Blue Economy and Blue Activities: Opportunities, Challenges, and Recommendations for The Bahamas
Abstract
:1. Introduction
2. Overview and Opportunities
2.1. Coastal and Marine Tourism
2.2. Fisheries and Offshore Aquaculture
2.3. Marine Bioprospecting and Biotechnology
2.4. Ocean Renewable Energy
3. Challenges to Blue Growth
3.1. Blue Injustice
- Recognize and protect resource and spatial tenure and access rights.
- Take a precautionary approach to reduce pollution and ensure that environmental burdens are not placed on marginalized populations.
- Minimize the impacts of development on habitats, resources, and ecosystem services.
- Consider and safeguard the access rights and livelihoods of small-scale fishers.
- Maintain and promote access to marine resources needed for food security and wellbeing.
- Develop policies and mechanisms to foster and ensure the equitable distribution of economic benefits.
- Monitor, mitigate, and manage the social and cultural impacts of ocean development.
- Recognize, include, and promote the equal role of women in the ocean economy.
- Recognize and protect human and Indigenous rights.
- Develop inclusive and participatory planning and governance processes for ocean development.
3.2. Ocean Observations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Bank and United Nations Department of Economic and Social Affairs. The Potential of the Blue Economy: Increasing Long-term Benefits of the Sustainable Use of Marine Resources for Small Island Developing States and Coastal Least Developed Countries; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Hoegh-Guldberg, O. Reviving the Ocean Economy: The Case for Action—2015; WWF International: Gland, Switzerland, 2015; 60p. [Google Scholar]
- Colgan, C.S. Measurement of the ocean economy from national income accounts to the sustainable blue economy. J. Ocean Coast. Econ. 2016, 2, 12. [Google Scholar] [CrossRef]
- Virdin, J.; Vegh, T.; Jouffray, J.-B.; Blasiak, R.; Mason, S.; Österblom, H.; Vermeer, D.; Wachtmeister, H.; Werner, N. The Ocean 100: Transnational corporations in the ocean economy. Sci. Adv. 2021, 7, eabc8041. [Google Scholar] [CrossRef]
- Bennett, N.J.; Cisneros-Montemayor, A.M.; Blythe, J.; Silver, J.J.; Singh, G.; Andrews, N.; Calo, A.; Christie, P.; Franco, A.D.; Finkbeiner, E.M.; et al. Towards a sustainable and equitable blue economy. Nat. Sustain. 2019, 1–3. [Google Scholar] [CrossRef]
- Hasan, M.M.; Hossain, B.M.; Alam, S.M.J.; Chowdhury, K.M.A.; Al Karim, A.; Chowdhury, N.M.K. The prospects of blue economy to promote bangladesh into a middle-income country. Open J. Mar. Sci. 2018, 8, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Schutter, M.S.; Hick, C.C. Networking the blue economy in Seychelles: Pioneers, resistance, and the power of influence. J. Political Ecol. 2019, 26, 425–447. [Google Scholar] [CrossRef] [Green Version]
- Rasowo, J.O.; Orina, P.; Nyonje, B.; Awuor, S.; Olendi, R. Harnessing Kenya’s blue economy: Prospects and challenges. J. Indian Ocean Reg. 2020, 16, 292–316. [Google Scholar] [CrossRef]
- Senaratne, M. The Blue Economy: Charting a New Development Path in the Seychelles; ORF Occasional Paper No. 265; Observer Research Foundation: New Delhi, India, 2020. [Google Scholar]
- Mulder, N. The Impact of the COVID-19 Pandemic on the Tourism Sector in Latin America and the Caribbean, and Options for a Sustainable and Resilient Recovery; International Trade Series, No. 157 (LC/TS.2020/147); Economic Commission for Latin America and the Caribbean (ECLAC): Santiago, Chile, 2020. [Google Scholar]
- Government of The Bahamas. 2020 Fiscal Strategy Report. Available online: https://www.bahamas.gov.bs/wps/wcm/connect/b2b847eb-b03b-449a-8b41-dfb4c9792ac7/2020FSR_FINAL_DEC17+%28Revised%29.pdf?MOD=AJPERES (accessed on 19 March 2021).
- UNCTAD. The COVID-19 Pandemic and the Blue Economy: New Challenges and Prospects for Recovery and Resilience. 2020. Available online: https://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=2717 (accessed on 13 March 2021).
- Thomas, A.; Benjamin, L. Perceptions of climate change risk in The Bahamas. J. Environ. Stud. Sci. 2018, 8, 63–72. [Google Scholar] [CrossRef]
- Thomas, A.; Baptiste, A.K.; Martyr-Koller, R.; Pringle, P.; Rhiney, K. Climate change and small island developing states. Annu. Rev. Environ. Resour. 2020, 45, 1–27. [Google Scholar] [CrossRef]
- Pathak, A.; van Beynen, P.E.; Akiwumi, F.A.; Lindeman, K.C. Impacts of climate change on the tourism sector of a small island developing state: A case study for the Bahamas. Environ. Dev. 2021, 37, 10056. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, L. Emerging ocean industries: Implications for sustainable tourism development. Tour. Mar. Environ. 2018, 13, 25–40. [Google Scholar] [CrossRef]
- Sakellariadou, F.; Kostopoulou, E. Marine ecotourism from the perspective of blue growth. In Proceedings of the 7th iCOnEc Conference Competitiveness and Stability in the Knowledge-based Economy, Craiova, Romania, 20–21 March 2015; p. 10. [Google Scholar]
- Tegar, D.; Saut Gurning, R.O. Development of marine and coastal tourism based on blue economy. Int. J. Mar. Eng. Innov. Res. 2018, 2, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Haas, A.R.; Fedler, T.; Brooks, E.J. The contemporary economic value of elasmobranchs in The Bahamas: Reaping the rewards of 25 years of stewardship and conservation. Biol. Conserv. 2017, 207, 55–63. [Google Scholar] [CrossRef]
- Arkema, K.; Fisher, D.M.; Wyatt, K.; Wood, S.A.; Payne, H.J. advancing sustainable development and protected area management with social media-based tourism data. Sustainability 2021, 13, 2427. [Google Scholar] [CrossRef]
- Wyman, O. To Recovery and Beyond: The Future of Travel and Tourism in the Wake of COVID-19; World Travel & Tourism Council: London, UK, 2020. [Google Scholar]
- Oxford Economics. Strategies for Economic Growth in The Bahamas; Report for the Organization for Responsible Governance; Oxford Economics Ltd.: New York, NY, USA, 2017. [Google Scholar]
- Government of The Bahamas. Voluntary National Review on the Sustainable Development Goals to the High Level Political Forum of the United Nations Economic Council. 2018. Available online: https://ufdc.ufl.edu/AA00079445/00001 (accessed on 9 March 2021).
- Wright, A. Development Challenges in The Bahamas; Inter-American Development Bank: Washington, DC, USA, 2018. [Google Scholar]
- Smith, N.S.; Zeller, D. Bahamas Catch Reconstruction: Fisheries Trends in a Tourism-Driven Economy (1950–2010); Fisheries Centre, University of British Columbia: Vancouver, BC, Canada, 2013. [Google Scholar]
- Sherman, K.D.; Shultz, A.D.; Dahlgren, C.P.; Thomas, C.; Brooks, E.; Brooks, A.; Brumbaugh, D.R.; Gittens, L.; Murchie, K.J. Contemporary and emerging fisheries in The Bahamas—Conservation and management challenges, achievements and future directions. Fish. Manag. Ecol. 2017, 25, 319–331. [Google Scholar] [CrossRef]
- Danylchuk, A.J.; Goldberg, S.J.T.; Suski, C.D.; Murchie, K.J.; Danylchuk, S.E.; Shultz, A.D.; Haak, C.; Brooks, E.J.; Brooks, A.M.L.; Kopelman, J.; et al. Aggregations and offshore movements as indicators of spawning activity of bonefish (Albula vulpes) in The Bahamas. Mar. Biol. 2011, 158, 1981–1999. [Google Scholar] [CrossRef]
- Sherman, K.D.; Paris, J.; King, A.; Moore, K.A.; Dahlgren, C.P.; Knowles, L.C.; Stump, K.; Tyler, C.R.; Stevens, J.R. RAD-Seq analysis and in situ monitoring of nassau grouper reveal fine-scale population structure and origins of aggregating fish. Front. Mar. Sci. 2020, 7, 157. [Google Scholar] [CrossRef] [Green Version]
- Souza, P.M.; Kough, A.S. Queen Conch Lobatus gigas population estimates and age structure suggest a potential natural refuge on the Cay Sal Bank, The Bahamas. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 1276–1290. [Google Scholar] [CrossRef]
- Pittman, S.J.; Heyman, W. Fish below water: Fish spawning aggregations as bright spots for a sustainable ocean. Conserv. Lett. 2020, 13, e12722. [Google Scholar] [CrossRef]
- Purcell, S.W.; Pomeroy, R.S. Driving small-scale fisheries in developing countries. Front. Mar. Sci. 2015, 2, 44. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.; Allison, E.H.; Andrew, N.L.; Cinner, J.; Evans, L.S.; Fabinyi, M.; Garces, L.R.; Hall, S.J.; Hicks, C.C.; Hughes, T.P.; et al. Securing a just space for small-scale fisheries in the blue economy. Front. Mar. Sci. 2019, 6, 171. [Google Scholar] [CrossRef]
- Bennett, N.J. Navigating a just and inclusive path towards sustainable oceans. Mar. Policy 2018, 97, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Kough, A.S.; Belak, C.; Paris, C.B.; Lundy, A.; Cronin, H.; Gnanalingam, G.; Hagedorn, S.; Skubel, R.; Weiler, A.C.; Stoner, A. Ecological spillover from a marine protected area replenishes an over-exploited population across an island chain. Conserv. Sci. Pract. 2019, 1, e17. [Google Scholar] [CrossRef] [Green Version]
- Que, H.Y.; Chen, Y.; Zhang, X.M.; Zhang, G.F. Modern marine ranching: Status and development strategy. Eng. Sci. 2016, 18, 79–84. (In Chinese) [Google Scholar]
- Le Gouvello, R.; Hochart, L.; Laffoley, D.; Simard, F.; Andrade, C.; Angel, D.; Callier, M.; De Monbrison, D.; Fezzardi, D.; Haroun, R.; et al. Aquaculture and marine protected areas: Potential opportunities and synergies. Aquat. Conserv. 2017, 27, 138–150. [Google Scholar] [CrossRef]
- Froehlich, H.E.; Gentry, R.R.; Halpern, B.S. Conservation aquaculture: Shifting the narrative and paradigm of aquaculture’s role in resource management. Biol. Conserv. 2017, 215, 162–168. [Google Scholar] [CrossRef]
- Campbell, L.M.; Fairbanks, L.; Murray, G.; Stoll, J.S.; D’Anna, L.; Bingham, K. From blue economy to blue communities: Reorienting aquaculture expansion for community wellbeing. Mar. Policy 2021, 124, 104361. [Google Scholar] [CrossRef]
- Thomas, L.R.; Clavelle, T.; Klinger, D.H.; Lester, S.E. The ecological and economic potential for offshore mariculture in the Caribbean. Nat. Sustain. 2019, 2, 62–70. [Google Scholar] [CrossRef]
- Benneti, D.D.; O’Hanlon, B.; Rivera, J.A.; Welch, A.W.; Maxey, C.; Orhun, M.R. Growth rates of cobia (Rachycentron canadum) cultured in open ocean submerged cages in the Caribbean. Aquaculture 2010, 302, 195–201. [Google Scholar] [CrossRef]
- Sharma, P.K.; Saharia, M.; Srivstava, R.; Kumar, S.; Sahoo, L. tailoring microalgae for efficient biofuel production. Front. Mar. Sci. 2018, 5, 382. [Google Scholar] [CrossRef]
- Caribbean Regional Fisheries Mechanism (CRFM). Study on the Potential of Fish Farming in the Caribbean; CRFM Technical and Advisory Document No 2014/2. P78; CRFM Secretariat: Belmopan, Belize, 2014. [Google Scholar]
- Government of The Bahamas. Fisheries Resources (Jurisdiction and Conservation). Amendment Bill. 2020. Available online: http://laws.bahamas.gov.bs/cms/images/LEGISLATION/SUBORDINATE/1986/1986-0010/FisheriesResourcesJurisdictionandConservationRegulations_1.pdf (accessed on 9 March 2021).
- National Fisheries Association of The Bahamas (NFA). Fisheries Resources (Jurisdiction and Conservation). Amendment Bill. 2020. Available online: https://nfabahamas.org/resources (accessed on 15 March 2021).
- Belton, B.; Little, D.C.; Zhang, Z.; Edwards, P.; Skladany, M.; Thilsted, S.H. Farming fish in the sea will not nourish the world. Nat. Commun. 2020, 11, 5804. [Google Scholar] [CrossRef] [PubMed]
- Costello, C.; Cao, L.; Gelcich, S. The Future of Food from the Sea; World Resources Institute: Washington, DC, USA, 2019; Available online: www.oceanpanel.org/future-food-sea (accessed on 15 March 2021).
- Pathak, S. Marine Bioprospecting: Bioactive compounds from Cnidarians and Molluscs—A Review. In Proceedings of the National Conference on Innovations in Biological Sciences, Gujarat, India, 10 January 2020; ISBN 978-93-5407-322-9. [Google Scholar]
- Carreira-Casais, A.; Rodríguez, M.C.; Lourenço-Lopes, C.; Pereira, A.G.; Oliveira, P.G.; Silva, A.; Cassani, L.; Otero, P.; Lage, M.A.P.; Simal-Gandara, J. Health from the Sea: Bifucaria Bifurcate as a Source of Bioactive Compounds. 1st Natural Products Application: Health, Cosmetic and Food: Book of Abstracts. Instituto Politécnico de Bragança (IPB). Portugal. 2021. Available online: http://hdl.handle.net/10198/22068 (accessed on 15 March 2021).
- Liu, G.; Jiang, T.; Ollis, T.B.; Li, X.; Li, F.; Tomsovic, K. Resilient distribution system leveraging distributed generation and microgrids: A review. IET Energy Syst. Integr. 2020, 2, 289–304. [Google Scholar] [CrossRef]
- Matos, G.; Pereira, S.G.; Genisheva, Z.A.; Gomes, A.M.; Teixeira, J.A.; Rocha, C.M.R. Advances in extraction methods to recover added-value compounds from seaweeds: Sustainability and functionality. Foods 2021, 10, 516. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweed compounds: An ecosustainable source of cosmetic ingredients? Cosmetics 2021, 8, 8. [Google Scholar] [CrossRef]
- Maeda, Y.; Yoshino, T.; Matsunaga, T.; Matsumoto, M.; Tanaka, T. Marine microalgae for production of biofuels and chemicals. Curr. Opin. Biotechnol. 2018, 50, 111–120. [Google Scholar] [CrossRef]
- Makaroglou, G.; Marakas, H.; Fodelianakis, S.; Axaopoulu, V.A.; Koumi, I.; Kalogerakis, N.; Gikas, P. Optimization of biomass production of Stichoccous sp. Biofilms coupled to wastewater treatment. Biochem. Eng. J. 2021, 169, 107964. [Google Scholar] [CrossRef]
- Government of The Bahamas. The Biological Resources and Traditional Knowledge Protection and Sustainable Use Act. 2020. Available online: https://www.depp.gov.bs/wp-content/uploads/2020/11/Biological-Resources-and-Traditional-Knowledge-Act-Draft.pdf (accessed on 9 March 2021).
- Hargreaves-Allen, V. The Economic Valuation of the Natural Resources of Andros. Report Presented to the Nature Conservancy in August 2010. Available online: http://www.globalislands.net/userfiles/bahamas_4.pdf (accessed on 11 March 2021).
- Bowen, B.W.; Gaither, M.R.; DiBattista, J.D.; Lacchei, M.; Andrews, K.R.; Grant, W.S.; Toonen, R.J.; Briggs, J.C. Comparative phylogeography of the ocean planet. Proc. Natl. Acad. Sci. USA 2016, 113, 7962–7969. [Google Scholar] [CrossRef] [Green Version]
- Siswandi, A.G.C. Marine Bioprospecting: International Law, Indonesia and Sustainable Development. Ph.D. Thesis, The Australian National University, Canberra, Australia, 2013. Available online: https://openresearch-repository.anu.edu.au/handle/1885/9730?mode=full (accessed on 10 March 2021).
- Kries, C.V.; Broggiato, A.; Dedeurwaerdere, T.; Winter, G. Micro B3 Model Agreement on Access to Marine Microorganisms and Benefit-Sharing. 2013. Available online: https://www.microb3.eu/work-packages/wp8.html (accessed on 13 March 2021).
- European Commission. Final Report Summary—MICRO B3 (Marine Microbial Biodiversity, Bioinformatics and Biotechnology). 2017. Available online: https://cordis.europa.eu/project/id/287589 (accessed on 13 March 2021).
- Bhatia, P.; Chugh, A. Role of marine bioprospecting contracts in developing access and benefit sharing mechanism for marine traditional knowledge holders in the pharmaceutical industry. Glob. Ecol. Conserv. 2015, 3, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [Green Version]
- Wise, J.; Grebe de Barron, A.; Splendiani, A. Implementation and relevance of FAIR data principles in biopharmaceutical R&D. Drug Discov. Today 2019, 24, 933–938. [Google Scholar]
- Mustafa, S.; Estim, A.; Shaleh, S.R.M. A call for open access for marine bioprospecting. Environ. Policy Law 2020, 49, 232–236. [Google Scholar] [CrossRef]
- Atteridge, A.; Savvidou, G. Development aid for energy in Small Island Developing States. Energy Sustain. Soc. 2019, 9, 10. [Google Scholar] [CrossRef]
- Dornan, M. renewable energy development in Small Island Developing States of the Pacific. Resources 2015, 4, 490–506. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL). Energy Snapshot Bahamas. 2015. Available online: https://www.nrel.gov/docs/fy15osti/62691.pdf (accessed on 12 March 2021).
- Kjerfve, B. Tides of the Caribbean Sea. J. Geophys. Res. 1981, 86, 4243–4247. [Google Scholar] [CrossRef]
- Roberts, A.; Thomas, B.; Sewell, P.; Khan, Z.; Bailman, S.; Gillman, J. Current tidal power technologies and their suitability for applications in coastal and marine areas. J. Ocean Eng. Mar. Energy 2016, 2, 227–245. [Google Scholar] [CrossRef] [Green Version]
- Encarnacion, J.; Johnstone, C.; Sordonez-Sanches, S. Design of a horizontal axis tidal turbine for less energetic current profiles. Mar. Sci. Eng. 2019, 7, 197. [Google Scholar] [CrossRef] [Green Version]
- Chadee, X.; Clarke, R.M. Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data. Renew. Sustain. Energy Rev. 2014, 20, 45–58. [Google Scholar] [CrossRef]
- Guillou, N.; Chapalain, G. Assessment of wave power variability and exploitation with a long-term hindcast database. Renew. Energy 2020, 154, 1272–1282. [Google Scholar] [CrossRef]
- Rajagopalan, K.; Nihous, G.C. An assessment of global ocean thermal energy conversion resources with a high-resolution ocean general circulation model. J. Energy Resour. Technol. 2013, 135, 041202. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Silva, O.; Osorio, A.F.; Winter, C. Salinity gradient energy at river mouths. Renew. Sustain. Energy Rev. 2016, 60, 1387–1395. [Google Scholar] [CrossRef]
- Bane, J.M.; He, R.; Muglia, M.; Lowcher, C.F.; Gong, Y.; Haines, S.M. Marine hydrokinetic energy from western boundary currents. Annu. Rev. Mar. Sci. 2015, 9, 105–123. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Silva, O.; Winter, C.; Osorio, A.F. Salinity gradient energy at river mouths. Environ. Sci. Technol. Lett. 2014, 1, 410–415. [Google Scholar] [CrossRef]
- Schröder, P.; Albaladejo, M.; Ribas, P.A.; MacEwen, M.; Tilkanen, J. The Circular Economy in Latin America and the Caribbean: Opportunities for Building Resilience. 2020. Available online: https://www.unido.org/sites/default/files/files/2020-09/circular_economy_lac.pdf (accessed on 4 April 2021).
- Soomauroo, Z.; Blechinger, P.; Creutzig, F. Unique opportunities of island states to transition to a low-carbon mobility system. Sustainability 2020, 12, 1435. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, E.; McLellan, B.; Mohammadi-Ivatloo, B.; Tezuka, T. The role of renewable energy resources in sustainability of water desalination as a potential fresh-water source: An updated review. Sustainability 2020, 12, 5233. [Google Scholar] [CrossRef]
- d’Amore-Domenech, R.; Leo, T.J. Sustainable hydrogen production from offshore marine renewable farms: Techno-energetic insight on seawater electrolysis technologies. ASC Sustain. Chem. Eng. 2019, 7, 8006–8022. [Google Scholar] [CrossRef]
- Yang, X.; Haas, K.A.; Fritz, H.M. Theoretical assessment of ocean current energy potential for the gulf stream. Mar. Technol. Soc. J. 2013, 47, 101–112. [Google Scholar] [CrossRef]
- Commonwealth Secretariat, 2018: 2017 Energy Report Card Bahamas. Available online: https://drive.google.com/file/d/1nPfrEL54CeaG69b1yvSe8EkKbpf_OfI4/view (accessed on 12 March 2021).
- Yang, X.; Haas, K.A.; Fritz, H.M. Evaluating the potential for energy extraction from turbines in the gulf stream system. Renew. Energy 2014, 72, 12–121. [Google Scholar] [CrossRef] [Green Version]
- Bahamas Petroleum Company (BPC). The Bahamas. Summary Information. 2021. Available online: https://www.bpcplc.com/operations/bahamas/ (accessed on 8 March 2021).
- Bahamas Petroleum Company (BPC). Environmental Impact Assessment for Exploratory Drilling in the Cooper Block, Offshore The Bahamas. 2020. Available online: https://www.depp.gov.bs/wp-content/uploads/2020/03/BPC-Perseverance-Well-EIA-Final-Feb2020.pdf (accessed on 8 March 2021).
- Hartnell, N. Fisherman: ‘Risk Outweighs Rewards’ Over Oil Exploration. The Tribune. 29 September 2020. Available online: http://www.tribune242.com/news/2020/sep/29/fisherman-risk-outweighs-rewards-over-oil-explorat/ (accessed on 15 March 2021).
- Anyagiedwu, C.I.C.; Igbojionu, A.C.; Ohia, N.; Elagu, R.C. The role of advanced technologies in the remediation of oil-spilled environment: A decision-matrix approach. Nat. Environ. Pollut. Technol. 2019, 18, 125–132. [Google Scholar]
- Chun, J.; Oh, J.; Kim, C. Oil spill response policies to bridge the perception gap between the Government and the public: A social big data analysis. J. Mar. Sci. Eng. 2020, 8, 335. [Google Scholar] [CrossRef]
- Torre-Castro, M. Inclusive management through gender consideration in small-scale fisheries: The why and the how. Front. Mar. Sci. 2019, 6, 156. [Google Scholar] [CrossRef]
- Heslop, E.; Tintoré, J.; Rotllan, P.; Álvarez-Berastegui, D.; Fontera, B.; Mourre, B.; Gómez-Pujol, L.; March, D.; Casas, B.; Nolan, G.; et al. SOCIB integrated multi-platform ocean observing and forecasting: From ocean data to sector-focused delivery of products and services. J. Oper. Oceanogr. 2019, 12, S67–S79. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, B.A.; Hoeberechts, M.; Maxwell, K.H.; Eerkes-Medrano, L.; Hilmi, N.; Safa, A.; Horbel, C.; Juniper, S.K.; Roughan, M.; Theux Lowen, N.; et al. The importance of connected ocean monitoring knowledge systems and communities. Front. Mar. Sci. 2019, 6, 309. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.; Murawski, J. Developing community marine data service for Blue Growth sectors. J. Oper. Oceanogr. 2019, 12, S80–S96. [Google Scholar] [CrossRef] [Green Version]
- Rayner, R.; Gouldman, C.; Willis, Z. The ocean enterprise—Understanding and quantifying business activity in support of observing, measuring and forecasting the ocean. J. Oper. Oceanogr. 2019, 12, S97–S110. [Google Scholar] [CrossRef]
- Rayner, R.; Jolly, C.; Gouldman, C. Ocean observing and the blue economy. Front. Mar. Sci. 2019, 6, 330. [Google Scholar] [CrossRef]
- Komul, B.; Mattone, C.; Sheaves, M. Barriers to effective monitoring and evaluation of small-scale fisheries in small island developing states: An example from Mauritius. Mar. Policy 2020, 118, 103845. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X.; Gill, E.W. Ocean wind and wave measurements using X-Band marine radar: A comprehensive review. Remote Sens. 2017, 9, 1261. [Google Scholar] [CrossRef] [Green Version]
- Novi, L.; Raffa, F.; Serafino, F. Comparison of measured surface currents from high frequency (HF) and X-Band radar in a marine protected coastal area of the Ligurian Sea: Toward an integrated monitoring system. Remote Sens. 2020, 12, 3074. [Google Scholar] [CrossRef]
- Cheng, H.; Chien, H. Implementation of S-band marine radar for surface wave measurement under precipitation. Remote Sens. Environ. 2017, 188, 85–94. [Google Scholar] [CrossRef]
- Roarty, H.; Cook, T.; Hazard, L.; George, D.; Harlan, J.; Cosoli, S.; Wyatt, L.; Alvarez Fanjul, E.; Terrill, E.; Otero, M.; et al. The global high frequency radar network. Front. Mar. Sci. 2019, 6, 164. [Google Scholar] [CrossRef]
Resource Type | Unit | Study Range (years) | Maximum | Minimum | Citation |
---|---|---|---|---|---|
Wind | W/m2 | 31 | 300 | 200 | Chadee and Clarke [70] |
Waves | kW/m | 30 | 15 | 2 | Guillou and Chapalain [71] |
Thermal * | kW/m2 | 1000 | 250 | 200 | Rajagopalan and Nihous [72] |
Salinity | Wm3/s | 114 | 0 | 0 | Alvarez-Silva et al. [73] |
Tidal ** | m/s2 | - | 0 | 0 | Roberts et al. [68] |
Currents | kW/m2 | 2 | 2 | 0.5 | Bane et al. [74] |
ID | Owner | Latitude (°N) | Longitude (°W) | Anemometer Elevation (m) | Water Depth (m) | Distance to Land (km) |
---|---|---|---|---|---|---|
SPGF1 | NDBC | 26.704 | 78.995 | 6.6 | - | N/A |
41010 | NDBC | 28.878 | 78.485 | 4.1 | 890 | 243 |
41047 | NDBC | 27.514 | 71.484 | 4.1 | 5321 | 562 |
41043 | NDBC | 21.030 | 64.790 | 3.8 | 5262 | 870 |
41046 | NDBC | 23.822 | 68.384 | 3.8 | 5549 | 475 |
78059 | BDM | 26.41 | 78.59 | 10 | - | - |
78062 | BDM | 26.55 | 78.70 | Unknown | - | - |
78072 | BDM | 25.04 | 77.18 | 10 | - | - |
78073 | BDM | 25.05 | 77.47 | Unknown | - | - |
78075 | BDM | 25.29 | 76.40 | 5 | - | - |
78080 | BDM | 24.45 | 76.09 | 10 | - | - |
78089 | BDM | 24.04 | 74.31 | 10 | - | - |
78091 | BDM | 23.33 | 75.52 | 10 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bethel, B.J.; Buravleva, Y.; Tang, D. Blue Economy and Blue Activities: Opportunities, Challenges, and Recommendations for The Bahamas. Water 2021, 13, 1399. https://doi.org/10.3390/w13101399
Bethel BJ, Buravleva Y, Tang D. Blue Economy and Blue Activities: Opportunities, Challenges, and Recommendations for The Bahamas. Water. 2021; 13(10):1399. https://doi.org/10.3390/w13101399
Chicago/Turabian StyleBethel, Brandon J., Yana Buravleva, and Decai Tang. 2021. "Blue Economy and Blue Activities: Opportunities, Challenges, and Recommendations for The Bahamas" Water 13, no. 10: 1399. https://doi.org/10.3390/w13101399
APA StyleBethel, B. J., Buravleva, Y., & Tang, D. (2021). Blue Economy and Blue Activities: Opportunities, Challenges, and Recommendations for The Bahamas. Water, 13(10), 1399. https://doi.org/10.3390/w13101399