Groundwater Modelling in Urban Development to Achieve Sustainability of Groundwater Resources: A Case Study of Semarang City, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geology, Hydrology, and Hydrogeology
2.3. Groundwater Modeling
2.4. Conceptual Model
3. Results and Discussion
3.1. Error Measurement of Models
3.1.1. Root Mean Square Error (RMSE)
3.1.2. Coefficient of Determination (R2)
3.2. Steady-State Flow Simulation
3.3. Transient Flow Simulation
3.4. Scenario Design
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Available online: https://www.un.org/en/development/desa/population/theme/urbanization/index.asp (accessed on 28 October 2020).
- Bradley, R.M.; Weeraratne, S.; Mediwake, T.M.M. Water use projections in developing countries. J. Am. Water Work. Assoc. 2002, 94, 52–63. [Google Scholar] [CrossRef]
- McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C.; Todd, M.; Montgomery, M. Urban growth, climate change, and freshwater availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, R.I.; Weber, K.; Padowski, J.; Flörke, M.; Schneider, C.; Green, P.A.; Gleeson, T.; Eckman, S.; Lehner, B.; Balk, D.; et al. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Glob. Environ. Chang. 2014, 27, 96–105. [Google Scholar] [CrossRef] [Green Version]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Semarang City’s Central Statistics Agency. Available online: https://semarangkota.bps.go.id/ (accessed on 28 October 2020).
- Gorelick, S.M.; Zheng, C. Global change and the groundwater management challenge. Water Resour. Res. 2015, 51, 3031–3051. [Google Scholar] [CrossRef]
- Braga, A.C.R.; Serrao-Neumann, S.; de Oliveira Galvão, C. Groundwater Management in Coastal Areas through Landscape Scale Planning: A Systematic Literature Review. Environ. Manag. 2020, 65, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Morris, B.L.; Lawrence, A.R.L.; Chilton, P.J.C.; Adams, B.; Calow, R.C.; Klinck, B.A. Groundwater and Its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management; Early Warning and Assessment Report Series, RS. 03-3; United Nations Environment Programme: Nairobi, Kenya, 2003. [Google Scholar]
- Margat, J.; van der Gun, J. Groundwater around the World: A Geographic Synopsis; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2013; ISBN 978-0-203-77214-0. [Google Scholar]
- Turner, S.W.D.; Hejazi, M.; Yonkofski, C.; Kim, S.H.; Kyle, P. Influence of Groundwater Extraction Costs and Resource Depletion Limits on Simulated Global Nonrenewable Water Withdrawals Over the Twenty-First Century. Earth’s Future 2019, 7, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Custodio, E.; Albiac, J.; Cermerón, M.; Hernández, M.; Llamas, M.R.; Sahuquillo, A. Groundwater mining: Benefits, problems and consequences in Spain. Sustain. Water Resour. Manag. 2017, 3, 213–226. [Google Scholar] [CrossRef]
- Molle, F.; López-Gunn, E.; van Steenbergen, F. The local and national politics of groundwater overexploitation. Water Altern. 2018, 11, 445–457. [Google Scholar]
- Satyaji Rao, Y.R.; Siva Prasad, Y. Groundwater flow modeling—A tool for water resources management in the khondalite and sandstone formations. Groundw. Sustain. Dev. 2020, 11, 100454. [Google Scholar] [CrossRef]
- Gonçalves, R.D.; Teramoto, E.H.; Chang, H.K. Regional groundwater modeling of the guarani aquifer system. Water 2020, 12, 2323. [Google Scholar] [CrossRef]
- Pastore, N.; Cherubini, C.; Doglioni, A.; Giasi, C.I.; Simeone, V. Modelling of the Complex Groundwater Level Dynamics during Episodic Rainfall Events of a Surficial Aquifer in Southern Italy. Water 2020, 12, 2916. [Google Scholar] [CrossRef]
- Drias, T.; Khedidja, A.; Belloula, M.; Badraddine, S.; Saibi, H. Groundwater modelling of the Tebessa-Morsott alluvial aquifer (northeastern Algeria): A geostatistical approach. Groundw. Sustain. Dev. 2020, 11, 100444. [Google Scholar] [CrossRef]
- Gogu, R.C.; Carabin, G.; Hallet, V.; Peters, V.; Dassargues, A. GIS-based hydrogeological databases and groundwater modelling. Hydrogeol. J. 2001, 9, 555–569. [Google Scholar] [CrossRef]
- Dawoud, M.A.; Darwish, M.M.; El-Kady, M.M. GIS-based groundwater management model for Western Nile Delta. Water Resour. Manag. 2005, 19, 585–604. [Google Scholar] [CrossRef]
- Singh, A. Groundwater modelling for the assessment of water management alternatives. J. Hydrol. 2013, 481, 220–229. [Google Scholar] [CrossRef]
- Rojas, R.; Kahunde, S.; Peeters, L.; Batelaan, O.; Feyen, L.; Dassargues, A. Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling. J. Hydrol. 2010, 394, 416–435. [Google Scholar] [CrossRef] [Green Version]
- Batelaan, O.; De Smedt, F.; Triest, L. Regional groundwater discharge: Phreatophyte mapping, groundwater modelling and impact analysis of land-use change. J. Hydrol. 2003, 275, 86–108. [Google Scholar] [CrossRef]
- Boufekane, A.; Saibi, H.; Benlaoukli, B.; Saighi, O. Scenario modeling of the groundwater in a coastal aquifer (Jijel plain area, Algeria). Arab. J. Geosci. 2019, 12, 1–14. [Google Scholar] [CrossRef]
- El Alfy, M. Numerical groundwater modelling as an effective tool for management of water resources in arid areas. Hydrol. Sci. J. 2014, 59, 1259–1274. [Google Scholar] [CrossRef]
- Semarang Central Bureau of Statistic. Badan Pusat Statistik Semarang City in Figures 2019 (Kota Semarang Dalam Angka Tahun 2019); Semarang Central Bureau of Statistic: Semarang, Indonesia, 2019; pp. 1–346. [Google Scholar]
- Semarang City Government. Urban Planning of Semarang City 2011–2031; Semarang City Government: Semarang, Indonesia, 2011.
- Pemerintah Kota Semarang. Spatial Plans of Semarang City 2011–2031; Pemerintah Kota Semarang: Semarang, Indonesia, 2010; pp. 1–30, (In Bahasa Indonesia). [Google Scholar]
- Mining and Energy Agency of Central Java Province; Directorate of Geological Environment and Mining Areas. Tinjauan Umum Konfigurasi Sistem Airtanah. In Laporan Akhir: Kajian Zonasi Konfigurasi dan Tata Guna Air Bawah Tanah Pada Cekungan Semarang—Demak, Subah, dan Karanganyar—Boyolali, Provinsi Jawa Tengah (Final Report: Study on the Configuration and Zoning of Underground Water in the Semarang—Dema; Mining and Energy Agency of Central Java Province: Semarang, Indonesia, 2003. [Google Scholar]
- Mining and Energy Agency Central Java Province (DESDM Provinsi Jawa Tengah). Rekapitulasi Penghitungan Air Dan Nilai Perolehan Air Tahun 2001–2010; Internal Report (Unpublished); Mining and Energy Agency of Central Java Province: Semarang, Indonesia, 2012. [Google Scholar]
- Tirtomihardjo, H. Groundwater Resource Potential in Indonesia and Their Management; Presentation Report (Unpublished); Geological Agency; Ministry of Energy and Mineral Resources: Bandung, Indonesia, 2011. [Google Scholar]
- Institut Teknologi Bandung (ITB). Marsudi Prediksi Laju Amblesan Tanah di Dataran Aluvial Semarang Provinsi Jawa Tengah; Dissertation (Unpublished); Institut Teknologi Bandung: Bandung, Indonesia, 2000; (In Bahasa Indonesia). [Google Scholar]
- Betancur, T.; Palacio, T.C.A.; Escobar, M.J.F. Conceptual Models in Hydrogeology, Methodology and Results. In Hydrogeology—A Global Perspective; Intechopen Limited: London, UK, 2012; eBook (PDF); ISBN 978-953-51-4951-4. [Google Scholar]
- Thanden, R.E. Java Geological Map of Magelang and Semarang Sheets (Quadrangle) 1408-5-Magelang & 1409-2-Semarang; Center of Geological Survey, Indonesian Geological Agency: Bandung, Indonesia, 2006. [Google Scholar]
- Poedjoprajitno, S. Reactivity of the Kaligarang Fault, Semarang. Indones. J. Geosci. 2008, 3, 129–138, (In Bahasa Indonesia). [Google Scholar]
- Thaden, R.E.; Sumardirdja, H.; Richards, P.W. Geological Map of Semarang-Magelang Quadrangle, Java, Scale 1:100,000; Center of Geological Survey, Indonesian Geological Agency: Bandung, Indonesia, 1996. [Google Scholar]
- Purnomo, S.N.; Lo, W.C. Estimation of Groundwater Recharge in Semarang City, Indonesia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 982, 012035. [Google Scholar] [CrossRef]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model; Techniques of Water-Resources Investigations Report, 06-A1; US Geological Survey: Reston, VA, USA, 1988; p. 588.
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model; US Geological Survey: Reston, VA, USA, 1984.
- McDonald, M.G.; Harbaugh, A.W. The history of MODFLOW. Ground Water 2003, 41, 280–283. [Google Scholar] [CrossRef]
- Putranto, T.T.; Rüde, T.R. Hydrogeological model of an urban city in a coastal area, case study: Semarang, Indonesia. Indones. J. Geosci. 2016, 3, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Rahmawati, N.; Vuillaume, J.F.; Purnama, I.L.S. Salt intrusion in coastal and lowland areas of semarang city. J. Hydrol. 2013, 494, 146–159. [Google Scholar] [CrossRef]
- Sarah, D.; Hutasoit, L.; Delinom, R.; Sadisun, I. Natural Compaction of Semarang Demak Alluvial Plain and Its Relationship to the Present Land Subsidence. Indones. J. Geosci. 2020, 7, 273–289. [Google Scholar] [CrossRef]
- Neill, S.P.; Hashemi, M.R. Ocean Modelling for Resource Characterization. In Fundamentals of Ocean Renewable Energy; Academic Press: London, UK, 2018; ISBN 978-0-12-810448-4. [Google Scholar]
- Akossou, A.Y.J. Impact of data structure on the estimators R-square and adjusted R-square in linear regression. Int. J. Math. Comput. 2013, 20, 84–93. [Google Scholar]
- Saha, G.C.; Quinn, M. Numerical modelling of the impacts of water abstraction for hydraulic fracturing on groundwater–surface water interaction: A case study from northwestern Alberta, Canada. Hydrol. Sci. J. 2020, 65, 2142–2158. [Google Scholar] [CrossRef]
- Moraes, D. The Coefficient of Determination: What. Investig. Ophtalmol. Vis. Sci. 2012, 53, 6830–6832. [Google Scholar]
- Kasuya, E. On the use of r and r squared in correlation and regression. Ecol. Res. 2019, 34, 235–236. [Google Scholar] [CrossRef]
- Aquaveo MODFLOW—Model Calibration 2018. pp. 1–17. Available online: https://www.aquaveo.com/software/gms-learning-tutorials/ (accessed on 9 January 2020).
- Aghlmand, R.; Abbasi, A. Application of MODFLOW with boundary conditions analyses based on limited available observations: A case study of Birjand plain in East Iran. Water 2019, 11, 1904. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.L.; Shalabh; Garg, G. Coefficient of determination for multiple measurement error models. J. Multivar. Anal. 2014, 126, 137–152. [Google Scholar] [CrossRef] [Green Version]
Data | Sources |
---|---|
DEM (Digital Elevation Model) | Resolution 0.27 arc-sec ≈ 8.325 m, source: DEMNAS Indonesia |
Rainfall data | Water Resource Agency, Public Work Department of Indonesia |
Soil properties | Mining and Energy Agency of Central Java Province |
Wells location and discharge | Mining and Energy Agency of Central Java Province |
Observation wells location and groundwater level | Center for Groundwater and Environmental Geology, Ministry of Energy and Mineral Resources |
Hydrogeological data: | |
1. Borehole data | 1. BBWS Pemali—Juana, Ministry of Public Work |
2. Mining and Energy Agency of Central Java Province | |
2. Geoelectrical data | 1. Primary data from field survey |
2. Secondary data from the Department of Geology, Diponegoro University |
Name | Recorded Head (m) | Predicted Head (m) |
---|---|---|
Prawiro Jaya Baru (P1) | 4.475 | 4.268 |
PRPP (P2) | −6.380 | −6.104 |
SMKN 10 (P3) | −6.328 | −7.252 |
Wot Gandul (P4) | −7.746 | −6.781 |
Santika Hotel (P5) | 5.802 | 4.971 |
LIK Kaligawe (P6) | −11.879 | −12.662 |
Name | RMSE (m) | R2 |
---|---|---|
Prawiro Jaya Baru (P1) | 0.400 | 0.600 |
PRPP (P2) | 3.500 | 0.831 |
SMKN 10 (P3) | 0.733 | 0.962 |
Wot Gandul (P4) | 1.429 | 0.808 |
Santika Hotel (P5) | 0.806 | 0.610 |
LIK Kaligawe (P6) | 1.729 | 0.989 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo, W.; Purnomo, S.N.; Sarah, D.; Aghnia, S.; Hardini, P. Groundwater Modelling in Urban Development to Achieve Sustainability of Groundwater Resources: A Case Study of Semarang City, Indonesia. Water 2021, 13, 1395. https://doi.org/10.3390/w13101395
Lo W, Purnomo SN, Sarah D, Aghnia S, Hardini P. Groundwater Modelling in Urban Development to Achieve Sustainability of Groundwater Resources: A Case Study of Semarang City, Indonesia. Water. 2021; 13(10):1395. https://doi.org/10.3390/w13101395
Chicago/Turabian StyleLo, Weicheng, Sanidhya Nika Purnomo, Dwi Sarah, Sokhwatul Aghnia, and Probo Hardini. 2021. "Groundwater Modelling in Urban Development to Achieve Sustainability of Groundwater Resources: A Case Study of Semarang City, Indonesia" Water 13, no. 10: 1395. https://doi.org/10.3390/w13101395
APA StyleLo, W., Purnomo, S. N., Sarah, D., Aghnia, S., & Hardini, P. (2021). Groundwater Modelling in Urban Development to Achieve Sustainability of Groundwater Resources: A Case Study of Semarang City, Indonesia. Water, 13(10), 1395. https://doi.org/10.3390/w13101395