Identification of Extreme Weather Events Using Meteorological and Hydrological Indicators in the Laborec River Catchment, Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.3. Trend Analysis
3. Results
3.1. Precipitations and Flows in 1970–2019
3.2. Analysis of the Dry and Wet Periods Using the SPI and SRI
3.3. Comparison of Drought Classes Based on the SPI and SRI
3.4. Relations between Meteorological and Hydrological Droughts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blauhut, V.; Gudmundsson, L.; Stahl, K. Towards pan-European drought risk maps: Quantifying the link between drought indices and reported drought impacts. Environ. Res. Lett. 2015, 10, 1–10. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Machula, S. Influence of climate changes on the state of water resources in Poland and their usage. Geosciences 2020, 10, 312. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Chodkowska-Miszczuk, J.; Rogatka, K. Integration or disintegration of the ecological and urban functions of the river in the city? A Polish perspective. Transylv. Rev. Adm. Sci. 2017, 52, 59–76. [Google Scholar] [CrossRef]
- EEA. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/direct-losses-from-weather-disasters-4/assessment (accessed on 15 March 2021).
- IPCC (Intergovernmental Panel for Climatic Change). Working Group II: Impacts, Adaptation and Vulnerability. Extreme High Temperature and Precipitation Events. 2012. Available online: http://www.ipcc.ch/ipccreports/tar/wg2/index.php?idp=625 (accessed on 15 May 2015).
- Dikici, M. Drought analysis with different indices for the Asi Basin (Turkey). Sci. Rep. 2020, 10, 20739. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K. Variability of air temperature, precipitation and outflows in the Vistula Basin (Poland). Resources 2020, 9, 103. [Google Scholar] [CrossRef]
- Bąk, B.; Kubiak-Wójcicka, K. Assessment of meteorological and hydrological drought in Torun (central Poland town) in 1971–2010 based on standardized indicators. In Proceedings of Water Resources and Wetlands, 3rd International Conference, 2016; pp. 164–170. Available online: http://www.limnology.ro/wrw2016/proceedings/22_Bak_Kubiak.pdf (accessed on 10 November 2020).
- Zhou, J.; Li, Q.; Wang, L.; Lei, L.; Huang, M.; Xiang, J.; Feng, W.; Zhao, Y.; Xue, D.; Liu, C.; et al. Impact of climate change and land-use on the propagation from meteorological drought to hydrological drought in the Eastern Qilian Mountains. Water 2019, 11, 1602. [Google Scholar] [CrossRef] [Green Version]
- Kobrossi, J.; Karam, F.; Mitri, G. Rain pattern analysis using the Standardized Precipitation Index for long-term drought characterization in Lebanon. Arab. J. Geosci. 2021, 14, 44. Available online: https://doi.org/10.1007/s12517-020-06387-3 (accessed on 20 April 2021). [CrossRef]
- Zeleňáková, M.; Purcz, P.; Blišťan, P.; Vranayová, Z.; Hlavatá, H.; Diaconu, D.C.; Portela, M.M. Trends in Precipitation and Temperatures in Eastern Slovakia (1962–2014). Water 2018, 10, 727. [Google Scholar] [CrossRef] [Green Version]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Drought and climatic change impact on streamflow in small watersheds. Sci. Total Environ. 2012, 440, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Barker, L.J.; Hannaford, J.; Chiverton, A.; Svensson, C. From meteorological to hydrological drought using standardised indicators. HESS 2016, 20, 2483–2505. [Google Scholar] [CrossRef] [Green Version]
- Kubiak-Wójcicka, K.; Bąk, B. Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environ. Monit. Assess. 2018, 190, 691. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, R.N.; Dutta, D.; Khanna, M.; Kumar, N.; Bandyopadhyay, S.K. Drought assessment in the Dhar and Mewat Districs of India using meteorological and remote-sensing derived indices. Nat. Hazards 2015, 77, 733–751. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, J.; Fang, J. Robust response of streamflow drought to different timescales of meteorological drought in Xiangjiang River basin of China. Adv. Meteorol. 2016, 1634787. [Google Scholar] [CrossRef] [Green Version]
- Sutanto, S.J.; Wetterhall, F.; Van Lannen, H.A.J. Hydrological drought forecasts outperform meteorological drought Forecasts. Environ. Res. Lett. 2020, 15, 084010. [Google Scholar] [CrossRef]
- Koffi, B.; Kouadio, Z.A.; Kouassi, K.H.; Yao, A.B.; Sanchez, M.; Kouassi, K.L. Impact of meteorological drought on streamflows in the Lobo River catchment at Nibéhibé, Côte d’Ivoire. JWARP 2020, 12, 495–511. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Drought Characterisation Based on Water Surplus Variability Index. Water Resour. Manage. 2014, 28, 3179–3191. [Google Scholar] [CrossRef]
- Vasiliades, L.; Loukas, A. Hydrological response to meteorological drought using the Palmer drought indices in Thessaly, Greece. Desalination 2009, 237, 3–21. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, V.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Zeleňáková, M.; Jothiprakash, V.; Arjun, S.; Káposztásová, D.; Hlavatá, H. Dynamic Analysis of Meteorological Parameters in Košice Climatic Station in Slovakia. Water 2018, 10, 702. [Google Scholar] [CrossRef] [Green Version]
- Jain, K.V.; Pandey, P.R.; Jain, M.K.; Byun, H.-R. Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather Clim. Extremes 2015, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bae, H.; Ji, H.; Lim, Y.-L.; Ryu, Y.; Kim, M.-H.; Kim, B.-J. Characteristics of drought propagation in South Korea: Relationship between meteorological, agricultural, and hydrological droughts. Nat. Hazards 2019, 99, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Xu, J.; Wang, C.; Chen, Z.; Luo, Y. Modeling the multiple time scale response of hydrological drought to climate change in the data-scarce inland river basin of Northwest China. Arab. J. Geosci. 2019, 12, 225. [Google Scholar] [CrossRef]
- Croitoru, A.E.; Minea, I. The impact of climate changes on rivers discharge in Eastern Romania. Theor. Appl. Climatol. 2015, 120, 563–573. [Google Scholar] [CrossRef]
- Zeleňáková, M.; Vido, J.; Portela, M.C.A.S.; Purcz, P.; Blišt’an, P.; Hlavatá, H.; Hluštík, P. Precipitation trends over Slovakia in the Period 1981–2013. Water 2017, 9, 922. [Google Scholar] [CrossRef] [Green Version]
- Vido, J.; Tadesse, T.; Šustek, Z.; Kandrík, R.; Hanzelová, M.; Škvarenina, J.; Škvareninová, J.; Hayes, M. Drought Occurrence in Central European Mountainous Region (Tatra National Park, Slovakia) within the Period 1961–2010. Adv. Meteorol. 2015, 248728. [Google Scholar] [CrossRef] [Green Version]
- Fendeková, M.; Gauster, T.; Labudová, L.; Vrablíková, D.; Danáčová, Z.; Fendek, M.; Pekárová, P. Analysing 21st century meteorological and hydrological drought events in Slovakia. J. Hydrol. Hydromech. 2018, 66, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Kubiak-Wójcicka, K.; Zeleňáková, M.; Purcz, P.; Simonová, D. The use of a Standardized Runoff Indicator for hydrological characterization of selected rivers of Poland and Slovakia. Middle Pomeranian Sci. Soc. Environ. Prot. 2019, 21, 167–183. Available online: http://ros.edu.pl/images/roczniki/2019/010_ROS_V21_R2019.pdf (accessed on 15 January 2021).
- Nagy, P.; Zelenakova, M.; Kapostasova, D.; Hlavata, H.; Simonova, D. Identification of dry and wet years in eastern Slovakia using indicies. IOP Conf. Ser. Earth Environ. Sci. 2020, 444, 012041. [Google Scholar] [CrossRef] [Green Version]
- Qi, P.; Xu, Y.J.; Wang, G. Quantifying the individual contributions of climate change, dam construction, and Land Use/Land Cover change to hydrological drought in a Marshy River. Sustainability 2020, 12, 3777. [Google Scholar] [CrossRef]
- Kaya, Y.Z.; Zelenakova, M.; Üneş, F.; Demirci, M.; Hlavata, H.; Mesaros, P. Estimation of daily evapotranspiration in Košice City (Slovakia) using several soft computing techniques. Theor. Appl. Climatol. 2021, 144, 287–298. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. Drought monitoring with multiple time scales. In Proceedings of the 9th Conference of Applied Climatology, Dallas, TX, USA, 15–20 January 1995; pp. 233–236. [Google Scholar]
- Ndehedehe, C.E.; Agutu, N.O.; Ferreira, V.G.; Getirana, A. Evolutionary drought patterns over the Sahel and their teleconnections with low frequency climate oscillations. Atmos. Res. 2021, 233, 104700. [Google Scholar] [CrossRef] [Green Version]
- Bazrafshan, O.; Zamani, H.; Shekari, M. A copula-based index for drought analysis in arid and semi-arid regions of Iran. Nat. Res. Model. 2020, 33, e12237. [Google Scholar] [CrossRef]
- Mohammad, A.H.; Jung, H.C.; Odeh, T.; Bhuiyan, C. Understanding the impact of droughts in the Yarmouk Basin, Jordan: Monitoring droughts through meteorological and hydrological drought indices. Arab. J. Geosci. 2018, 11, 103. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Wood, W. Use of a standardised runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef] [Green Version]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manage. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Tabari, H.; Nikbathk, J.; Talaee, P.H. Hydrological Drought Assessment in Northwestern Iran Based on Streamflow Drought Index (SDI). Water Resour. Manage. 2013, 27, 137–151. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A. Quantifying Climate and Catchment Control on Hydrological Drought in the Continental United States. Water Res. Res. 2020, 56, e2018WR024620. [Google Scholar] [CrossRef]
- Leščešen, I.; Dolinaj, D.; Pantelić, M.; Telbisz, T.; Varg, G. Hydrological drought assessment of the Tisza river. J. Geogr. Inst. Cvijic. 2020, 70, 89–100. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K. Dynamics of meteorological and hydrological droughts in the agricultural catchments. Res. Rural Dev. Water Manage. 2019, 1, 111–117. [Google Scholar] [CrossRef]
- Bąk, B.; Kubiak-Wójcicka, K. Impact of meteorological drought on hydrological drought in Toruń (central Poland) in the period of 1971–2015. J. Water Land Dev. 2017, 32, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Theil, H. A rank-invariant method of linear and poly-nomial regression analysis. Ned. Acad. Wet. Proces. 1950, 53, 386–392, 521–525, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Hannaford, J.; Buys, G.; Stahl, K.; Tallaksen, L.M. The influence of decadal-scale variability on trends in long European streamflow records. Hydrol. Earth Syst. Sci. 2013, 17, 2717–2733. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; López-Moreno, J.I. Hydrological response to different time scales of climatological drought: An evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrol. Earth Syst. Sci. 2005, 9, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Fang, J.; Xu, W.; Shi, P. Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 377–387. [Google Scholar] [CrossRef]
- Salimi, H.; Asadi, E.; Darbandi, S. Meteorological and hydrological drought monitoring using several drought indices. Appl. Water Sci. 2021, 11, 11. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K. The course of hydrological droughts in the river Drawa catchment (northern Poland) as characterized by the Standardized Runoff Index. In AIP Conference Proceedings, Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2019 (ICCMSE-2019), Rhodes, Greece, 1–5 May 2019; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2186, p. 120004. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Juśkiewicz, W. Relationships between meteorological and hydrological drought in a young-glacial zone based on Standardised Precipitations Index (SPI) and Standardised Runoff Index (SRI). Acta Montanistica Slovaca 2020, 25, 517–531. [Google Scholar] [CrossRef]
- Gumus, V.; Algin, H.M. Meteorological and hydrological drought analysis of the Seyhan-Ceyhan river basins, Turkey. Meteorol. Appl. 2017, 24, 62–73. [Google Scholar] [CrossRef]
- Ljubenkov, I.; Cindrić Kalin, K. Evaluation of drought using standardised precipitation and flow indices and their correlations on an example of Sinjsko polje. Gradevinar 2016, 2, 135–143. [Google Scholar] [CrossRef]
- Rimkus, E.; Stonevičius, E.; Korneev, V.; Kažys, J.; Valiuškevičius, G.; Pakhomau, A. Dynamics of meteorological and hydrological droughts in the Neman river basin. Environ. Res. Lett. 2013, 8, 045014. [Google Scholar] [CrossRef]
SPI, SRI Value | Category |
---|---|
SPI, SRI ≥ 2.0 | Extremely wet |
2.0 > SPI, SRI ≥ 1.5 | Severely wet |
1.5 > SPI, SRI ≥ 1.0 | Moderately wet |
1.0 > SPI, SRI > −1.0 | Normal |
−1.0 ≥ SPI, SRI > −1.5 | Moderately dry |
−1.5 ≥ SPI, SRI > −2.0 | Severely dry |
SPI, SRI ≤ −2.0 | Extremely dry |
Meteorological Station | Altitude, m a.s.l. | Average Annual Precipitation, mm | Precipitation Max, mm (year) | Precipitation Min, mm (year) |
---|---|---|---|---|
Medzilaborce | 326 | 858.8 | 1174.7 (2010) | 606.2 (2015) |
Kamenica | 178 | 734.6 | 1055.4 (2010) | 540.9 (2003) |
Michalovce | 115 | 637.1 | 943.9 (2010) | 424.2 (2015) |
Station | Trend, mm/10 Years | Mann–Kendall S Statistic | Normalized Test Z Statistic | Probability/Trend |
---|---|---|---|---|
Medzilaborce Kamenica Michalovce | 2.22 −1.39 10.34 | 166 91 217 | 1.380 0.753 1.807 | Non-significant Non-significant Non-significant |
Station | Trend, m3/s/10 Years | Mann–Kendall S Statistic | Normalized Test Z Statistic | Probability/Trend |
---|---|---|---|---|
Humenne Izkovce * | 0.79 2.95 | 287 222 | 2.392 2.162 | Significant Significant |
Parameters | SPI-1 | SPI-3 | SPI-6 | SPI-9 | SPI-12 |
---|---|---|---|---|---|
Medzilaborce | |||||
Number of wet months (SRI > 1.0) | 93 | 88 | 90 | 79 | 82 |
Number of dry months (SRI < −1.0) | 93 | 92 | 107 | 98 | 86 |
Index maximum value (month) | 2.95 (V 2010) | 3.22 (XII 1975) | 2.92 (IX 2010) | 2.95 (IX 2010) | 3.35 (IX 2010) |
Index minimum value (month) | −4.68 (III 1974) | −2.84 (VIII 1976) | −2.73 (V 1973) | −2.40 (IV 1974) | −2.63 (VIII 2015) |
Kamenica | |||||
Number of wet months (SRI > 1.0) | 83 | 99 | 94 | 96 | 96 |
Number of dry months (SRI < −1.0) | 93 | 91 | 98 | 86 | 93 |
Index maximum value (month) | 3.33 (V 2010) | 3.20 (XII 1975) | 3.01 (IX 2010) | 3.05 (IX 2010) | 3.40 (IX 2010) |
Index minimum value (month) | −3.93 (XI 2012) | −2.71 (XI 1987) | −2.72 (VII 2003) | −2.89 (VII 2003) | −2.40 (VI 2014) |
Michalovce | |||||
Number of wet months (SRI > 1.0) | 90 | 97 | 101 | 97 | 110 |
Number of dry months (SRI < −1.0) | 89 | 99 | 102 | 96 | 94 |
Index maximum value (month) | 2.55 (X 1974) | 2.70 (XII 1975) | 2.71 (VI 2010) | 3.40 (VI 2010) | 3.11 (IX 2010) |
Index minimum value (month) | −3.82 (XI 2012) | −2.74 (XI 1987) | −2.76 (V 1973) | −2.75 (XI 1987) | −2.71 (I, II 1987) |
Parameters | SRI-1 | SRI-3 | SRI-6 | SRI-9 | SRI-12 |
---|---|---|---|---|---|
Humenne | |||||
Number of wet months (SRI > 1.0) | 106 | 99 | 105 | 94 | 96 |
Number of dry months (SRI < −1.0) | 105 | 99 | 95 | 100 | 104 |
Index maximum value (month) | 3.12 (X 1974) | 2.81 (X 1974) | 2.70 (XI 1975) | 2.43 (II (1975) | 2.39 (XII 1975) |
Index minimum value (month) | −2.95 (XII 1987) | −3.38 (I 1987) | −2.89 (I 1987) | −2.66 (III 1984) | −2.43 (VI 1984) |
Izkovce * | |||||
Number of wet months (SRI > 1.0) | 87 | 87 | 87 | 82 | 78 |
Number of dry months (SRI < −1.0) | 78 | 74 | 74 | 86 | 96 |
Index maximum value (month) | 3.16 (VII 1980) | 3.04 (VIII 1980) | 3.05 (XI 1981) | 2.52 (XII 1981) | 2.30 (XII 2011) |
Index minimum value (month) | −3.11 (IX 2015) | −3.10 (X 2015) | −2.93 (I 2019) | −2.78 (IV 2019) | −2.83 (IV 2019) |
Index | Extremely Wet SPI > 2.0 | Severely Wet 2.0 > SPI > 1.5 | Moderately Wet 1.5 > SPI > 1.0 | Normal 1.0 > SPI > −1.0 | Moderately Dry −1.0 < SPI < −1.5 | Severely Dry −1.5 > SPI > −2.0 | Extremely Dry SPI < −2.0 |
---|---|---|---|---|---|---|---|
Medzilaborce | |||||||
SPI-1 | 1.17 | 4.17 | 10.17 | 68.67 | 9.17 | 4.00 | 2.67 |
SPI-3 | 2.83 | 4.00 | 7.83 | 70.00 | 8.83 | 4.00 | 2.50 |
SPI-6 | 3.17 | 3.17 | 8.83 | 67.00 | 11.83 | 4.83 | 1.17 |
SPI-9 | 4.00 | 2.17 | 7.00 | 70.33 | 9.17 | 5.50 | 1.83 |
SPI-12 | 4.50 | 2.67 | 6.67 | 71.67 | 7.83 | 4.83 | 1.83 |
Kamenica | |||||||
SPI-1 | 1.67 | 2.83 | 9.33 | 70.67 | 8.67 | 3.83 | 3.00 |
SPI-3 | 2.00 | 2.83 | 11.67 | 67.83 | 8.50 | 5.00 | 2.17 |
SPI-6 | 2.67 | 3.00 | 10.17 | 67.83 | 10.17 | 4.00 | 2.17 |
SPI-9 | 3.00 | 3.17 | 9.83 | 69.67 | 8.83 | 3.83 | 1.67 |
SPI-12 | 2.83 | 5.50 | 7.67 | 68.50 | 9.33 | 5.67 | 0.50 |
Michalovce | |||||||
SPI-1 | 1.17 | 5.00 | 8.83 | 70.17 | 7.83 | 4.33 | 2.67 |
SPI-3 | 1.17 | 4.83 | 10.17 | 67.33 | 10.33 | 4.00 | 2.17 |
SPI-6 | 1.83 | 4.33 | 10.67 | 65.83 | 10.00 | 4.67 | 2.67 |
SPI-9 | 1.50 | 4.33 | 10.33 | 67.83 | 9.17 | 3.83 | 3.00 |
SPI-12 | 2.00 | 5.17 | 11.17 | 65.67 | 9.33 | 4.17 | 2.50 |
Index | Extremely Wet SRI > 2.0 | Severely Wet 2.0 > SRI > 1.5 | Moderately Wet 1.5 > SRI > 1.0 | Normal 1.0 > SRI > −1.0 | Moderately Dry −1.0 < SRI < −1.5 | Severely Dry −1.5 > SRI > −2.0 | Extremely Dry SRI < −2.0 |
---|---|---|---|---|---|---|---|
Humenne | |||||||
SRI-1 | 2.17 | 4.00 | 11.50 | 64.83 | 11.00 | 5.33 | 1.17 |
SRI-3 | 1.67 | 4.50 | 10.33 | 67.00 | 8.83 | 6.33 | 1.33 |
SRI-6 | 1.67 | 3.50 | 12.33 | 66.67 | 9.17 | 3.83 | 2.83 |
SRI-9 | 2.33 | 4.17 | 9.17 | 67.67 | 9.67 | 5.17 | 1.83 |
SRI-12 | 1.83 | 5.50 | 8.67 | 66.67 | 9.83 | 6.33 | 1.17 |
Izkovce * | |||||||
SRI-1 | 2.22 | 4.26 | 9.63 | 69.44 | 9.15 | 3.70 | 2.59 |
SRI-3 | 1.67 | 4.28 | 10.22 | 70.07 | 6.88 | 3.72 | 3.16 |
SRI-6 | 0.93 | 4.49 | 11.03 | 69.53 | 6.36 | 3.74 | 3.93 |
SRI-9 | 1.69 | 4.32 | 9.59 | 67.86 | 8.65 | 5.45 | 2.44 |
SRI-12 | 1.52 | 4.73 | 8.71 | 66.86 | 10.61 | 4.73 | 2.44 |
Drought Index | XI | XII | I | II | III | IV | V | VI | VII | VIII | IX | X |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SPI-1 vs. SRI-1 SPI-3 vs. SRI-1 SPI-6 vs. SRI-1 SPI-9 vs. SRI-1 SPI-12 vs. SRI-1 | 0.62 0.81 0.71 0.68 0.61 | 0.50 0.47 0.50 0.57 0.52 | 0.28 0.54 0.50 0.51 0.48 | 0.25 0.33 0.17 −0.11 −0.05 | 0.50 0.39 0.52 0.52 0.40 | 0.38 0.45 0.39 0.42 0.20 | 0.63 0.69 0.40 0.29 0.17 | 0.51 0.71 0.38 0.23 0.20 | 0.69 0.77 0.71 0.54 0.42 | 0.58 0.73 0.77 0.64 0.57 | 0.68 0.58 0.57 0.54 0.43 | 0.72 0.77 0.74 0.64 0.50 |
SPI-1 vs. SRI-3 SPI-3 vs. SRI-3 SPI-6 vs. SRI-3 SPI-9 vs. SRI-3 SPI-12 vs. SRI-3 | 0.33 0.80 0.75 0.73 0.62 | 0.28 0.68 0.76 0.78 0.71 | 0.00 0.49 0.68 0.69 0.66 | 0.06 0.50 0.46 0.36 0.42 | 0.28 0.56 0.69 0.59 0.49 | 0.29 0.55 0.67 0.56 0.34 | 0.19 0.60 0.57 0.56 0.44 | 0.10 0.60 0.51 0.40 0.22 | 0.31 0.63 0.59 0.42 0.30 | 0.24 0.69 0.71 0.57 0.46 | 0.21 0.77 0.80 0.69 0.53 | 0.34 0.72 0.80 0.78 0.67 |
SPI-1 vs. SRI-6 SPI-3 vs. SRI-6 SPI-6 vs. SRI-6 SPI-9 vs. SRI-6 SPI-12 vs. SRI-6 | 0.22 0.50 0.84 0.83 0.67 | 0.25 0.48 0.82 0.86 0.77 | −0.06 0.37 0.74 0.79 0.75 | 0.06 0.29 0.70 0.66 0.66 | 0.18 0.25 0.72 0.80 0.77 | 0.24 0.42 0.71 0.80 0.77 | 0.01 0.45 0.68 0.72 0.60 | 0.15 0.43 0.70 0.70 0.53 | 0.19 0.36 0.58 0.60 0.51 | 0.19 0.36 0.58 0.60 0.51 | 0.11 0.37 0.63 0.58 0.48 | 0.13 0.38 0.70 0.72 0.60 |
SPI-1 vs. SRI-9 SPI-3 vs. SRI-9 SPI-6 vs. SRI-9 SPI-9 vs. SRI-9 SPI-12 vs. SRI-9 | 0.24 0.20 0.47 0.64 0.64 | 0.25 0.32 0.57 0.75 0.71 | −0.01 0.33 0.60 0.80 0.78 | −0.01 0.26 0.59 0.77 0.78 | 0.11 0.17 0.57 0.84 0.83 | 0.24 0.35 0.59 0.77 0.78 | −0.08 0.20 0.22 0.28 0.52 | 0.22 0.32 0.45 0.75 0.75 | 0.20 0.32 0.52 0.66 0.71 | 0.20 0.35 0.54 0.70 0.64 | 0.04 0.28 0.51 0.63 0.64 | −0.14 0.14 0.40 0.57 0.59 |
SPI-1 vs. SRI-12 SPI-3 vs. SRI-12 SPI-6 vs. SRI-12 SPI-9 vs. SRI-12 SPI-12 vs. SRI-12 | 0.18 0.08 0.41 0.58 0.70 | 0.25 0.29 0.49 0.67 0.74 | −0.01 0.42 0.48 0.63 0.73 | −0.04 0.31 0.41 0.57 0.72 | 0.14 0.19 0.48 0.70 0.81 | 0.17 0.24 0.49 0.69 0.83 | −0.08 0.20 0.22 0.28 0.52 | 0.29 0.30 0.37 0.63 0.81 | 0.20 0.28 0.45 0.57 0.73 | 0.21 0.39 0.49 0.60 0.70 | −0.12 0.23 0.41 0.47 0.67 | −0.18 0.02 0.31 0.46 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak-Wójcicka, K.; Nagy, P.; Zeleňáková, M.; Hlavatá, H.; Abd-Elhamid, H.F. Identification of Extreme Weather Events Using Meteorological and Hydrological Indicators in the Laborec River Catchment, Slovakia. Water 2021, 13, 1413. https://doi.org/10.3390/w13101413
Kubiak-Wójcicka K, Nagy P, Zeleňáková M, Hlavatá H, Abd-Elhamid HF. Identification of Extreme Weather Events Using Meteorological and Hydrological Indicators in the Laborec River Catchment, Slovakia. Water. 2021; 13(10):1413. https://doi.org/10.3390/w13101413
Chicago/Turabian StyleKubiak-Wójcicka, Katarzyna, Patrik Nagy, Martina Zeleňáková, Helena Hlavatá, and Hany F. Abd-Elhamid. 2021. "Identification of Extreme Weather Events Using Meteorological and Hydrological Indicators in the Laborec River Catchment, Slovakia" Water 13, no. 10: 1413. https://doi.org/10.3390/w13101413
APA StyleKubiak-Wójcicka, K., Nagy, P., Zeleňáková, M., Hlavatá, H., & Abd-Elhamid, H. F. (2021). Identification of Extreme Weather Events Using Meteorological and Hydrological Indicators in the Laborec River Catchment, Slovakia. Water, 13(10), 1413. https://doi.org/10.3390/w13101413