Water Use Efficiencies of Different Maturity Group Soybean Cultivars in the Humid Mississippi Delta
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results and Discussion
4.1. Weather
4.2. Phenology
4.3. Leaf Area Index (LAI) of Cultivars
4.4. Cultivar Agronomic Performance
4.5. Water Use efficiency (WUE) of Cultivars
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participate
Consent for Publication
References
- USDA-FAS. World Agricultural Outlook. 2020. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/5q47rn72z/cr56ns297/00000r529/production.pdf (accessed on 2 February 2021).
- Smith, J.R.; Gillen, A.M.; Nelson, R.L.; Bruns, A.; Mengistu, A.; Li, S.; Bellaloui, N. Registration of High-Yielding Exotically Derived Soybean Germplasm Line LG03-4561-14. J. Plant Regist. 2019, 13, 237–244. [Google Scholar] [CrossRef]
- Frederick, J.R.; Camp, C.R.; Bauer, P.J. Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci. 2001, 41, 759–763. [Google Scholar] [CrossRef]
- Heatherly, L.G.; Elmore, R.W. Managing Inputs for Peak Production. In Soybeans: Improvement, Production and Uses; Boerma, H.R., Specht, E.J., Eds.; American Society of Agronomy: Madison, WI, USA, 2004; pp. 451–536. [Google Scholar]
- Anapalli, S.S.; Fisher, D.K.; Reddy, K.N.; Krutz, J.L.; Pinnamaneni, S.R.; Sui, R. Quantifying water and CO2 fluxes and water use efficiencies across irrigated C 3 and C 4 crops in a humid climate. Sci. Total Environ. 2019, 663, 338–350. [Google Scholar] [CrossRef]
- Kebede, H.; Fisher, D.K.; Sui, R.; Reddy, K.N. Irrigation Methods and Scheduling in the Delta Region of Mississippi: Current Status and Strategies to Improve Irrigation Efficiency. Am. J. Plant Sci. 2014, 5, 2917–2928. [Google Scholar] [CrossRef] [Green Version]
- Casson, S.A.; Cushman, J.C.; Yoo, C.Y.; Hatfield, J.L.; Dold, C. Water-Use Efficiency: Advances and Challenges in a Changing Climate. Front. Plant Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Blum, A. Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Specht, J.E.; Williams, J.H.; Weidenbenner, C.J. Differential responses of soybean genotypes subjected to a seasonal soil water gradient 1. Crop Sci. 1986, 26, 922–934. [Google Scholar] [CrossRef]
- Specht, J.E.; Hume, D.J.; Kumudini, S. V Soybean yield potential—A genetic and physiological perspective. Crop Sci. 1999, 39, 1560–1570. [Google Scholar] [CrossRef]
- Boyer, J.S.; Byrne, P.; Cassman, K.G.; Cooper, M.; Delmer, D.; Greene, T.; Gruis, F.; Habben, J.; Hausmann, N.; Kenny, N. The US drought of 2012 in perspective: A call to action. Glob. Food Sec. 2013, 2, 139–143. [Google Scholar] [CrossRef]
- Valliyodan, B.; Van Toai, T.T.; Alves, J.D.; De Fátima, P.; Goulart, P.; Lee, J.D.; Fritschi, F.B.; Rahman, M.A.; Islam, R.; Shannon, J.G.; et al. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max). Int. J. Mol. Sci. 2014, 15, 17622–17643. [Google Scholar] [CrossRef] [Green Version]
- Pinnamaneni, S.; Anapalli, S.S.; Fisher, D.K.; Reddy, K.N. Irrigation and Planting Geometry Effects on Cotton (Gossypium hirsutum L.) Yield and Water Use. J. Cotton Sci. 2020, 24, 87–96. [Google Scholar]
- Pinnamaneni, S.R.; Anapalli, S.S.; Reddy, K.N.; Fisher, D.K.; Quintana-Ashwell, N.E. Assessing irrigation water use efficiency and economy of twin-row soybean in the Mississippi Delta. Agron. J. 2020, 112, 4219–4231. [Google Scholar] [CrossRef]
- Pinnamaneni, S.R.; Anapalli, S.S.; Sui, R.; Bellaloui, N.; Reddy, K.N. Effects of irrigation and planting geometry on cotton (Gossypium hirsutum L.) fiber quality and seed composition. J. Cott. Res. 2021, 4, 2. [Google Scholar] [CrossRef]
- Wu, C.; Zeng, A.; Chen, P.; Hummer, W.; Mokua, J.; Shannon, J.G.; Nguyen, H.T. Evaluation and development of flood-tolerant soybean cultivars. Plant Breed. 2017, 136, 913–923. [Google Scholar] [CrossRef]
- Tamang, B.G.; Magliozzi, J.O.; Maroof, M.A.S.; Fukao, T. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant. Cell Environ. 2014, 37, 2350–2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, M.; VanToai, T.; Fausey, N.; Beuerlein, J.; Parkinson, R.; Soboyejo, A. Evaluating on-farm flooding impacts on soybean. Crop Sci. 2001, 41, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.S.; Wyllie, T.D.; Hartmann, G.L.; Sinclair, J.B.; Rupe, J.C. (Eds.) Compendium of Soybean Diseases, 4th ed.; American Phytopathological Society Press: St. Paul, MN, USA, 1999; pp. 29–31. [Google Scholar]
- Smith, R.M.; Kaur, G.; Orlowski, J.M.; Singh, G.; Chastain, D.; Irby, T.; Krutz, L.J.; Falconer, L.; Smith, D.R.C. Narrow-Row Production System for Soybeans in Mississippi Delta. Crop. Forage Turfgrass Manag. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Plumblee, M.T.; Dodds, D.M.; Krutz, L.J.; Catchot Jr, A.L.; Irby, J.T.; Jenkins, J.N. Determining the optimum irrigation schedule in furrow irrigated cotton using soil moisture sensors. Crop. Forage Turfgrass Manag. 2019, 5, 1–6. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Twin-row production of cotton genotypes varying in leaf shape. J. Cotton Sci. 2015, 19, 319–327. [Google Scholar]
- Desclaux, D.; Roumet, P. Impact of drought stress on the phenology of two soybean (Glycine max L. Merr) cultivars. Field Crops Res. 1996, 46, 61–70. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S.U.S. Agro-Climate in 20th Century: Growing Degree Days, First and Last Frost, Growing Season Length, and Impacts on Crop Yields. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Müller, M.; Rakocevic, M.; Caverzan, A.; Chavarria, G. Grain Yield Differences of Soybean Cultivars Due to Solar Radiation Interception. Am. J. Plant Sci. 2017, 8, 2795–2810. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, A. Seasonal Progress of Phomopsis longicolla Infection on Soybean Plant Parts and Its Relationship to Seed Quality. Plant Dis. 2009, 93, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; Smith, J.R.; Ray, J.D.; Gillen, A.M. Effect of maturity on seed composition in the early soybean production system as measured on near-isogenic soybean lines. Crop Sci. 2009, 49, 608–620. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Jin, Y.; Turner, N.C.; Li, F.-M. Irrigation during flowering improves subsoil water uptake and grain yield in rainfed soybean. Agronomy 2020, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, X.; Ding, G.; Yang, F.; Yong, T.; Wang, X.; Yang, W. Analysis of Grain Yield Differences among Soybean Cultivars under Maize–Soybean Intercropping. Agronomy 2020, 10, 110. [Google Scholar] [CrossRef] [Green Version]
- Sampaio Ferreira, A.; Antonio Balbinot Junior, A.; Werner, F.; Zucareli, C. Yield performance of soybean cultivars with indeterminate growth habits in response to plant spatial arrangement Desempenho produtivo de cultivares de soja de crescimento indeterminado em resposta a arranjos espaciais de plantas. Embrapa Soja-Artigo em Periódico Indexado 2019, 40, 2905–2916. [Google Scholar] [CrossRef]
- Thompson, N.M.; Larson, J.A.; Lambert, D.M.; Roberts, R.K.; Mengistu, A.; Bellaloui, N.; Walker, E.R. Mid-south soybean yield and net return as affected by plant population and row spacing. Agron. J. 2015, 107, 979–989. [Google Scholar] [CrossRef]
- Smith, J.R.; Mengistu, A.; Nelson, R.L.; Paris, R.L. Identification of soybean accessions with high germinability in high-temperature environments. Crop Sci. 2008, 48, 2279–2288. [Google Scholar] [CrossRef]
- Aydinsakir, K. Yield and quality characteristics of drip-irrigated soybean under different irrigation levels. Agron. J. 2018, 110, 1473–1481. [Google Scholar] [CrossRef]
S. No. | Maturity Group | Genotype | Important Trait(s) | Source |
---|---|---|---|---|
1 | III | LG03-4561-14 | High temperature stress tolerance | USDA-ARS |
2 | P37A78 | Roundup ready hybrid | Pioneer | |
3 | IV | DT97-4290 | Charcoal rot tolerance | USDA-ARS |
4 | DS25-1 | Drought tolerance | USDA-ARS | |
5 | Dyna-gro 4516x | Popular cultivar in MS Delta | Loveland Inc (Dyna-gro Seed) | |
6 | V | S14-16306 * | Flood tolerance | University of Missouri |
7 | S12-1362 * | Flood tolerance | University of Missouri |
Crop Season | Soil Depth, cm | Soil Texture | pH | Organic Matter, % | CEC, Meq 100 g−1 | Mehlich-3 Extractable Nutrients, mg Kg−1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | K | Ca | Mg | Zn | S | Cu | ||||||
2019 | 0–15 | Clay | 7.22 | 1.88 | 24.6 | 68 | 288 | 6677 | 1245 | 2.5 | 9.9 | 3.8 |
15–30 | Clay | 6.98 | 1.85 | 26.6 | 49 | 406 | 7185 | 1221 | 2.9 | 11.3 | 5.4 | |
30–45 | Clay | 6.88 | 1.47 | 25.3 | 28 | 242 | 4122 | 669 | 2.2 | 20.1 | 4.2 | |
2020 | 0–15 | Clay | 7.12 | 1.96 | 24.8 | 55 | 384 | 1636 | 1155 | 2.4 | 9.5 | 4.0 |
15–30 | Clay | 6.93 | 1.83 | 25.8 | 44 | 252 | 4243 | 938 | 2.5 | 6.8 | 5.2 | |
30–45 | Clay | 6.85 | 1.52 | 25.7 | 30 | 241 | 3865 | 902 | 2.0 | 18.6 | 3.9 |
Phenological Stage | MG III | MG IV | MG V | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LG03-4561-14 | P37A78 | DT97-4290 | DS25-1 | Dyna-Gro 4516x | S14-16306 | S12-1362 | ||||||||
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
VE | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 4 | 4 | 4 | 5 | 5 | 5 | 5 |
VC | 12 | 10 | 12 | 10 | 12 | 11 | 11 | 12 | 12 | 11 | 13 | 11 | 13 | 11 |
V1 | 16 | 14 | 16 | 14 | 16 | 16 | 16 | 16 | 16 | 16 | 17 | 16 | 17 | 16 |
V2 | 20 | 18 | 20 | 18 | 20 | 21 | 21 | 20 | 20 | 20 | 20 | 21 | 20 | 21 |
V3 | 25 | 22 | 25 | 22 | 26 | 26 | 26 | 26 | 26 | 25 | 27 | 26 | 27 | 26 |
V4 | 31 | 25 | 31 | 25 | 33 | 29 | 29 | 32 | 32 | 28 | 33 | 32 | 33 | 32 |
V5 | 40 | 31 | 40 | 31 | 44 | 37 | 37 | 42 | 42 | 35 | 44 | 40 | 44 | 40 |
V6 | 43 | 37 | 43 | 37 | 47 | 43 | 43 | 45 | 45 | 41 | 48 | 47 | 48 | 47 |
R1 | 48 | 42 | 48 | 42 | 52 | 49 | 49 | 48 | 48 | 46 | 53 | 53 | 53 | 53 |
R2 | 53 | 46 | 53 | 46 | 57 | 54 | 54 | 55 | 55 | 49 | 58 | 54 | 58 | 54 |
R3 | 56 | 50 | 56 | 50 | 61 | 57 | 57 | 58 | 58 | 51 | 62 | 61 | 62 | 61 |
R4 | 59 | 54 | 59 | 54 | 65 | 63 | 61 | 62 | 62 | 58 | 66 | 68 | 66 | 68 |
R5 | 62 | 66 | 62 | 66 | 68 | 73 | 70 | 64 | 64 | 61 | 72 | 78 | 69 | 78 |
R6 | 66 | 62 | 66 | 62 | 72 | 79 | 76 | 69 | 69 | 71 | 81 | 85 | 78 | 85 |
R7 | 75 | 72 | 75 | 71 | 81 | 94 | 89 | 78 | 78 | 83 | 95 | 102 | 88 | 101 |
R8 | 96 | 92 | 95 | 90 | 107 | 105 | 102 | 101 | 101 | 97 | 128 | 118 | 124 | 115 |
Source of Variance | df | Population (no. m−2) | Plant Height | Nodes per Plant | Pods per Plant | Lodging Score | Biomass | Seed Yield | Test Weight | Harvest Index |
---|---|---|---|---|---|---|---|---|---|---|
Cultivars | 6 | 0.254 | 0.001 * | <0.001 * | <0.001 * | <0.001 * | 0.005 * | 0.001 * | <0.001 * | 0.045 * |
Irrigation level | 1 | 0.289 | 0.002 * | <0.001 * | <0.001 * | <0.001 * | <0.002 * | <0.001 * | <0.001 * | 0.001 * |
Year | 1 | 0.0004 * | 0.015 * | 1.004 | 0.059 | 0.0825 | <0.001 * | 0.004 * | 0.0482 * | 0.045 * |
Cultivars | 6 | 0.0002 * | 0.002 * | 0.015 * | <0.001 * | 0.0042 * | 0.611 | 0.976 | 0.007 * | 0.652 |
Cultivars X Year | 6 | 0.0038 * | 0.086 | 0.915 | 1.005 | 0.247 | 0.003 | 0.0519 | 0.691 | 0.983 |
Irrigation level X Year | 1 | 0.070 | 0.598 | 1.421 | 1.214 | 0.0874 | 0.516 | 0.001 * | 0.961 | 0.946 |
Cultivar X Irrigation level X Year | 6 | 0.541 | 1.287 | 1.000 | 1.221 | 0.252 | 0.335 | 0.001 * | 0.586 | 0.754 |
Genotype | Irrigation Level | Population, (No. m−2) | Plant Height, (cm) | Nodes per Plant | Pods per Plant | Biomass, (Mg ha−1) | Seed Yield, (Mg ha−1) | Test Weight, (g) | Harvest Index | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
S14-16306 (MG V) | IR | 22.5 a | 19.0 b | 72.8 d | 88.9 d | 13.3 c | 14.0c | 87.0 b | 82.2 b | 7.5b | 7.9 b | 3.23 d | 3.06 d | 17.1 c | 17.0 d | 0.43 b | 0.40 d |
RF | 22.0 a | 20.0 a | 74.5 d | 85.5 d | 11.7 d | 12.5d | 68.7 d | 68.4 c | 7.1b | 6.7 c | 3.01 d | 2.72 d | 16.9 d | 16.7 d | 0.42 b | 0.41 d | |
S12-1362 (MG V) | IR | 20.7 a | 19.3 b | 128.8 a | 159.2 a | 15.3 b | 15.0b | 72 d | 71.6 c | 7.7b | 8.3 b | 3.73 b | 3.18 c | 18.9 c | 17.5 d | 0.48 b | 0.45 c |
RF | 19.0 a | 20.7 a | 81.4 c | 136.3 a | 14.0 c | 14.6c | 65.0 d | 66.6 c | 6.7d | 6.1 b | 3.46 c | 2.88 b | 16.1 d | 15.9 e | 0.47 b | 0.43 d | |
DT97-4290 (MG III) | IR | 19.5 a | 18.7 b | 112.2 ab | 104.1 b | 16.7 a | 17.0a | 70.3 d | 85.7 b | 8.0b | 6.8 c | 3.87 b | 3.67 c | 19.1 b | 18.7 c | 0.51 a | 0.54 a |
RF | 20.3 a | 21.0 a | 107.1 ab | 105.0 b | 15.3 b | 16.3a | 80.3 c | 81.5 b | 7.1c | 5.6 d | 3.55 c | 3.31 c | 18.4 c | 18.2 c | 0.48 a | 0.59 a | |
DS25-1 (MG IV) | IR | 21.0 a | 17.0 c | 90.8 bc | 136.3 a | 16.0 a | 16.5a | 122 a | 86.6 b | 9.1a | 7.3 b | 4.31 a | 3.93 b | 18.9 c | 18.8 c | 0.47 a | 0.52 b |
RF | 19.3 a | 17.3 c | 88.2 c | 109.2 b | 14.3 b | 14.6c | 70.7 d | 98 a | 8.3b | 6.9 c | 4.07 a | 3.64 c | 18.6 c | 18.3 c | 0.52 a | 0.50 b | |
Dyna-gro 4516X (MG III) | IR | 19.3 a | 16.3 c | 96.8 b | 105.8 b | 16.0 a | 16.5a | 89.2 b | 66.8 c | 8.3b | 8.7 a | 4.58 a | 4.74 a | 20.9 a | 20.8 a | 0.55 a | 0.54 a |
RF | 19.3 a | 17.0 c | 79.7 c | 104.1 b | 16.7 a | 16.1a | 69.0 d | 55 d | 7.1c | 8.3 b | 3.89 b | 4.35 a | 20.7 a | 20.4 a | 0.55 a | 0.53 b | |
LG03-4561-14 (MG IV) | IR | 19.0 a | 18.7 b | 90.0 bc | 86.4 d | 16.7 a | 16.0a | 85.3 b | 88.4 b | 9.2a | 7.8 b | 4.42 a | 4.37 a | 19.7 b | 19.8 b | 0.51 a | 0.56 a |
RF | 19.2 a | 17.3 c | 92.5 bc | 83.8 d | 14.3 b | 14.5c | 59.3 e | 63.2 c | 7.6b | 7.0 c | 3.91 b | 3.75 b | 19.5 b | 19.3 b | 0.48 a | 0.54 a | |
P37A78 (MG III) | IR | 21.3 a | 21.7 a | 108.8 ab | 110.9 b | 17.0 a | 16.8a | 98.5 b | 69.7 c | 7.6b | 8.2 b | 4.25 a | 4.46 a | 20.8 a | 20.9 a | 0.56 a | 0.54 a |
RF | 19.3 a | 20.3 a | 100.2 ab | 97.4 c | 15.0 b | 15.5b | 84.7 b | 64.5 c | 7.1c | 7.5 b | 3.81 b | 4.01 b | 20.1 b | 19.9 b | 0.54 a | 0.53 a |
Maturity Group | Cultivar | Irrigation Level | Seed Yield (Mg ha−1) | Irrigation Water Applied (mm) | WUEg (kg ha−1 mm−1) | WUEb (kg ha−1 mm−1) | Yield Increase by Irrigation (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2020 | 2020 | |||
V | S14-16306 | IR | 3.23 | 3.06 | 73 | 98 | 4.5e | 8.3e | 12.0b | 21.4d | 7.31d | 12.50b |
RF | 3.01 | 2.72 | 4.7e | 10.0d | 12.7b | 24.6c | ||||||
V | S12-1362 | IR | 3.73 | 3.18 | 73 | 98 | 5.3d | 8.6e | 10.9c | 22.6c | 7.80d | 10.42c |
RF | 3.46 | 2.88 | 5.4d | 10.7d | 10.6c | 30.0a | ||||||
IV | DT97-4290 | IR | 3.87 | 3.67 | 73 | 98 | 5.9c | 10.3d | 12.3b | 19.2d | 9.01d | 10.88b |
RF | 3.55 | 3.31 | 6.1c | 12.9c | 12.2b | 21.8d | ||||||
IV | DS25-1 | IR | 4.31 | 3.93 | 73 | 98 | 6.6b | 11.1c | 13.9a | 20.6d | 5.90e | 7.97d |
RF | 4.07 | 3.64 | 7.0a | 14.2b | 14.3a | 23.0c | ||||||
IV | Dyna-gro 4516x | IR | 4.58 | 4.74 | 73 | 98 | 7.2a | 13.4b | 13.0b | 24.5c | 17.74a | 8.97d |
RF | 3.89 | 4.35 | 6.9a | 16.9a | 12.6b | 32.3a | ||||||
III | LG03-4561-14 | IR | 4.42 | 4.37 | 73 | 98 | 6.9a | 12.3c | 14.5a | 22.0c | 13.04b | 16.53a |
RF | 3.91 | 3.75 | 6.9a | 14.6b | 13.5a | 27.2b | ||||||
III | P37A78 | IR | 4.25 | 4.46 | 73 | 98 | 6.7b | 12.6c | 11.9b | 23.1c | 11.55c | 11.22b |
RF | 3.81 | 4.01 | 6.8b | 15.6a | 12.6b | 29.2b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinnamaneni, S.R.; Anapalli, S.S.; Fisher, D.K.; Reddy, K.N. Water Use Efficiencies of Different Maturity Group Soybean Cultivars in the Humid Mississippi Delta. Water 2021, 13, 1496. https://doi.org/10.3390/w13111496
Pinnamaneni SR, Anapalli SS, Fisher DK, Reddy KN. Water Use Efficiencies of Different Maturity Group Soybean Cultivars in the Humid Mississippi Delta. Water. 2021; 13(11):1496. https://doi.org/10.3390/w13111496
Chicago/Turabian StylePinnamaneni, Srinivasa R., Saseendran S. Anapalli, Daniel K. Fisher, and Krishna N. Reddy. 2021. "Water Use Efficiencies of Different Maturity Group Soybean Cultivars in the Humid Mississippi Delta" Water 13, no. 11: 1496. https://doi.org/10.3390/w13111496
APA StylePinnamaneni, S. R., Anapalli, S. S., Fisher, D. K., & Reddy, K. N. (2021). Water Use Efficiencies of Different Maturity Group Soybean Cultivars in the Humid Mississippi Delta. Water, 13(11), 1496. https://doi.org/10.3390/w13111496