Planar Installation Characteristics of Crown Depth-Variable Artificial Coral Reef on Improving Coastal Resilience: A 3D Large-Scale Experiment
Abstract
:1. Introduction
1.1. Coastal Erosion Prevention Method and ‘Coastal Resilience’ Concept
1.2. Artificial Coral Reef (ACR) Structures
2. Materials and Methods
2.1. Sandwork and Physical Model Construction
2.2. Wave Condition for the Physical Model Experiment
2.3. Wave Measurement and Analysis
2.4. Analytic Methods for Nearshore Current
2.5. Topographical Variation Tendency Analysis
3. Results and Discussion
3.1. Wave Mitigation Effects and Wave Profile Deformation Trends
3.2. Planar Current Movement and Current Vector Distribution Trends
3.3. Topographical Variation Trends: Erosion and Deposition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation and Symbols
ACR | Artificial Coral Reef |
Ho | Deep-water wave height |
Lo | Wavelength |
D50 | Median grain size |
Dean’s parameter | |
Hi | Incident wave height |
H | Wave height |
RA | Attenuation rate |
Ti | Period of incident wave |
WP | Wave Probe |
Wave profile | |
BM | Breakwater Middle |
BS | Breakwater Shoulder |
BO | Breakwater Open inlet |
Horizontal velocity | |
Average velocity in the horizontal direction (x-axis) | |
Vertical velocity | |
Average velocity in the vertical direction (z-axis). | |
LiDAR | Light detection and ranging |
DEM | Digital Elevation Model |
DoD | Difference of DEM |
Shoreline change | |
Wave delay parameter | |
Averaged wave delay parameter | |
KC | Keulegan-Carpenter number |
Width of the breakwater crest |
Appendix A. Table and Figures
Attenuation Rate of the Dolos | ||||
---|---|---|---|---|
X/Lo | WP1 | WP2 | WP3 | WP4 |
−0.7 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.35 | 0.04 | 0.11 | 0.03 | −0.08 |
0 | 0.11 | −0.12 | −0.23 | 0.09 |
0.35 | 0.06 | 0.56 | 0.61 | −0.12 |
0.7 | 0.17 | 0.52 | 0.55 | 0.14 |
Attenuation Rate of the ACR | ||||
X/Lo | WP1 | WP2 | WP3 | WP4 |
−0.75 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.50 | −0.04 | −0.05 | −0.13 | −0.03 |
−0.25 | 0.02 | −0.13 | −0.07 | −0.07 |
0 | 0.08 | −0.06 | 0.06 | 0.00 |
0.25 | 0.05 | 0.17 | 0.35 | −0.04 |
0.50 | 0.17 | 0.37 | 0.49 | 0.04 |
0.75 | 0.29 | 0.48 | 0.44 | 0.17 |
References
- Mentaschi, L.; Vousdoukas, M.I.; Pkekl, J.F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Scardino, G.; Sabatier, F.; Scicchitano, G.; Piscitelli, A.; Milella, M.; Vecchio, A.; Anzidei, M.; Mastronuzzi, G. Sea-level rise and shoreline changes along an open sandy coast: Case study of gulf of taranto, Italy. Water 2020, 12, 1414. [Google Scholar] [CrossRef]
- Arns, A.; Dangendorf, S.; Jensen, J.; Talke, S.; Bender, J.; Pattiaratchi, C. Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Xue, Z.; Feng, A.; Yin, P.; Xia, D. Coastal Erosion Induced by Human Activities: A Northwest Bohai Sea Case Study. J. Coast. Res. 2009, 25, 723–733. [Google Scholar] [CrossRef]
- Kim, I.H.; Lee, H.S.; Cho, W.C.; Song, D.S. Shoreline changes due to groin construction in Namae and Sodol Beaches, South Korea. J. Coast. Res. 2013, 65, 2131–2136. [Google Scholar] [CrossRef]
- Morton, R.A.; Buster, N.A.; Krohn, M.D. Subsurface controls on historical subsidence rates and associated wetland loss in southcentral Louisiana. Trans. GCAGS 2002, 52, 767–778. Available online: http://pubs.er.usgs.gov/publication/70123287 (accessed on 8 May 2021).
- Van der Meer, J.W.; Briganti, R.; Zanuttigh, B.; Wang, B. Wave transmission and reflection at low-crested structures: Design formulae, oblique wave attack and spectral change. Coast. Eng. 2005, 52, 915–929. [Google Scholar] [CrossRef]
- Hur, D.S.; Lee, W.D.; Goo, N.H.; Jeon, H.S.; Jeong, Y.M. Development of new type of submerged breakwater for reducing mean water level behind structure. J. Ocean Eng. Technol. 2017, 31, 130–140. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Cappietti, L.; Sherman, D.J.; Ellis, J.T. Transmission and Water setup behind an emergent rubble-mound breakwater. J. Coast. Res. 2013, 29, 694–705. [Google Scholar] [CrossRef]
- Osanai, K.; Minami, M. Experimental study on vertical velocity distribution around the opening of artificial reefs. J. Civ. Eng. Ocean 2003, 19, 213–218. [Google Scholar] [CrossRef]
- Lee, W.D.; Hur, D.S.; Park, J.B.; An, S.W. A study on effect of beachface gradient on 3-D currents around the open inlet of submerged breakwaters. J. Ocean Eng. Technol. 2009, 23, 7–15. Available online: http://joet.org/upload/pdf/HOGHC7_2009_v23n1_7.pdf (accessed on 15 September 2020). (In Korean).
- Alesheikh, A.A.; Ghorbanali, A.; Nouri, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Technol. 2007, 4, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Burns, W.J.; Coe, J.A.; Kaya, B.S.; Ma, L. Analysis of Elevation Changes Detected from Multi-Temporal LiDAR Surveys in Forested Landslide Terrain in Western Oregon. Environ. Eng. Geosci. 2010, 16, 315–341. [Google Scholar] [CrossRef]
- Taal, M.D.; Loffler, M.A.M.; Vertegaal, C.T.M.; Wijsman, J.W.M.; Van der valk, L.; Tonnon, P.K. Development of the Sand Motor; Deltares: Delft, The Netherlands, 2016; pp. 1–62. [Google Scholar]
- Ministry of Oceans and Fisheries. Basic Plan for 2nd Coastal Maintenance Project (2010~2019). South Korea. 2014, pp. 1–28. Available online: http://www.mof.go.kr/article/view.do?articleKey=20592&boardKey=2¤tPageNo=1 (accessed on 10 October 2020). (In Korean).
- Parkinson, R.W.; Ogurcak, D.E. Beach nourishment is not a sustainable strategy to mitigate climate change. Estuar. Coast. Shelf Sci. 2018, 212, 203–209. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Coastal Marine Management of the Netherlands(RIKZ); EUCC—The Coastal Union; IGN France International; Autonomous University of Barcelona (UAB); French Geological Survey(BRGM); France Institute of Environment(IFEN); EADS System & Defence Electronics. Living with Coastal Erosion in Europe: Sediment and Space for Sustainability. Part I—Major Findings and Policy Recommendations of the EUROSION Project. France. 2004, pp. 4–5. Available online: http://www.eurosion.org/reports-online/part1.pdf (accessed on 12 October 2020).
- Masselink, G.; Lazarus, E.D. Defining coastal resilience. Water 2019, 11, 2587. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhang, H.; Zhong, Y.; Jiang, D.; Liu, G.; Yan, H.; Zhang, H.; Guo, P.; Li, C.; Yang, H.; et al. The Status of Coral Reefs and Its Importance for Coastal Protection: A Case Study of Northeastern Hainan Island, South China Sea. Sustainability 2019, 11, 4354. [Google Scholar] [CrossRef] [Green Version]
- Reguero, B.G.; Beck, M.W.; Agostini, V.N.; Kramer, P.; Hancock, B. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada. J. Environ. Manage. 2018, 210, 146–161. [Google Scholar] [CrossRef]
- Huang, Z.C.; Lenain, L.; Melville, W.; Middleton, J.H.; Reineman, B.; Statom, N.; Mccabe, R.M. Dissipation of wave energy and turbulence in a shallow coral reef lagoon. J. Geophys. Res. 2012, 117, 1–18. [Google Scholar] [CrossRef]
- Harris, L.E. Artificial reefs for ecosystem restoration and coastal erosion protection with aquaculture and recreational amenities. Reef J. 2009, 1, 235–246. [Google Scholar]
- Buccino, M.; Vita, I.; Calabrese, M. Engineering modeling of wave transmission of reef balls. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 1–18. [Google Scholar] [CrossRef]
- Srisuwan, C.; Rattanamanee, P. Modeling of seadome as artificial reefs for coastal wave attenuation. Ocean Eng. 2015, 103, 198–210. [Google Scholar] [CrossRef]
- Gourlay, M.R. Wave set-up on coral reefs. 1. Set-up and wave-generated flow on an idealized two dimensional horizontal reef. Coast. Eng. 1996, 27, 161–193. [Google Scholar] [CrossRef]
- Gourlay, M.R. Wave set-up on coral reefs. 2. Set-up on reefs with various profiles. Coast. Eng. 1996, 28, 17–55. [Google Scholar] [CrossRef]
- Wang, K.H.; Ren, X. Water waves on flexible and porous breakwaters. J. Eng. Mech. 1993, 119, 1025–1047. [Google Scholar] [CrossRef]
- Venkateswarlu, V.; Karmakar, D. Influence of impermeable elevated bottom on the wave scattering due to multiple porous structures. J. Appl. Fluid Mech. 2020, 13, 371–385. [Google Scholar] [CrossRef]
- Huang, C.J.; Chang, H.H.; Hwung, H.H. Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coast. Eng. 2003, 49, 1–24. [Google Scholar] [CrossRef]
- Hong, S.; Kim, T.; Choi, Y.; Kim, J.; Kwon, Y.; Lee, S.; Lee, G.; Kwon, S. Study on wave reduction and beach sand capture performance of artificial coral reefs for in-situ application. J. Ocean Eng. Technol. 2018, 32, 485–491. (In Korean) [Google Scholar] [CrossRef]
- Jeong, Y.M. Study on the Initial Sediment Transport Using NWT-DEM Two-Way Coupled Model for Coastal Erosion Control as a Soft Defense. Ph.D Thesis, Gyeongsang National University, Tongyeong, Korea, 2019. (In Korean). [Google Scholar]
- Hong, S.; Jeong, Y.M.; Kim, T.; Huynh, V.M.; Kim, I.H.; Nam, J.; Hur, D.S.; Lee, J.; Kwon, S. Application of the artificial coral reef as a coastal erosion prevention method with numerical-physical combined analysis (Case study: Cheonjin-Bongpo beach, Kangwon province, South Korea). J. Ocean Eng. Technol. 2021, 35, 75–81. [Google Scholar] [CrossRef]
- Pos, J.D.; Kilner, F.A. Breakwater gap wave diffraction: An experimental and numerical study. J. Waterw. Port Coast. Ocean Eng. 1987, 113, 1–21. [Google Scholar] [CrossRef]
- Dean, R.G. Heuristic Models of Sand Transport in the Surf Zone. In Proceedings of Conference on Engineering Dynamics in the Surf Zone; Institution of Engineers: Sydney, Australia, 1973; pp. 208–214. [Google Scholar]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- McCowan, J. On the highest wave of permanent type. Lond. Edingburgh Dublin Philos. Mag. Ser. 5 1894, 38, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Zanke, U. Berechnung der Sinkgeschwindigkeiten von Sedimenten (Determination of settling velocities of sediments), Mitt. Des Franzius-instituts fur Wasserbau und Kusteningenieurswesen der TU Hannover. Pascal Fr. Bibliogr. Databases 1977, 46, 230–245. (In German) [Google Scholar]
- Wright, L.D.; Short, A.D. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- International Towing Tank Conference (ITTC). Seakeeping Experiments. ITTC-Recommended Procedures and Guidelines; ITTC: Zürich, Switzerland, 2014; pp. 1–22. [Google Scholar]
- Lee, K.H.; Bae, J.H.; An, S.W.; Kim, D.S. Nonlinear Irregular waves-current interaction on flow fields with wave breaking around permeable submerged breakwater. J. Korean Soc. Coast. Ocean Eng. 2018, 30, 39–50. (In Korean) [Google Scholar] [CrossRef]
- Sakakiyama, T.; Kajima, R. Numerical Simulation of Nonlinear Wave Interacting with Permeable Breakwaters. In Proceedings of the 23rd International Conference on Coastal Engineering, Venice, Italy, 4–9 October 1992. [Google Scholar] [CrossRef]
- Ryu, Y.; Hur, D.; Park, S.; Chun, H.H.; Jung, K.H. Wave Energy Dissipation by Permeable and Impermeable Submerged Breakwaters. J. Appl. Fluid Mech. 2016, 9, 2635–2645. [Google Scholar] [CrossRef]
- Young, D.M.; Testik, F.Y. Onshore scour characteristics around submerged vertical and semicircular breakwaters. Coast. Eng. 2009, 56, 868–875. [Google Scholar] [CrossRef]
Location | Dolos | ACR | ||||
---|---|---|---|---|---|---|
Incident wave | 0.04 | 0.04 | 0.04 | 0.12 | 0.08 | 0.08 |
Structure Center | 0.12 | 0.08 | 0.16 | 0.12 | 0.08 | 0.08 |
Transmitted wave | −0.16 | −0.12 | −0.04 | 0.00 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.; Baek, S.; Kim, Y.; Lee, J.; Prasetyo, A.; Kim, W.; Kwon, S. Planar Installation Characteristics of Crown Depth-Variable Artificial Coral Reef on Improving Coastal Resilience: A 3D Large-Scale Experiment. Water 2021, 13, 1526. https://doi.org/10.3390/w13111526
Hong S, Baek S, Kim Y, Lee J, Prasetyo A, Kim W, Kwon S. Planar Installation Characteristics of Crown Depth-Variable Artificial Coral Reef on Improving Coastal Resilience: A 3D Large-Scale Experiment. Water. 2021; 13(11):1526. https://doi.org/10.3390/w13111526
Chicago/Turabian StyleHong, Sunghoon, Seungil Baek, Yeonjoong Kim, Jooyong Lee, Adi Prasetyo, Wonkook Kim, and Soonchul Kwon. 2021. "Planar Installation Characteristics of Crown Depth-Variable Artificial Coral Reef on Improving Coastal Resilience: A 3D Large-Scale Experiment" Water 13, no. 11: 1526. https://doi.org/10.3390/w13111526
APA StyleHong, S., Baek, S., Kim, Y., Lee, J., Prasetyo, A., Kim, W., & Kwon, S. (2021). Planar Installation Characteristics of Crown Depth-Variable Artificial Coral Reef on Improving Coastal Resilience: A 3D Large-Scale Experiment. Water, 13(11), 1526. https://doi.org/10.3390/w13111526