Assessment of the Environmental Impact of Acid Mine Drainage on Surface Water, Stream Sediments, and Macrophytes Using a Battery of Chemical and Ecotoxicological Indicators
Abstract
:1. Introduction
- (1)
- It starts with the production of free Fe(II) ion, sulfate (SO42−), and hydrogen (H+) ions:
- (2)
- The products of this reaction remain in solution, but, if the environment is sufficiently oxidizing, the Fe(II) ion is transformed into the Fe(III) ion:
- (3)
- The Fe(III) ion precipitates as a hydroxide, very insoluble, leaving very little ion in solution:Fe3+ + 3 H2O → Fe(OH)3 (s) + 3 H+
- (4)
- These reactions can be represented as one reaction, which explains the production of acidity and the Fe oxyhydroxide precipitate in the riverbanks, which has a very characteristic ochreous color (“yellow boy”, [16]):
- (5)
- The Fe(III) ion that remains in solution has the capacity to oxidize more pyrite, simultaneously producing more hydrogen ions that contribute to increase the acidity of the medium:FeS2 + 14 Fe3+ + 8 H2O → 15 Fe2+ + 2 SO42− + 16 H+
“(…) neither the water from Água Forte stream nor Roxo stream, after its confluence, are usable for agriculture, because they are contaminated by the drainage waters of the Aljustrel cupriferous pyrite mine, poisoned by salts of iron, copper, arsenic, and whose unfortunate influence is exerted until the Sado river, preventing fish farming and destroying the vegetation of the banks.”
- (i)
- the dilution with fresh waters, lowering the metals concentrations and neutralizing the acidity and
- (ii)
- the reduced solubility of most trace elements, removed them from solution by a co-precipitation or adsorption to the Fe and aluminium (Al) precipitates [18].
- (i)
- the removal of pyrite deposits, mining waste, and contaminated soil dispersed in the mining areas and their confinement in Algares;
- (ii)
- the superficial sealing of the deposits created with clay and vegetal soil;
- (iii)
- the construction of channels on the slopes and banks to collect/deviate the non-contaminated surface waters and reduce the volume of acidic waters produced; and
- (iv)
- planting artificial riparian zones to treat the residual contamination of the waters from the mine area.
- (i)
- to assess the pollution load at the Água Forte and Roxo streams, potentially affected by the AMD from the Aljustrel mining area, considering the water physicochemical parameters;
- (ii)
- to assess the ecotoxicity of these streams to the aquatic species Vibrio fischeri and Daphnia magna;
- (iii)
- to evaluate the physicochemical characteristics of the sediments collected in the same sampling sites;
- (iv)
- to assess the As, Cu, Pb, and Zn total concentrations and partitioning in the sediments, using a sequential extraction procedure; and
- (v)
- to analyze the behavior of the most abundant macrophyte, Scirpus holoschoenus L., collected along the stream banks, regarding the trace element bioaccumulation.
2. Materials and Methods
2.1. Study Area and Characterization of the Sampling Sites
2.2. Water Physicochemical Characterization
2.3. Water Ecotoxicological Characterization
2.4. Sediment Physicochemical Characterization and Risk Analysis
2.5. Trace Element Concentrations in Scirpus holoschoenus L.
2.6. Quality Control
2.7. Statistical Analysis
3. Results and Discussion
3.1. Water Physicochemical Characterization
3.2. Water Ecotoxicological Characterization
3.3. Sediment Physicochemical Characterization and Risk Analysis
3.4. Trace Element Concentrations in Scirpus holoschoenus L.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matos, J.X.; Martins, L.P. Reabilitação ambiental de áreas mineiras do sector português da Faixa Piritosa Ibérica: Estado da arte e perspetivas futuras. Boletín Geológico Minero 2006, 117, 289–304. [Google Scholar]
- Alvarenga, P.M.; Araújo, M.F.; Silva, J.A.L. Elemental uptake and root-leaves transfer in Cistus Ladanifer L. growing in a contaminated pyrite mining area (Aljustrel-Portugal). Water Air Soil Pollut. 2004, 152, 81–96. [Google Scholar] [CrossRef]
- Maia, F.; Pinto, C.; Waerenborgh, J.C.; Gonçalves, M.A.; Prazeres, C.; Carreira, O.; Sério, S. Metal partitioning in sediments and mineralogical controls on the acid mine drainage in Ribeira da Água Forte (Aljustrel, Iberian Pyrite Belt, Southern Portugal). Appl. Geochem. 2012, 27, 1063–1080. [Google Scholar] [CrossRef]
- Silva, T.P.; Matos, J.X.; Oliveira, D.D.; Veiga, J.P.; Morais, I.; Gonçalves, P.; Albardeiro, L. Mineral inventory of the Algares 30-level adit, Aljustrel Mine, Iberian Pyrite Belt, Portugal. Minerals 2020, 10, 853. [Google Scholar] [CrossRef]
- Schermerhorn, L.J.G.; Zbyszewski, G.; Veiga Ferreira, O. Notícia Explicativa da Folha 42-D Aljustrel; Serviços Geológicos de Portugal: Lisboa, Portugal, 1987. (In Portuguese) [Google Scholar]
- Andrade, R.F. Jazigo de Pirite de Aljustrel, Sua Descoberta, Situação Actual e Possibilidade Futura; Separata; Arquivo de Beja: Beja, Portugal, 1971. (In Portuguese) [Google Scholar]
- Lobato, Pe. J.R. Aljustrel—Monografia; Edição da Câmara Municipal de Aljustrel: Aljustrel, Portugal, 1983; pp. 317–330. [Google Scholar]
- Alvarenga, P.M.L.F. Estudo da Transferência de Metais no Sistema Solo-Planta na Zona Mineira de Aljustrel Aplicados à Esteva (Cistus ladanifer L.). Master Thesis, Universidade de Évora, Évora, Portugal, 1997. (In Portuguese). Available online: http://hdl.handle.net/10174/13144 (accessed on 7 March 2020).
- Luís, A.T.; Teixeira, P.; Almeida, S.F.P.; Ector, L.; Matos, J.X.; Ferreira da Silva, E.A. Impact of Acid Mine Drainage (AMD) on Water Quality, Stream Sediments and Periphytic Diatom Communities in the Surrounding Streams of Aljustrel Mining Area (Portugal). Water Air Soil Pollut. 2009, 200, 147–167. [Google Scholar] [CrossRef]
- Pérez-López, R.; Álvarez-Valero, A.M.; Nieto, J.M.; Sáez, R.; Matos, J.X. Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt). Appl. Geochem. 2008, 23, 3452–3463. [Google Scholar] [CrossRef]
- Sengupta, M. Environmental Impacts of Mining Monitoring, Restoration, and Control; Lewis Publishers: London, UK, 1993; ISBN 9780367579890. [Google Scholar]
- Salomons, W.; Förstner, U. Metals in the Hydrocycle; Springer-Verlag: Berlin/Heidelberg, Germany, 1984; ISBN 978-3-642-69325-0. [Google Scholar]
- Evangelou, V.P.; Zhang, Y.L. A review: Pyrite oxidation mechanisms and acid mine drainage prevention. Crit. Rev. Environ. Sci. Technol. 1995, 25, 141–199. [Google Scholar] [CrossRef]
- Pérez-López, R.; Nieto, J.M.; de Almodóvar, G.R. Immobilization of toxic elements in mine residues derived from mining activities in the Iberian Pyrite Belt (SW Spain): Laboratory experiments. Appl. Geochem. 2007, 22, 1919–1935. [Google Scholar] [CrossRef]
- Hubbard, C.G.; Black, S.; Coleman, M.L. Aqueous geochemistry and oxygen isotope compositions of acid mine drainage from the Río Tinto, SW Spain, highlight inconsistencies in current models. Chem. Geol. 2009, 265, 321–334. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Sánchez España, J.; López Pamo, E.; Santofimia, E.; Aduvire, O.; Reyes, J.; Barettino, D. Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Appl. Geochem. 2005, 20, 1320–1356. [Google Scholar] [CrossRef]
- Da Silva, E.F; Patinha, C.; Reis, P.; Fonseca, E.C.; Matos, J.X.; Barrosinho, J.; Oliveira, J.M.S. Interaction of acid mine drainage with waters and sediments at the Corona stream, Lousal mine (Iberian Pyrite Belt, Southern Portugal). Environ. Geol. 2006, 50, 1001–1013. [Google Scholar] [CrossRef]
- Williamson, A.; Johnson, M.S. Reclamation of Metalliferous Mine Wastes. In Effect of Heavy Metal Pollution on Plants; (Pollution Monitorng Series); Metals in the Environment; Lepp, N.W., Ed.; Applied Science Publishers: Essex, UK, 1981; Volume 2. [Google Scholar]
- Andrade, R.F. Documentos Inéditos Para a História das Minas de Aljustrel no Século XIX; Separata; Arquivo de Beja: Beja, Portugal, 1967; Volume XXIII. (In Portuguese) [Google Scholar]
- Olías, M.; Cánovas, C.R.; Macías, F.; Basallote, M.D.; Nieto, J.M. The evolution of pollutant concentrations in a river severely affected by acid mine drainage: Río Tinto (SW Spain). Minerals 2020, 10, 598. [Google Scholar] [CrossRef]
- Luís, A.T.; Durães, N.; de Almeida, S.F.P.; da Silva, E.F. Integrating geochemical (surface waters, stream sediments) and biological (diatoms) approaches to assess AMD environmental impact in a pyritic mining area: Aljustrel (Alentejo, Portugal). J. Environ. Sci. 2016, 42, 215–226. [Google Scholar] [CrossRef]
- Luís, A.T.; Grande, J.A.; Davila, J.M.; Aroba, J.; Durães, N.; Almeida, S.F.P.; de la Torre, M.L.; Sarmiento, A.M.; Fortes, J.C.; da Silva, E.F.; et al. Application of fuzzy logic tools for the biogeochemical characterisation of (un)contaminated waters from Aljustrel mining area (South Portugal). Chemosphere 2018, 211, 736–744. [Google Scholar] [CrossRef]
- Durães, N.; Bobos, I.; da Silva, E.F. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal). Environ. Sci. Pollut. Res. 2017, 24, 4562–4576. [Google Scholar] [CrossRef]
- Ferreira da Silva, E.; Fonseca, E.C.; Matos, J.X.; Patinha, C.; Reis, P.; Santos Oliveira, J.M. The effect of unconfined mine tailings on the geochemistry of soils, sediments and surface waters of the Lousal area (Iberian Pyrite Belt, Southern Portugal). Land Degrad. Dev. 2005, 16, 213–228. [Google Scholar] [CrossRef]
- Luís, A.T.; Teixeira, P.; Almeida, S.F.P.; Matos, J.X.; da Silva, E.F. Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Sci. Total Environ. 2011, 409, 4312–4325. [Google Scholar] [CrossRef]
- Ferreira, R.A.; Pereira, M.F.; Magalhães, J.P.; Maurício, A.M.; Caçador, I.; Martins-Dias, S. Assessing local acid mine drainage impacts on natural regeneration-revegetation of São Domingos mine (Portugal) using a mineralogical, biochemical and textural approach. Sci. Total Environ. 2021, 755, 142825. [Google Scholar] [CrossRef]
- Galán, E.; Gómez-Ariza, J.L.; González, I.; Fernández-Caliani, J.C.; Morales, E.; Giráldez, I. Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl. Geochem. 2003, 18, 409–421. [Google Scholar] [CrossRef]
- Olías, M.; Cánovas, C.R.; Nieto, J.M.; Sarmiento, A.M. Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain). Appl. Geochem. 2006, 21, 1733–1749. [Google Scholar] [CrossRef]
- Sarmiento, A.M.; Nieto, J.M.; Olías, M.; Cánovas, C.R. Hydrochemical characteristics and seasonal influence on the pollution by acid mine drainage in the Odiel river Basin (SW Spain). Appl. Geochem. 2009, 24, 697–714. [Google Scholar] [CrossRef]
- Bonnail, E.; Sarmiento, A.M.; DelValls, T.Á. The use of a Weight-of-Evidence approach to address sediment quality in the Odiel River basin (SW, Spain). Ecotoxicol. Environ. Saf. 2016, 133, 243–251. [Google Scholar] [CrossRef]
- Grande, J.A.; Santisteban, M.; de la Torre, M.L.; Dávila, J.M.; Pérez-Ostalé, E. Map of impact by acid mine drainage in the river network of The Iberian Pyrite Belt (Sw Spain). Chemosphere 2018, 199, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Moreno González, R.; Cánovas, C.R.; Olías, M.; Macías, F. Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain). Environ. Pollut. 2020, 259, 113829. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento, A.M.; Grande, J.A.; Luís, A.T.; Dávila, J.M.; Fortes, J.C.; Santisteban, M.; Curiel, J.; de la Torre, M.L.; da Silva, E.F. Negative pH values in an open-air radical environment affected by acid mine drainage. Characterization and proposal of a hydrogeochemical model. Sci. Total Environ. 2018, 644, 1244–1253. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case. Life 2013, 3, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Casiot, C.; Egal, M.; Elbaz-Poulichet, F.; Bruneel, O.; Bancon-Montigny, C.; Cordier, M.-A.; Gomez, E.; Aliaume, C. Hydrological and geochemical control of metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous River, France); preliminary assessment of impacts on fish (Leuciscus cephalus). Appl. Geochem. 2009, 24, 787–799. [Google Scholar] [CrossRef]
- Cánovas, C.R.; Basallote, M.D.; Borrego, P.; Millán-Becerro, R.; Pérez-López, R. Metal partitioning and speciation in a mining-impacted estuary by traditional and passive sampling methods. Sci. Total Environ. 2020, 722, 137905. [Google Scholar] [CrossRef]
- Delgado, J.; Barba-Brioso, C.; Nieto, J.M.; Boski, T. Speciation and ecological risk of toxic elements in estuarine sediments affected by multiple anthropogenic contributions (Guadiana saltmarshes, SW Iberian Peninsula): I. Surficial sediments. Sci. Total Environ. 2011, 409, 3666–3679. [Google Scholar] [CrossRef]
- Reis, R.M.M.; Gonçalves, M.Z. Caracterização Climática da Região Agrícola do Alentejo. In O Clima de Portugal; INMG: Lisboa, Portugal, 1987; Volume XXXIV, 226p. (In Portuguese) [Google Scholar]
- APHA (America Public Health Association). Standard Methods for the Examination of Water and Wastewater, 23rd ed.; APHA: New York, NY, USA, 2017. [Google Scholar]
- International Organisation for Standardisation. 11348-2; Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test)—Part 2: Method Using Liquid-Dried Bacteria; International Organisation for Standardisation: Geneva, Switzerland, 2007. [Google Scholar]
- International Organisation for Standardisation. ISO 6341; Water Quality—Determination of the Inhibition of the Mobility of Daphnia magna Straus (Cladocera, Crustacea)—Acute Toxicity Test; International Organisation for Standardisation: Geneva, Switzerland, 2012. [Google Scholar]
- Walkley, A.; Black, J.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- International Organisation for Standardisation. ISO 11466; Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia; International Organisation for Standardisation: Geneva, Switzerland, 1995. [Google Scholar]
- MacDonald, D.; Ingersoll, C.; Berger, T. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sanchez, J.-F.; Sahuquillo, A.; Barahona, E.; Lachica, M.; Ure, A.M.; Davidson, C.M.; Gomez, A.; Lück, D.; Bacon, J.; et al. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year study of acetic acid and EDTA extractable metal content. J. Environ. Monitor. 2000, 2, 228–233. [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- StatSoft, Inc. STATISTICA 6.0-Data Analysis Software System; StatSoft: Tulsa, OK, USA, 2001. [Google Scholar]
- Systat Software, Inc. SigmaPlot 10.0-Exact Graphs and Data Analysis Software; Systat Software: San Jose, CA, USA, 2006. [Google Scholar]
- Alexandre, C.; Borralho, T.; Durão, A. Evaluation of salinization and sodification in irrigated areas with limited soil data: Case study in southern Portugal. Span. J. Soil Sci. 2018, 8, 102–120. Available online: https://sjss.es/index.php/sjss/article/view/2594/evaluation-salinization-sodification-irrigated-areas-limited-soil-data-case-study-southern-portugal (accessed on 7 January 2021). [CrossRef]
- CCME (Canadian Council of Ministers of the Environment). Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. 1999. Available online: https://ccme.ca/en/resources/sediment# (accessed on 6 April 2021).
- Otones, V.; Álvarez-Ayuso, E.; García-Sánchez, A.; Regina, I.S.; Murciego, A. Mobility and phytoavailability of arsenic in an abandoned mining area. Geoderma 2011, 166, 153–161. [Google Scholar] [CrossRef]
- Karathanasis, A.D.; Johnson, C.M. Metal removal potential by three aquatic plants in an acid mine drainage wetland. Mine Water Environ. 2003, 22, 22–30. [Google Scholar] [CrossRef]
- Borralho, T.; Gago, D.; Almeida, A. Study on the Application of Floating Beds of Macrophites (Vetiveria zizanioides and Phragmites australis) in Pilot Scale for the Removal of Heavy Metals from Água Forte Stream (Alentejo-Portugal). J. Ecol. Eng. 2020, 21, 153–163. [Google Scholar] [CrossRef]
Sites | pH | ECw (mS cm−1) | TDS (mg L−1) | TSS (mg L−1) | TC (mg L−1) | TOC (mg L−1) |
---|---|---|---|---|---|---|
1 | 2.20 ± 0.03 a | 8.59 ± 0.03 e | 14.010 ± 104 d | 80 ± 2 b | 18.4 ± 0.1 c | 17.8 ± 0.6 e |
2 | 2.96 ± 0.04 c | 2.15 ± 0.05 d | 1317 ± 15 c | 27 ± 15 a | 11.3 ± 0.7 b | 9.5 ± 0.2 d |
3 | 2.77 ± 0.04 b | 2.17 ± 0.06 d | 1414 ± 6 c | 18 ± 16 a | 4.0 ± 0.3 a | 3.3 ± 0.4 a |
4 | 7.86 ± 0.06 e | 0.89 ± 0.01 a | 493 ± 21 a | 9 ± 9 a | 11 ± 2 b | 7.7 ± 0.2 c |
5 | 7.98 ± 0.06 ef | 1.02 ± 0.01 b | 576 ± 6 a | 17 ± 1 a | 9.1 ± 0.4 b | 5.3 ± 0.3 b |
6 | 8.10 ± 0.06 f | 1.05 ± 0.01 b | 606 ± 12 a | 218 ± 26 c | 20.3 ± 0.8 c | 9.5 ± 0.1 d |
7 | 7.26 ± 0.06 d | 1.44 ± 0.01 c | 857 ± 23 b | 29 ± 5 a | 18.5 ± 0.2 c | 5.1 ± 0.1 b |
Sites | F− (mg L−1) | Cl− (mg L−1) | NO3− (mg L−1) | SO42− (mg L−1) | As (µg L−1) | Cu (mg L−1) | Pb (µg L−1) | Zn (mg L−1) |
---|---|---|---|---|---|---|---|---|
1 | 29 ± 5 c | 202 ± 11 a | 349 ± 20 d | 11.959 ± 1127 c | 2079 ± 110 b | 120 ± 4 c | 210 ± 10 | 421 ± 36 b |
2 | n.a. | 262 ± 11 c | 31 ± 7 bc | 1025 ± 163 ab | 24 ± 22 a | 0.61 ± 0.03 a | <DL | 8.2 ± 0.4 a |
3 | 8 ± 1 b | 194 ± 11 a | 36 ± 14 c | 1399 ± 221 b | 17 ± 5 a | 4.8 ± 0.2 b | <DL | 23.1 ± 0.2 a |
4 | 0.39 ± 0.02 a | 202.3 ± 0.6 a | 1.0 ± 0.3 a | 37.2 ± 0.3 a | 4 ± 1 a | <DL | <DL | 0.05 ± 0.03 a |
5 | 0.35 ± 0.02 a | 208 ± 9 ab | 6.3 ± 0.2 ab | 44.09 ± 0.03 a | 6.1 ± 0.4 a | <DL | <DL | 0.05 ± 0.02 a |
6 | 0.34 ± 0.02 a | 226 ± 2 b | 4.0 ± 0.4 ab | 46.3 ± 0.7 a | 37 ± 2 a | 0.069 ± 0.006 a | <DL | 0.16 ± 0.02 a |
7 | 0.37 ± 0.02 a | 304.2 ± 0.3 c | 14.9 ± 0.1 abc | 181.0 ± 0.6 ab | 8.7 ± 0.4 a | 0.029 ± 0.007 a | <DL | 0.72 ± 0.06 a |
Site | V. fischeri Luminescence Inhibition | D. magna Immobilization EC50 (48 h) (% v/v) | |
---|---|---|---|
EC20 (30 min) (% v/v) | EC50 (30 min) (% v/v) | ||
1 | <3.1 | <3.1 | <6.3 |
2 | 12.0 [8.9; 15.2] | 41.3 [38.1; 44.4] | 12.4 [10.0; 15.1] |
3 | 5.6 [5.0; 6.2] | 28.4 [27.8; 29.0] | < 6.3 |
4 | n.t. | n.t. | n.t. |
5 | n.t. | n.t. | n.t. |
6 | 27.0 [24.1; 29.9] | n.t. | n.t. |
7 | n.t. | n.t. | n.t. |
Sites | pH | OM (%) | NK (%) | As (mg kg−1) | Cu (mg kg−1) | Pb (mg kg−1) | Zn (mg kg−1) | Mean-PECq |
---|---|---|---|---|---|---|---|---|
1 | 3.32 ± 0.01 b | 24.4 ± 0.1 e | 0.8 ± 0.1 d | 661 ± 39 bc | 1746 ± 24 d | 539 ± 9 e | 1994 ± 132 d | 15.0 |
2 | 2.57 ± 0.09 a | 14.6 ± 0.1 c | 0.09 ± 0.01 a | 3335 ± 361 d | 652 ± 71 b | 411 ± 36 d | 350 ± 38 a | 51.3 |
3 | 3.29 ± 0.03 b | 6.8 ± 0.2 a | 0.10 ± 0.01 a | 1064 ± 138 c | 1093 ± 280 c | 259 ± 11 c | 674 ± 103 c | 18.3 |
4 | 7.30 ± 0.10 d | 16.7 ± 0.3 d | 0.41 ± 0.01 c | 30 ± 2 a | 28 ± 2 a | 25.9 ± 0.8 a | 411 ± 32 ab | 0.9 |
6 | 4.58 ± 0.10 c | 12.0 ± 0.1 b | 0.25 ± 0.01 b | 542 ± 48 b | 883 ± 51 bc | 160 ± 3 b | 572 ± 41 bc | 10.0 |
TEC | - | - | - | 5.9 | 35.7 | 35.0 | 123 | - |
PEC | - | - | - | 17 | 197 | 91.3 | 315 | - |
Element | Site | 1st Step | 2nd Step | 3rd Step | Total (mg kg−1) | |||
---|---|---|---|---|---|---|---|---|
(mg kg−1) | % of Total | (mg kg−1) | % of Total | (mg kg−1) | % of Total | |||
As | 1 | 2.6 ± 0.2 | 0.40 | 55 ± 4 | 8.36 | 3.5 ± 0.2 | 0.54 | 661 ± 39 |
2 | 0.36 ± 0.03 | 0.01 | 0.6 ± 0.1 | 0.02 | 1.9± 0.5 | 0.06 | 3335 ± 361 | |
3 | 1.9 ± 0.3 | 0.18 | 7 ± 2 | 0.67 | 0.20 ± 0.02 | 0.02 | 1064 ± 138 | |
4 | 0.213 ± 0.005 | 0.71 | 3.0 ± 0.4 | 9.88 | 1.4 ± 0.6 | 4.82 | 30 ± 2 | |
6 | 1.3 ± 0.2 | 0.24 | 7.2 ± 0.8 | 1.34 | 0.25 ± 0.08 | 0.04 | 542 ± 48 | |
Cu | 1 | 710 ± 12 | 40.7 | 215 ± 26 | 12.3 | 205 ± 31 | 11.8 | 1746 ± 24 |
2 | 21 ± 2 | 3.3 | 9 ± 2 | 1.4 | 5 ± 4 | 0.8 | 652 ± 71 | |
3 | 156 ± 20 | 14.2 | 219 ± 58 | 20.0 | 165 ± 82 | 15.1 | 1093 ± 280 | |
4 | <DL | _ | <DL | _ | 10 ± 1 | 34.7 | 28 ± 2 | |
6 | 98 ± 8 | 11.1 | 229 ± 14 | 26.0 | 26 ± 2 | 2.9 | 883 ± 51 | |
Pb | 1 | <DL | _ | 22.8 ± 1.0 | 4.2 | 10.4 ± 0.5 | 1.9 | 539.3 ± 9.1 |
2 | <DL | _ | 9.6 ± 0.7 | 2.3 | 9.9 ± 0.3 | 2.4 | 411.1 ± 36.2 | |
3 | <DL | _ | 19.4 ± 5.2 | 7.5 | 9.8 ± 0.3 | 3.8 | 259.3 ± 10.7 | |
4 | <DL | _ | 15.3 ± 0.7 | 59.1 | 14.8 ± 0.6 | 57.0 | 25.9 ± 0.1 | |
6 | <DL | _ | 53.4 ± 4.9 | 33.3 | 10.2 ± 0.2 | 6.4 | 160.5 ± 3.4 | |
Zn | 1 | 1961 ± 295 | 98 | 75 ± 3 | 4 | 145 ± 16 | 7 | 1994 ± 132 |
2 | 106 ± 6 | 30 | 5 ± 1 | 2 | 12 ± 3 | 3 | 350 ± 38 | |
3 | 344 ± 62 | 51 | 152 ± 32 | 23 | 154 ± 60 | 23 | 674 ± 103 | |
4 | 17 ± 1 | 4 | 203 ± 11 | 49 | 134 ± 3 | 33 | 411 ± 32 | |
6 | 132 ± 11 | 23 | 129 ± 12 | 22 | 114 ± 3 | 20 | 572 ± 41 |
BF (Cu) | BF (Zn) | |
---|---|---|
Mean | 0.04 | 0.15 |
Maximum | 0.11 | 0.26 |
Minimum | 0.02 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarenga, P.; Guerreiro, N.; Simões, I.; Imaginário, M.J.; Palma, P. Assessment of the Environmental Impact of Acid Mine Drainage on Surface Water, Stream Sediments, and Macrophytes Using a Battery of Chemical and Ecotoxicological Indicators. Water 2021, 13, 1436. https://doi.org/10.3390/w13101436
Alvarenga P, Guerreiro N, Simões I, Imaginário MJ, Palma P. Assessment of the Environmental Impact of Acid Mine Drainage on Surface Water, Stream Sediments, and Macrophytes Using a Battery of Chemical and Ecotoxicological Indicators. Water. 2021; 13(10):1436. https://doi.org/10.3390/w13101436
Chicago/Turabian StyleAlvarenga, Paula, Nádia Guerreiro, Isabel Simões, Maria José Imaginário, and Patrícia Palma. 2021. "Assessment of the Environmental Impact of Acid Mine Drainage on Surface Water, Stream Sediments, and Macrophytes Using a Battery of Chemical and Ecotoxicological Indicators" Water 13, no. 10: 1436. https://doi.org/10.3390/w13101436
APA StyleAlvarenga, P., Guerreiro, N., Simões, I., Imaginário, M. J., & Palma, P. (2021). Assessment of the Environmental Impact of Acid Mine Drainage on Surface Water, Stream Sediments, and Macrophytes Using a Battery of Chemical and Ecotoxicological Indicators. Water, 13(10), 1436. https://doi.org/10.3390/w13101436