 23 Danish lakes. Aquat. Ecosyst. Health. 2002, 5, 31–43. [Google Scholar] [CrossRef]
- Jackson, A.L.; Inger, R.; Parnell, A.C.; Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 2011, 80, 595–602. [Google Scholar] [CrossRef]
- Hoeinghaus, D.J.; Zeug, S.C. Can stable isotope ratios provide for community-wide measures of trophic structure? Comment. Ecology 2008, 89, 2353–2357. [Google Scholar] [CrossRef]
- Syväranta, J.; Lensu, A.; Marjomäki, T.J.; Oksanen, S.; Jones, R.I. An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS ONE 2013, 8, e56094. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Meerhoff, M.; Holmgren, K.; González-Bergonzoni, I.; Teixeira-de Mello, F.; DeClerk, S.A.J.; De Meester, L.; Søndergaard, M.; Lauridsen, T.; Bjerring, R.; et al. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 2010, 646, 73–90. [Google Scholar] [CrossRef]
- Gutierrez, M.F.; Devercelli, M.; Brucet, S.; Lauridsen, T.L.; Søndergaard, M.; Jeppesen, E. Is recovery of large-boied zooplankton after nutrient loading reduction hampered by climate warming? A long-term study of shallow hypertrophic Lake Søbygaard, Denmark. Waters 2016, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, D.; Sibly, R.M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 1997, 12, 235–239. [Google Scholar] [CrossRef]
- Angilletta, M.J., Jr.; Dunham, A.E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 2003, 162, 332–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burleson, M.L.; Wilhelm, D.R.; Smatresk, N.J. The influence of fish size on the avoidance of hypoxia and oxygen selection by largemouth bass. J. Fish Biol. 2001, 59, 1336–1349. [Google Scholar] [CrossRef]
- Crampton, V.; Hølland, P.M.; Bergheim, A.; Gausen, M.; Næss, A. Oxygen effects on caged salmon. Fish Farming Int. 2003, 26–27. [Google Scholar]
- Søndergaard, M.; Bjerring, R.; Jeppesen, E. Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia 2013, 710, 95–107. [Google Scholar] [CrossRef]
- Torres, L.E.; Vanni, M.J. Stoichiometry of nutrient excretion by fish: Interspecific variation in a hypereutrophic lake. Oikos 2007, 116, 259–270. [Google Scholar] [CrossRef]
- Morgan, D.K.; Hicks, B.J. A metabolic theory of ecology applied to temperature and mass dependence of N and P excretion by common carp. Hydrobiologia 2013, 705, 135–145. [Google Scholar] [CrossRef]
- Vadeboncoeur, Y.; Lodge, D.M.; Carpenter, S.R. Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology 2001, 82, 1065–1077. [Google Scholar] [CrossRef]
- Liboriussen, L.; Jeppesen, E. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshw. Biol. 2003, 48, 418–431. [Google Scholar] [CrossRef]
- Verneaux, V.; Verneaux, J.; Schmitt, A.; Lambert, J.C. Relationships of macrobenthos with dissolved oxygen and organic matter at the sediment-water interface in ten French lakes. Arch. Hydrobiol. 2004, 160, 247–259. [Google Scholar] [CrossRef]
- Jyväsjärvi, J.; Boros, G.; Jones, R.I.; Hämäläinen, H. The importance of sedimenting organic matter, relative to oxygen and temperature, in structuring lake profundal macroinvertebrate assemblages. Hydrobiologia 2013, 709, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Real, M.; Prat, N. Factors influencing the distribution of chironomids and oligochaetes in profundal areas of Spanish reservoirs. Netherland J. Aquat. Ecol. 1992, 26, 405–410. [Google Scholar] [CrossRef]
- France, R.L. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. Lett. 1995, 40, 1310–1313. [Google Scholar] [CrossRef]
- Livingstone, D.M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Chang. 2003, 57, 205–225. [Google Scholar] [CrossRef]
- Michelutti, N.; Wolfe, A.P.; Vinebrooke, R.D.; Rivard, B.; Briner, J.P. 2005. Recent primary production increases in arctic lakes. Geophys. Res. Lett. 2005, 32, L19715. [Google Scholar] [CrossRef]
- Schindler, D.E.; Carpenter, S.R.; Cole, J.J.; Kitchell, J.F.; Pace, M.L. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 1997, 277, 248–251. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Trolle, D.; Davidson, T.A.; Bjerring, R.; Søndergaard, M.; Johansson, L.S.; Lauridsen, T.L.; Meerhoff, M. 2015. Major changes in CO2 efflux when shallow lakes shift from a turbid to a clear water state. Hydrobiologia 2015, 778, 33–44. [Google Scholar] [CrossRef]
- Weatherley, N.S. The diet and growth of 0-group dace, Leuciscus leuciscus (L.), and roach, Rutilus rutilus (L.), in a lowland river. J. Fish Biol. 1987, 30, 237–247. [Google Scholar] [CrossRef]
- Santos, J.M.; Encina, L.E.; Oliveira, J.M.; Teixeira, A. Feeding ecology of the Ruivaco Achondrostoma oligolepis, a Portuguese endemic cyprinid fish. Limnetica 2013, 32, 27–38. [Google Scholar] [CrossRef]
- García-Berthou, E. Size-and depth-dependent variation in habitat and diet of the common carp (Cyprinus carpio). Aquat. Sci. 2001, 63, 466–476. [Google Scholar] [CrossRef]
- Mill, A.C.; Pinnegar, J.K.; Polunin, N.V.C. Explaining isotope trophic-step fractionation: Why herbivorous fish are different. Funct. Ecol. 2007, 21, 1137–1145. [Google Scholar] [CrossRef]
- Busst, G.M.; Britton, J.R. High variability in stable isotope diet–tissue discrimination factors of two omnivorous freshwater fishes in controlled ex situ conditions. J. Exp. Biol. 2016, 219, 1060–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Island | ID | Lake Name | A | Zmax | S | pH | TN | TP | Chl-a | Zoo | Zoo | Fish Size |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(ha) | (m) | (m) | (µg L−1) | (µg L−1) | (µg L−1) | (µg L−1) | (ind. L−1) | (cm) | ||||
Azores Islands | A1 | Empadadas N. | 1.8 | 6 | 0.72 | - | 710 | 33 | 75.7 | 177.8 | 135.3 | 6.9 |
Azores Islands | A2 | Canario | 1.8 | 2.3 | 1.8 | 7.3 | 440 | 13 | 6.7 | 7.5 | 5.1 | 7.9 |
Azores Islands | A3 | Congro | 5.1 | 18.9 | 2.4 | 7.1 | 530 | 20 | 5.6 | 85.2 | 61.2 | 9.6 |
Azores Islands | A4 | Empadadas S. | 1.5 | 3.0 | - | 7.3 | 350 | 11 | 3.8 | 1.7 | 1.3 | 10.1 |
Azores Islands | A5 | Verde | 86.3 | 24.0 | 2.7 | 8.1 | 330 | 29 | 6.5 | 123.5 | 68.1 | 12.0 |
Azores Islands | A6 | Azul | 361 | 28.5 | 2 | 6.9 | 900 | 23 | 5.7 | 52.6 | 23.1 | 13.6 |
Azores Islands | A7 | Santiago | 25.4 | 28.8 | 5.2 | 8.6 | 260 | 13 | 3.6 | 40.0 | 13.7 | 17.3 |
Azores Islands | A8 | Fogo | 153.0 | 31.6 | 2.7 | 6.6 | 190 | 13 | 3.8 | 22.8 | 11.7 | 17.6 |
Azores Islands | A9 | Rasa SC | 3.9 | 4.5 | - | 7.2 | 190 | 4 | 2.0 | 16.0 | 1.5 | 17.6 |
Faroe Islands | F1 | Sørvágsvatn | 356.0 | 52.0 | 12.5 | 6.9 | 318 | 5 | 0.7 | 23.9 | 5.2 | 13.4 |
Faroe Islands | F2 | Vatnsnes | 14.7 | 9.5 | 1.7 | 6.6 | 780 | 76 | 25.2 | 174.0 | 42.5 | 17.4 |
Faroe Islands | F3 | Leynavatn | 18.0 | 32.5 | 10 | 6.9 | 168 | 3 | 1.2 | 32.9 | 21.7 | 17.2 |
Faroe Islands | F4 | Toftavatn | 52.2 | 17.5 | 5.8 | 6.8 | 220 | 11 | 1.0 | 126.5 | 25.6 | 18.4 |
Faroe Islands | F5 | Fjallavatn | 101.9 | 46.6 | 14 | 6.6 | 100 | 3 | 0.5 | 40.4 | 4.8 | 18.7 |
Faroe Islands | F6 | Mjáuvøtn | 3.1 | 5.7 | 4.3 | 6.8 | 252 | 15 | 1.8 | 874.7 | 175.5 | 19.8 |
Faroe Islands | F7 | Gróthúsvatn | 13.4 | 0.7 | 0.7 | 8.8 | 500 | 35 | 1.0 | 154.3 | 22.8 | 23.4 |
Faroe Islands | F8 | Mjávavatn | 0.6 | 0.8 | 0.8 | 7.0 | 250 | 19 | 1.8 | - | - | 25.2 |
Faroe Islands | F9 | Saksunarvatn | 8.1 | 16 | 8.8 | 8.0 | 116 | 6 | 1.1 | 476.1 | 53.2 | 25.4 |
Faroe Islands | F10 | Sandsvatn | 79.7 | 2.4 | 2.4 | 7.7 | 310 | 43 | 1.1 | 357.7 | 85.6 | 27.1 |
Faroe Islands | F11 | Bessavatn | 5.4 | 2.0 | 2.0 | 6.8 | 250 | 30 | 2.0 | 371.5 | 54.0 | 28.7 |
Azores Islands | Faroe Islands | Z | p | |
---|---|---|---|---|
Area (ha) | 71 ± 40 | 55 ± 38 | −0.38 | 0.69 |
Maximum depth (m) | 16 ± 4 | 14 ± 6 | −0.46 | 0.66 |
pH | 7.4 ± 0.7 | 7.2 ± 0.7 | −1.12 | 0.26 |
Total Nitrogen (µg L−1) | 433 ± 81 | 316 ± 63 | −1.60 | 0.11 |
Total Phosphorus (µg L−1) | 18 ± 3 | 24 ± 8 | −0.08 | 0.94 |
Secchi depth (m) | 3 ± 1 | 5 ± 1 | −0.91 | 0.36 |
Secchi depth:maximum depth | 0.2 ± 0.1 | 0.6 ± 0.1 | −2.77 | 0.003 |
Chlorophyll a (µg L−1) | 13 ± 8 | 4 ± 3 | −3.12 | 0.001 |
δ13C signal of pelagic zone | −23.1 ± 2.6 | −27.9 ± 2.8 | −2.78 | 0.003 |
Total zooplankton density (ind L−1) | 36 ± 15 | 49 ± 18 | −0.46 | 0.65 |
Azores Islands | Faroe Islands | t | p | |
---|---|---|---|---|
Total zooplankton mean size (mm) | 0.65 ± 0.05 | 0.82 ± 0.03 | 2.9 | <0.05 |
Cladoceran mean size (mm) | 0.58 ± 0.04 | 0.76 ± 0.02 | 4.1 | <0.001 |
Total zooplankton biomass (µgL−1) | 59 ± 20 | 263 ± 84 | 2.2 | <0.001 |
Total zooplankton:phytoplankton biomass ratio | 0.12 ± 0.10 | 2.8 ± 2.6 | 3.1 | <0.05 |
Log Chl-a:Log TP | 0.64 ± 0.07 | 0.06 ± 0.10 | 4.2 | <0.001 |
Log Chl-a:Log TN | 0.29 ± 0.05 | 0.06 ± 0.05 | 3.4 | <0.05 |
Fish | Basal | All Food | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Organisms | Web | |||||||||||||||||||||||
Faroe | Azores | F1–18 | Faroe | Azores | F1–16 | Faroe | Azores | F1–16 | ||||||||||||||||
Islands | Islands | p | Islands | Islands | p | Islands | Islands | p | ||||||||||||||||
(11) | (9) | (11) | (7) | (11) | (7) | |||||||||||||||||||
NR | 0.8 | ± | 0.44 | 0.7 | ± | 0.29 | 0.4 | 0.53 | 1.8 | ± | 0.72 | 1.1 | ± | 0.37 | 4.5 | 0.05 | 2.9 | ± | 0.68 | 2.2 | ± | 0.6 | 2.9 | 0.11 |
CR | 3.4 | ± | 2.02 | 2.9 | ± | 1.4 | 0.3 | 0.59 | 9.0 | ± | 3.57 | 4.7 | ± | 2.61 | 7.5 | 0.01 | 9.1 | ± | 3.75 | 5.1 | ± | 2.5 | 4.4 | 0.05 |
CD | 1.0 | ± | 0.57 | 0.9 | ± | 0.37 | 0.2 | 0.64 | 2.7 | ± | 1.04 | 1.3 | ± | 0.68 | 9.8 | 0.01 | 2.0 | ± | 0.66 | 1.4 | ± | 0.6 | 1.57 | 0.23 |
MNND | 0.4 | ± | 0.12 | 0.2 | ± | 0.08 | 6.1 | 0.02 | 1.7 | ± | 1.12 | 0.6 | ± | 0.18 | 7 | 0.02 | 0.8 | ± | 0.21 | 0.4 | ± | 0.1 | 21.8 | <0.001 |
SDNNM | 0.3 | ± | 0.15 | 0.5 | ± | 0.11 | 2.7 | 0.12 | 1.3 | ± | 1.2 | 0.5 | ± | 0.22 | 3.1 | 0.10 | 0.3 | ± | 0.45 | 0.3 | ± | 0.1 | 7.5 | 0.02 |
TA | 1.9 | ± | 2.06 | 1.1 | ± | 0.63 | 1.2 | 0.28 | 7.2 | ± | 5.79 | 3.2 | ± | 2.03 | 3.1 | 0.10 | 14.9 | ± | 9.77 | 6.9 | ± | 4.2 | 2.8 | 0.11 |
SEA | 1.5 | ± | 1.2 | 1.0 | ± | 0.5 | 1.1 | 0.32 | 7.6 | ± | 3.8 | 2.9 | ± | 1.6 | 9.1 | 0.01 | 7.9 | ± | 3.7 | 3.9 | ± | 2.0 | 4.8 | 0.04 |
SEAc | 1.5 | ± | 1.2 | 1.1 | ± | 0.5 | 1.1 | 0.3 | 8.4 | ± | 4.1 | 3.2 | ± | 1.7 | 10.2 | 0.01 | 8.2 | ± | 3.8 | 4.0 | ± | 2.0 | 5 | 0.04 |
CR of Basal Organisms | ||||
---|---|---|---|---|
Faroe Islands (11) | Azores Islands (7) | |||
r | p | r | p | |
A (ha) | 0.72 | 0.01 | 0.22 | 0.63 |
Zmax (m) | 0.70 | 0.02 | 0.24 | 0.60 |
S (m) | 0.71 | 0.02 | 0.64 | 0.25 |
S:Zmax | −0.52 | 0.10 | 0.27 | 0.66 |
TN (µgL−1) | −0.20 | 0.55 | 0.09 | 0.85 |
TP (µgL−1) | −0.46 | 0.16 | −0.08 | 0.87 |
Chla (µgL−1) | −0.24 | 0.47 | −0.59 | 0.16 |
Cmax (m) | 0.46 | 0.16 | 0.31 | 0.51 |
pH | −0.07 | 0.85 | 0.27 | 0.61 |
Cond | −0.05 | 0.88 | 0.14 | 0.79 |
δ13C signal of pelagic zone | −0.32 | 0.37 | −0.07 | 0.89 |
CR primary producers | 0.63 | 0.07 | 0.04 | 0.94 |
CR of Basal Organisms | ||||
---|---|---|---|---|
FaroeIslands (11) | Azores Islands (7) | |||
r | p | r | p | |
Total zooplankton:phytoplancton biomass ratio | −0.48 | 0.16 | −0.02 | 0.89 |
Fish:zooplankton biomass ratio | 0.66 | 0.04 | −0.58 | 0.15 |
% small fish (<10 cm TL) | 0.14 | 0.71 | 0.01 | 0.71 |
CPUE small fish | −0.05 | 0.88 | −0.13 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, N.; Amsinck, S.L.; Gonçalves, V.; Azevedo, J.M.N.; Johansson, L.S.; Christoffersen, K.S.; Lauridsen, T.L.; Søndergaard, M.; Bjerring, R.; Landkildehus, F.; et al. Food Webs and Fish Size Patterns in Insular Lakes Partially Support Climate-Related Features in Continental Lakes. Water 2021, 13, 1380. https://doi.org/10.3390/w13101380
Vidal N, Amsinck SL, Gonçalves V, Azevedo JMN, Johansson LS, Christoffersen KS, Lauridsen TL, Søndergaard M, Bjerring R, Landkildehus F, et al. Food Webs and Fish Size Patterns in Insular Lakes Partially Support Climate-Related Features in Continental Lakes. Water. 2021; 13(10):1380. https://doi.org/10.3390/w13101380
Chicago/Turabian StyleVidal, Nicolas, Susanne L. Amsinck, Vítor Gonçalves, José M. Neto Azevedo, Liselotte S. Johansson, Kirsten S. Christoffersen, Torben L. Lauridsen, Martin Søndergaard, Rikke Bjerring, Frank Landkildehus, and et al. 2021. "Food Webs and Fish Size Patterns in Insular Lakes Partially Support Climate-Related Features in Continental Lakes" Water 13, no. 10: 1380. https://doi.org/10.3390/w13101380
APA StyleVidal, N., Amsinck, S. L., Gonçalves, V., Azevedo, J. M. N., Johansson, L. S., Christoffersen, K. S., Lauridsen, T. L., Søndergaard, M., Bjerring, R., Landkildehus, F., Brodersen, K. P., Meerhoff, M., & Jeppesen, E. (2021). Food Webs and Fish Size Patterns in Insular Lakes Partially Support Climate-Related Features in Continental Lakes. Water, 13(10), 1380. https://doi.org/10.3390/w13101380