Eco-Compensation Schemes for Controlling Agricultural Non-Point Source Pollution in Maoli Lake Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. SWAT Model
2.3. Description of Input Data for SWAT
2.4. Parameters Sensitivity Analysis, Calibration, and Validation
2.5. Scenarios Designs
2.6. Construction of Evaluation Model for Ecological Ccompensation Scenarios
2.6.1. Construction of Hierarchy Structure of Comprehensive Evaluation Model
2.6.2. Determination of Data Layer
2.6.3. Determination of Weights
2.6.4. Model Decision
3. Results
3.1. Characteristics of NPS Pollution Load in MLW
3.1.1. Temporal Distribution
3.1.2. Spatial Distribution
3.2. Pollution Distribution under Eco-Compensation Scenarios
3.2.1. Temporal Distribution of Pollution under Eco-Compensation Scenarios
3.2.2. Spatial Distribution of Pollution Load under Eco-Compensation Scenarios
3.2.3. Characteristic of NPS Pollution Load in Different Types of Agricultural Land
3.3. Results of SMCE Model and Evaluation of Eco-Compensation Scenarios
3.3.1. Spatial Distribution of D9 and E10 under Different Scenarios
3.3.2. Calculation Results of Indicators of Each Layer of SMCE Model
3.3.3. Evaluation and Optimum Selection of Eco-Compensation Scenarios
4. Discussion
4.1. Qualitative Evaluation of Simulation Inaccuracy under Eco-Compensation Scenarios
4.2. Advice on NPS Pollution Control within MLW
5. Conclusions
- (1)
- The nutrients loss of the agricultural land reduced in all scenarios, and S2 had more of a reduction compared to S1 and S3. The implementation of each scenario will have an impact on the farmers’ farmland income, and the impact on S2 and S3 is relatively large. As the result of different compensation cost standards, farmers’ willingness to participate in different scenarios is different. Their willingness to participate in S2 is the highest, followed by S1, and that of S3 is the lowest.
- (2)
- With the combined perspective of environment–economy–society effects, the rice land and dry land fallow every other year (S2) is the best eco-compensation scenario in MLW for NPS pollution control in the near future.
- (3)
- The comprehensive effect of eco-compensation at grid scale has significant spatial difference. When an eco-compensation scheme is used to control NPS pollution, a better result can be obtained by accurate and differentiated compensation on the precise spatial scale.
- (4)
- This study was carried out from the perspective of combining SWAT and an eco-compensation scheme, which could broaden the application fields of the SWAT to some extent and provide a scientific basis and experience for the comprehensive evaluation and spatial design of agricultural eco-compensation.
- (5)
- For the areas without developed economic conditions or nature reserve, they are significantly different from the study area of this paper, so it is necessary to fully study the weights of environmental, economic, and social effects and then recalculate the comprehensive effect according to the framework of this paper to determine the optimal compensation measures. The widespread implementation of “optimal fertilizer use” in this case is very likely to be the best NPS control measure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameters 1 | Description | Initial Value | Range | Adjusted Value |
---|---|---|---|---|
R__CN2.mgt | SCS runoff curve number | 67 | (−0.5, 0.5) | 0.12 |
V__SURLAG.bsn | Surface runoff lag time | (1, 24) | 3.59 | |
R__SOL_K.sol | Saturated hydraulic conductivity (mm/hr) | 264.6 | (−0.5, 0.5) | 0.08 |
R__SOL_AWC.sol | Available water capacity of the soil layer (mm/mm) | 0.344 | (−0.5, 0.5) | −0.03 |
V__CANMX.hru | Maximum canopy storage | (0, 30) | 4.29 | |
V__GW_REVAP.gw | Groundwater “revap” coefficient | (0.02, 0.2) | 0.09 | |
V__REVAPMN.gw | Threshold depth of water in the shallow aquifer for “revap” to occur (mm) | (0, 1000) | 49.92 | |
V__GW_DELAY.gw | Groundwater delay (days) | (0, 500) | 173.12 | |
V__ALPHA_BF.gw | Baseflow alpha factor (days) | (0, 1) | 0.39 | |
V__GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | (0, 500) | 91.32 | |
V__ESCO.hru | Soil evaporation compensation factor | (0, 1) | 0.19 | |
V__EPCO.hru | Plant uptake compensation factor | (0, 1) | 0.35 | |
V__SPCON.bsn | Linear parameter for calculating the maximum amount of sediment that can be re-entrained during channel sediment routing | (0.001, 0.01) | 0.015 | |
V__SPEXP.bsn | Exponent parameter for calculating sediment reentrained in channel sediment routing | (1, 1.5) | 1.38 | |
R__USLE_P.mgt | USLE equation support practice factor | 0.53 | (−0.5, 0.5) | −0.35 |
V__CH_N2.rte | Manning’s “n” value for the main channel | (0, 0.3) | 0.11 | |
V__SOL_ORGN.chm | Initial organic N concentration in the soil layer, (mg/kg). | (0, 100) | 72.2 | |
V__PHOSKD.bsn | Phosphorus soil partitioning coefficient. | (100, 200) | 125 | |
V__NPERCO.bsn | Nitrogen percolation coefficient | (0, 1) | 0.35 | |
V__SOL_ORGP.chm | Initial organic P concentration in surface soil layer, (mg/kg) | (0, 100) | 85.9 | |
V__CDN.bsn | Denitrification exponential rate coefficient | (0, 3) | 0.72 | |
V__PSP.bsn | Phosphorus sorption coefficient | (0.01, 0.7) | 0.41 | |
V__RCN.bsn | Concentration of nitrogen in rainfall | (0, 15) | 2.3 |
Appendix B
Farmland Type | Measure | Measure Time | Land Cover | Fertilization Management of Each Scenario kg/(ha·yr−1) | ||||
---|---|---|---|---|---|---|---|---|
S0 | S1 | S2(c) | S2(d) | S3 | ||||
Dry land | Sowing | 1 Jan. | - | |||||
Fertilization | 15 Mar. | Dry land | 149.99 (b) | 74.99 (b) | 0 | 149.99 (b) | 149.99 (b) | |
Fertilization | 15 Apr. | Dry land | 112.49 (b) | 56.24 (b) | 0 | 112.49 (b) | 112.49 (b) | |
harvest and removing | 15 May | - | ||||||
Sowing | 20 May | - | ||||||
Fertilization | 25 May | Dry land | 899.96 (a) | 449.98 (a) | 0 | 899.96 (a) | 899.96 (a) | |
Fertilization | 15 Jun. | Dry land | 262.49 (b) | 131.24 (b) | 0 | 262.49 (b) | 262.49 (b) | |
Fertilization | 15 Jul. | Dry land | 224.89 (b) | 112.44 (b) | 0 | 224.89 (b) | 224.89 (b) | |
Fertilization | 15 Aug. | Dry land | 187.49 (b) | 93.74 (b) | 0 | 187.49 (b) | 187.49 (b) | |
harvest and removing | 20 Oct. | - | ||||||
Sowing | 25 Oct. | - | ||||||
Fertilization | 30 Oct. | Dry land | 674.97 (a) | 337.48 (a) | 0 | 674.97 (a) | 674.97 (a) | |
Fertilization | 15 Nov. | Dry land | 187.49 (b) | 93.745 (b) | 0 | 187.49 (b) | 187.49 (b) | |
harvest and removing | 25 Dec. | Dry land | - | |||||
Rice land | Sowing | 1 Jan. | - | |||||
Fertilization | 5 Jan. | Dry land | 149.99 (b) | 74.99 (b) | 0 | 149.99 (b) | 149.99 (b) | |
Fertilization | 10 Mar. | Dry land | 112.49 (b) | 56.24 (b) | 0 | 112.49 (b) | 112.49 (b) | |
harvest and removing | 20 Apr. | - | ||||||
Sowing | 25 Apr. | - | ||||||
Fertilization | 30 Apr. | Rice land | 749.63 (a) | 374.81 (a) | 0 | 749.63 (a) | 749.63 (a) | |
Fertilization | 15 May | Rice land | 149.93 (b) | 74.96 (b) | 0 | 149.93 (b) | 149.93 (b) | |
Fertilization | 15 Jul. | Rice land | 149.93 (b) | 74.96 (b) | 0 | 149.93 (b) | 149.93 (b) | |
harvest and removing | 25 Sep. | - | ||||||
Sowing | 1 Oct. | - | ||||||
Fertilization | 5 Oct. | Dry land | 674.97 (a) | 337.48 (a) | 0 | 674.97 (a) | 674.97 (a) | |
Fertilization | 10 Dec. | Dry land | 187.49 (b) | 93.74 (b) | 0 | 187.49 (b) | 187.49 (b) | |
harvest and removing | 25 Nov. | - | ||||||
Orchard | Fertilization | 15 Mar. | Orchard | 149.92 (a) | 74.96 (a) | 149.92 (a) | 149.92 (a) | 149.92 (a) |
Fertilization | 15 May | Orchard | 374.81 (b) | 187.40 (b) | 374.81 (b) | 374.81 (b) | 374.81 (b) | |
harvest | 15 Nov. | |||||||
Fertilization | 25 Nov. | Orchard | 899.55 (b) | 449.77 (b) | 899.55 (b) | 899.55 (b) | 899.55 (b) | |
Forest | - | - | Forest | 0 | 0 | 0 | 0 | 0 |
Grass land | - | - | Pasture | 0 | 0 | 0 | 0 | 0 |
Appendix C
References
- Cherry, K.; Shepherd, M.; Withers, P.; Mooney, S. Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: A review of methods. Sci. Total Environ. 2008, 406, 1–23. [Google Scholar] [CrossRef]
- Smith, L.E.; Siciliano, G. A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agric. Ecosyst. Environ. 2015, 209, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Xueman, Y.; Wenxi, L.; Yongkai, A.; Dong, W. Assessment of parameter uncertainty for non-point source pollution mechanism modeling: A Bayesian-based approach. Environ. Pollut. 2020, 263, 114570. [Google Scholar] [CrossRef]
- Lu, H.; Xie, H. Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China. J. Environ. Manag. 2018, 207, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wu, W.; Zhang, J. Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China. Agric. Ecosyst. Environ. 2005, 107, 211–220. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Yohannes, F. Testing and evaluation of the agricultural non-point source pollution model (AGNPS) on Augucho catchment, western Hararghe, Ethiopia. Agric. Ecosyst. Environ. 2003, 99, 201–212. [Google Scholar] [CrossRef]
- Lai, Y.; Yang, C.; Hsieh, C.; Wu, C.; Kao, C. Evaluation of non-point source pollution and river water quality using a multimedia two-model system. J. Hydrol. 2011, 409, 583–595. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y.; Pan, Y.; Yu, Z. Land use pattern optimization based on CLUE-S and SWAT models for agricultural non-point source pollution control. Math. Comput. Model. 2013, 58, 588–595. [Google Scholar] [CrossRef]
- Xiang, C.; Wang, Y.; Liu, H. A scientometrics review on nonpoint source pollution research. Ecol. Eng. 2017, 99, 400–408. [Google Scholar] [CrossRef]
- Chowdary, V.; Kar, S.; Adiga, S. Modelling of non-point source pollution in a watershed using remote sensing and GIS. J. Indian Soc. Remote Sens. 2004, 32, 59–73. [Google Scholar] [CrossRef]
- Kinnell, P. AGNPS-UM: Applying the USLE-M within the agricultural non point source pollution model. Environ. Model. Softw. 2000, 15, 331–341. [Google Scholar] [CrossRef]
- Wu, L.; Gao, J.; Ma, X.; Li, D. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions. Environ. Sci. Pollut. Res. 2015, 22, 10647–10660. [Google Scholar] [CrossRef]
- Borah, D.K.; Bera, M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications. Trans. ASAE 2004, 47, 789. [Google Scholar] [CrossRef] [Green Version]
- Adu, J.T.; Kumarasamy, M.V. Assessing Non-Point Source Pollution Models: A Review. Pol. J. Environ. Stud. 2018, 27. [Google Scholar] [CrossRef]
- Gikas, G.D.; Yiannakopoulou, T.; Tsihrintzis, V.A. Modeling of non-point source pollution in a Mediterranean drainage basin. Environ. Modeling Assess. 2006, 11, 219–233. [Google Scholar] [CrossRef]
- Polyakov, V.; Fares, A.; Kubo, D.; Jacobi, J.; Smith, C. Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed. Environ. Model. Softw. 2007, 22, 1617–1627. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Hu, C. A comprehensive study of the effect of input data on hydrology and non-point source pollution modeling. Water Resour. Manag. 2015, 29, 1505–1521. [Google Scholar] [CrossRef]
- Cao, D.; Cao, W.; Fang, J.; Cai, L. Nitrogen and phosphorus losses from agricultural systems in China: A meta-analysis. Mar. Pollut. Bull. 2014, 85, 727–732. [Google Scholar] [CrossRef]
- Arnold, J.G.; Williams, J.R.; Maidment, D.R. Continuous-time water and sediment-routing model for large basins. J. Hydraul. Eng. 1995, 121, 171–183. [Google Scholar] [CrossRef]
- Yang, S.; Dong, G.; Zheng, D.; Xiao, H.; Gao, Y.; Lang, Y. Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China. Ecol. Model. 2011, 222, 3701–3717. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, R.; Men, C.; Guo, L. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT. J. Hydrol. 2018, 560, 86–96. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Geng, R.; Sharpley, A.N. A novel spatial optimization model for achieve the trad-offs placement of best management practices for agricultural non-point source pollution control at multi-spatial scales. J. Clean. Prod. 2019, 234, 1023–1032. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Kleinman, P.J.; Flaten, D.N.; Buda, A.R. Critical source area management of agricultural phosphorus: Experiences, challenges and opportunities. Water Sci. Technol. 2011, 64, 945–952. [Google Scholar] [CrossRef]
- Maringanti, C.; Chaubey, I.; Popp, J. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Qing, P.; Hu, W. Farmers’ willingness to participate in best management practices in Kentucky. J. Environ. Plan. Manag. 2016, 59, 1015–1039. [Google Scholar] [CrossRef]
- Link, J.; Graeff, S.; Batchelor, W.D.; Claupein, W. Evaluating the economic and environmental impact of environmental compensation payment policy under uniform and variable-rate nitrogen management. Agric. Syst. 2006, 91, 135–153. [Google Scholar] [CrossRef]
- The Research Group on Mechanism and Policy of Eco-compensation in China. The Research on Mechanism and Policy of Eco-compensation in China; Science Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Wunder, S. Payments for Environmental Services: Some Nuts and Bolts. 2005. Available online: http://hdl.handle.net/10919/66932 (accessed on 1 January 2005).
- Wunder, S. When payments for environmental services will work for conservation. Conserv. Lett. 2013, 6, 230–237. [Google Scholar] [CrossRef]
- Firbank, L.; Bradbury, R.B.; McCracken, D.I.; Stoate, C. Delivering multiple ecosystem services from Enclosed Farmland in the UK. Agric. Ecosyst. Environ. 2013, 166, 65–75. [Google Scholar] [CrossRef]
- Cong, R.G.; Smith, H.G.; Olsson, O.; Brady, M. Managing ecosystem services for agriculture: Will landscape-scale management pay? Ecol. Econ. 2014, 99, 53–62. [Google Scholar] [CrossRef]
- Jack, B.K.; Kousky, C.; Sims, K.R. Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. Proc. Natl. Acad. Sci. USA 2008, 105, 9465–9470. [Google Scholar] [CrossRef] [Green Version]
- Kerr, S.; Greenhalgh, S.; Simmons, G. The Taupo Nitrogen Market: The World’s Only Diffuse Source Trading Programme. MOTU Note #20. Motu Public Policy and Research: Wellington, New Zealand, 2015. Available online: http://www.motu.org.nz/assets/Documents/our-work/environment-andresources/nutrient-trading-and-water-quality/Motu-Note-20-Taupo-Nitrogen-Market (accessed on 16 January 2015).
- Aguilar, F.X.; Obeng, E.A.; Cai, Z. Water quality improvements elicit consistent willingness-to-pay for the enhancement of forested watershed ecosystem services. Ecosyst. Serv. 2018, 30, 158–171. [Google Scholar] [CrossRef]
- McGurk, E.; Hynes, S.; Thorne, F. Participation in agri-environmental schemes: A contingent valuation study of farmers in Ireland. J. Environ. Manag. 2020, 262, 110243. [Google Scholar] [CrossRef]
- Ma, S.; Swinton, S.M.; Lupi, F.; Jolejole-Foreman, C. Farmers’ willingness to participate in Payment-for-Environmental-Services programmes. J. Agric. Econ. 2012, 63, 604–626. [Google Scholar] [CrossRef]
- Beharry-Borg, N.; Smart, J.C.; Termansen, M.; Hubacek, K. Evaluating farmers’ likely participation in a payment programme for water quality protection in the UK uplands. Reg. Environ. Chang. 2013, 13, 633–647. [Google Scholar] [CrossRef]
- Talberth, J.; Selman, M.; Walker, S.; Gray, E. Pay for Performance: Optimizing public investments in agricultural best management practices in the Chesapeake Bay Watershed. Ecol. Econ. 2015, 118, 252–261. [Google Scholar] [CrossRef]
- Saarikoski, H.; Mustajoki, J.; Barton, D.N.; Geneletti, D. Multi-Criteria Decision Analysis and Cost-Benefit Analysis: Comparing alternative frameworks for integrated valuation of ecosystem services. Ecosyst. Serv. 2016, 22, 238–249. [Google Scholar] [CrossRef]
- Tian, F.; Yi, H.; Fu, B.; Yang, Y.; Qiu, G.; Zhang, L. Effects of ecological engineering on water balance under two different vegetation scenarios in the Qilian Mountain, northwestern China. J. Hydrol. Reg. Stud. 2015. [Google Scholar] [CrossRef] [Green Version]
- Basheer, A.K.; Lu, H.; Omer, A.; Ali, A.; Abdelgader, A. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrol. Earth Syst. Sci. 2016, 20, 1331–1353. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.Y.; Wu, Y.; Wang, L.; Sun, P.; Lian, Y. Impacts of land-use conversions on the water cycle in a typical watershed in the southern Chinese Loess Plateau. J. Hydrol. 2021, 593, 125741. [Google Scholar] [CrossRef]
- Cao, X. Maoli Lake: A Transformation from Turbid to Limpidly. Hunan Daily. Available online: https://hnrb.voc.com.cn/hnrb_epaper/html/2015-10/20/content_1023619.htm?div=-1 (accessed on 20 October 2015).
- Alibuyog, N.R.; Ella, V.B.; Reyes, M.R.; Srinivasan, R.; Dillaha, T. Predicting the effects of land use change on runoff and sediment yield in Manupali River subwatersheds using the SWAT model. Int. Agric. Eng. J. 2009, 18, 15–25. [Google Scholar]
- Xu, Z.X.; Pang, J.P.; Liu, C.M.; Li, J. Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model. Hydrol. Process. 2009, 23, 3619–3630. [Google Scholar] [CrossRef]
- Lin, Z.; Radcliffe, D.E.; Risse, L.M.; Romeis, J.J.; Jackson, C.R. Modeling phosphorus in the Lake Allatoona watershed using SWAT: II. Effect of land use change. J. Environ. Qual. 2009, 38, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and water assessment tool theoretical documentation. Comput. Speech Lang. 2011, 24, 289–306. [Google Scholar] [CrossRef]
- Williams, J.R. Chapter 25; The EPIC Model. In Computer Models of Watershed Hydrology; Water Resources Publications: Highlands Ranch, CO, USA, 1995; pp. 909–1000. [Google Scholar]
- McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W. Loading Functions for Assessment of Water Pollution from Nonpoint Sources; EPA 600/2-76-151; US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1976. [Google Scholar]
- Williams, J.R.; Hann, R.W. Optimal Operation of Large Agricultural Watersheds with Water Quality Constraints; Texas A&M Univ., Tech. Rept. No. 96; Texas Water Resources Institute: Dallas, TX, USA, 1978. [Google Scholar]
- Long, Y.; Tang, R.; Wang, H.; Jiang, C. Monthly precipitation modeling using Bayesian non-homogeneous hidden Markov Chain. Hydrol. Res. 2019, 50, 562–576. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C. SWAT-Cup 2012: SWAT Calibration and Uncertainty Programs—A User Manual; Eawag, Swiss Federal Institute of Aquatic Science and Technology: Duebendorf, Switzerland, 2014. [Google Scholar]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Jing, Y.; Maximov, I.; Siber, R.; Srinivasan, R. Modelling of Hydrology and Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Niraula, R.; Norman, L.M.; Meixner, T.; Callegary, J.B. Multi-gauge Calibration for modeling the Semi-Arid Santa Cruz Watershed in Arizona-Mexico Border Area Using SWAT. Air Soil Water Res. 2012, 5, 41–57. [Google Scholar] [CrossRef]
- Li, D.; Liang, X.; Wu, J. Water pollution risk simulation and prediction in a drinking water catchment. J. Zhejiang Univ. (Agric. Life Sci.) 2018, 44, 75–88. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. Asabe 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Mamo, K.H.M.; Jain, M.K. Runoff and sediment modeling using SWAT in Gumera catchment, Ethiopia. Open J. Mod. Hydrol. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Rahbeh, M.; Chanasyk, D.; Miller, J. Two-way calibration-validation of SWAT model for a small prairie watershed with short observed record. Can. Water Resour. J. Rev. Can. Des Ressour. Hydr. 2011, 36, 247–270. [Google Scholar] [CrossRef]
- Chuanzhun, S.; Lin, Z.; Chao, W. Biodiversity simulation of Poyang Lake wetlands by InVEST model under different scenarios. Resour. Environ. Yangtze Basin 2015, 24, 1119–1125. [Google Scholar]
- Xie, H.; Cheng, L.; Lv, T. Factors influencing farmer willingness to fallow winter wheat and ecological compensation standards in a groundwater funnel area in Hengshui, Hebei Province, China. Sustainability 2017, 9, 839. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Liu, J.; Shen, R.; Fu, B. Mitigation of nonpoint source pollution in rural areas: From control to synergies of multi ecosystem services. Sci. Total Environ. 2017, 607, 1376–1380. [Google Scholar] [CrossRef]
- Omid, G.; Bakhtiar, F.; Thomas, B. An interval matrix method used to optimize the decision matrix in AHP technique for land subsidence susceptibility mapping. Environ. Earth Ences 2018, 77, 584. [Google Scholar] [CrossRef]
- Bennett, D.E.; Gosnell, H. Integrating multiple perspectives on payments for ecosystem services through a social–ecological systems framework. Ecol. Econ. 2015, 116, 172–181. [Google Scholar] [CrossRef]
- Huber, R.; Briner, S.; Peringer, A.; Lauber, S.; Seidl, R.; Widmer, A.; Gillet, F.; Buttler, A.; Le, Q.B.; Hirschi, C. Modeling social-ecological feedback effects in the implementation of payments for environmental services in pasture-woodlands. Ecol. Soc. 2013, 18, 41. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.; Provencher, B.; Bishop, R. Valuing a Spatially Variable Environmental Resource:Reducing Non-Point-Source Pollution in Green Bay, Wisconsin. Land Econ. 2011. [Google Scholar] [CrossRef]
- Cao, S.; Xia, C.; Xian, J.; Guo, H.; Zheng, H. Payoff of the Grain for Green policy. J. Appl. Ecol. 2020, 57. [Google Scholar] [CrossRef]
- Yuan, P.; Li, D.J.; Cai, C.S.; Xu, G.J. A novel decoupling dynamic method with third-order accuracy and controllable dissipation. Comput. Struct. 2021, 249, 44–56. [Google Scholar] [CrossRef]
- LI, G.; SHI, H. The Payment of Grain to Green Project, the Behavior Choice of Peasants and Their Gains and Losses. China Popul. Resour. Environ. 2015, 25, 152–161. [Google Scholar] [CrossRef]
- Liu, D.; Hu, Z.; Jin, L. Study on compensation rate for fallow program in groundwater over-exploited area based on rural households’ willingness to accept. China Popul. Resour. Environ. 2019, 29, 130–139. [Google Scholar]
- Gonzalezredin, J.; Luque, S.; Poggio, L.; Smith, R.; Gimona, A. Spatial Bayesian belief networks as a planning decision tool for mapping ecosystem services trade-offs on forested landscapes. Environ. Res. 2016, 144, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Li, D.J.; Yu, P. Study on optimization algorithm of tuned mass damper parameters to reduce vehicle-bridge coupled vibration. PLoS ONE. 2019, 14, e0215773. [Google Scholar] [CrossRef] [Green Version]
- Khatami, S.; Peel, M.C.; Peterson, T.J.; Western, A. Equifinality and flux mapping: A new approach to model evaluation and process representation under uncertainty. Water Resour. Res. 2019, 55, 8922–8941. [Google Scholar] [CrossRef]
- Yuan, P.; Li, D.J.; Cai, C.S.; Xu, G.J. An efficient decoupling dynamic algorithm for coupled multi-spring-systems. Comput. Struct. 2018, 209, 44–56. [Google Scholar] [CrossRef]
- Teweldebrhan, A.T.; Burkhart, J.F.; Schuler, T.V. Parameter uncertainty analysis for an operational hydrological model using residual-based and limits of acceptability approaches. Hydrol. Earth Syst. Sci. 2018, 22, 5021–5039. [Google Scholar] [CrossRef] [Green Version]
- Moges, E.; Demissie, Y.; Larsen, L.; Yassin, F. Sources of Hydrological Model Uncertainties and Advances in Their Analysis. Water 2020, 13, 28. [Google Scholar] [CrossRef]
- Che, S.G.; Zhao, B.Q.; Ting, L.Y.; Yuan, L.; Lin, Z.; Wen, H.; Shen, B. Nutrient uptake requirements with increasing grain yield for rice in China. J. Integr. Agric. 2016, 15, 907–917. [Google Scholar] [CrossRef]
Data Description | Source | Resolution |
---|---|---|
Digital elevation model | Computer Network Information Center of Chinese Academy of Sciences: Geospatial Data Cloud Platform | 30 m |
Soil type | National Earth System Science Data Platform: Cold and Arid Regions Scientific Center | 1 km |
Land use map | Government sector | 10 m |
Weather data | National Centers for Environmental Prediction Climate Forecast System Reanalysis | Daily |
Measured precipitation | Lixian Meteorological Bureau, Anxiang Meteorological Bureau in Hunan Province | Daily |
Measured runoff 1 | Government data | Daily |
Measured water quality 2 | Monitoring | Monthly |
Agricultural management | Investigation | — |
Factor | Period | NSE | R2 | RVE |
---|---|---|---|---|
Runoff | Calibration period (October 2014–April 2016) | 0.619 | 0.68 | 4.22 |
Validation period (May 2016–November 2017) | 0.712 | 0.71 | −1.77 | |
TOT_N 1 | Calibration period (January 2014–December 2015) | 0.45 | 0.5 | 1.51 |
Validation period (January 2016–December 2017) | 0.25 | 0.45 | 1.92 | |
TOT_P 1 | Calibration period (January 2014–December 2015) | 0.48 | 0.58 | 6.50 |
Validation period (January 2016–December 2017) | 0.45 | 0.3 | −0.98 |
Scenario | Farmland Type | COST 1 | B2 | B3 | B4 | B5 |
---|---|---|---|---|---|---|
S0 | Rice land | 0 | The value of each grid is calculated by Formula (2) | The value of each grid is calculated by Formula (3) | 1 | 0.667 |
S0 | Dry land | 0 | 0.905 | 0.667 | ||
S1 | Rice land | 715 | 0.857 | 0.786 | ||
S1 | Dry land | 715 | 0.81 | 0.813 | ||
S2 | Rice land | 525 | 0.762 | 0.895 | ||
S2 | Dry land | 525 | 0.667 | 1 | ||
S3 | Rice land | 500 | 0.345 | 0.482 | ||
S3 | Dry land | 500 | 0.345 | 0.478 |
Land Type | Data | Area/km2 | TN/t | Organic N/t | Nitrate N/t | TP/t | Organic P/t | Inorganic P/t |
---|---|---|---|---|---|---|---|---|
Rice land | Value | 112.00 | 672.10 | 99.70 | 572.40 | 63.81 | 7.24 | 56.57 |
Percentage | 28.87% | 57.82% | 42.28% | 61.78% | 47.41% | 43.43% | 47.97% | |
Dry land | Value | 64.15 | 436.25 | 122.50 | 313.75 | 65.25 | 7.77 | 57.49 |
Percentage | 16.53% | 37.53% | 51.95% | 33.86% | 48.48% | 46.57% | 48.75% | |
Orchard | Value | 9.15 | 34.87 | 0.11 | 34.76 | 0.48 | 0.01 | 0.48 |
Percentage | 2.36% | 3.00% | 0.05% | 3.76% | 0.36% | 0.03% | 0.41% | |
Forest | Value | 76.35 | 9.30 | 5.59 | 3.71 | 1.90 | 0.68 | 1.22 |
Percentage | 19.68% | 0.80% | 2.36% | 0.40% | 1.41% | 4.05% | 1.03% | |
Grass land | Value | 5.28 | 1.28 | 1.06 | 0.21 | 0.36 | 0.14 | 0.23 |
Percentage | 1.36% | 0.11% | 0.46% | 0.02% | 0.27% | 0.80% | 0.19% |
Scenario | Land Type | Nitrogen Input (kg/ha) | Phosphate Input (kg/ha) | Nitrogen Load (kg/ha) | Phosphate Load (kg/ha) | Nitrogen Loss Rate (%) | Phosphate Loss Rate (%) | Change Rate (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Nitrogen | Phosphate | Nitrogen Loss Rate | Hosphate Loss Rate | ||||||||
S0 | Rice land | 509.57 | 276.37 | 317.61 | 30.58 | 62.33 | 11.06 | / | / | / | / |
Dry land | 700.34 | 305.54 | 315.03 | 47.77 | 44.98 | 15.64 | / | / | / | / | |
Orchard | 293.18 | 203.60 | 196.57 | 2.79 | 67.05 | 1.37 | / | / | / | / | |
Forest | 0 | 0 | 7.13 | 1.48 | / | / | / | / | / | / | |
Grass land | 0 | 0 | 13.56 | 3.75 | / | / | / | / | / | / | |
S1 | Rice land | 254.79 | 138.19 | 150.85 | 20.11 | 59.21 | 14.55 | −52.51 | −34.23 | −5.01 | 31.54 |
Dry land | 350.17 | 152.77 | 139.27 | 30.63 | 39.77 | 20.05 | −55.79 | −35.89 | −11.58 | 28.21 | |
Orchard | 146.59 | 101.80 | 99.42 | 1.19 | 67.82 | 1.17 | −49.43 | −57.32 | 1.15 | −14.65 | |
Forest | 0 | 0 | 7.13 | 1.48 | / | / | 0 | 0 | / | / | |
Grass land | 0 | 0 | 13.56 | 3.75 | / | / | 0 | 0 | / | / | |
S2 | Rice land | 254.79 | 138.19 | 120.11 | 10.53 | 47.14 | 7.62 | −62.18 | −65.57 | −24.37 | −31.13 |
Dry land | 350.17 | 152.77 | 110.09 | 17.22 | 31.44 | 11.27 | −65.05 | −63.96 | −30.11 | −27.92 | |
Orchard | 293.18 | 203.60 | 196.57 | 2.79 | 67.05 | 1.37 | 0 | 0 | 0 | 0 | |
Forest | 0 | 0 | 7.13 | 1.48 | / | / | 0 | 0 | / | / | |
Grass land | 0 | 0 | 13.56 | 3.75 | / | / | 0 | 0 | / | / | |
S3 | Rice land | 509.57 | 276.37 | 328.23 | 32.41 | 64.41 | 11.73 | 3.34 | 5.98 | 3.34 | 6.06 |
Dry land | 700.34 | 305.54 | 324.03 | 49.14 | 46.27 | 16.08 | 2.86 | 2.87 | 2.87 | 2.81 | |
Orchard | 293.18 | 203.60 | 210.41 | 2.42 | 71.77 | 1.19 | 7.04 | −13.26 | 7.04 | −13.14 | |
Forest | 0 | 0 | 6.10 | 1.11 | / | / | −14.45 | −25.00 | / | / | |
Grass land | 0 | 0 | 13.46 | 3.72 | / | / | −0.74 | −0.80 | / | / |
Scenario | Farmland Type | Averages of All Target Grids | ||||||
---|---|---|---|---|---|---|---|---|
B2 | B3 | C6 | C7 | C8 | D9 | E10 | ||
S0 | Rice land | 0.3735 | 0.7549 | 0.4822 | 1.0000 | 0.6670 | 0.6602 | - |
S0 | Dry land | 0.3796 | 0.6970 | 0.4701 | 0.9048 | 0.6670 | 0.6356 | - |
S1 | Rice land | 0.7144 | 0.8396 | 0.7501 | 0.8571 | 0.7860 | 0.7860 | 1.760 × 10−4 |
S1 | Dry land | 0.7257 | 0.8040 | 0.7480 | 0.8095 | 0.8130 | 0.7858 | 2.100 × 10−4 |
S2 | Rice land | 0.7633 | 0.9138 | 0.8062 | 0.7619 | 0.8953 | 0.8315 | 3.262 × 10−4 |
S2 | Dry land | 0.7720 | 0.8920 | 0.8062 | 0.6667 | 1.0000 | 0.8523 | 4.126 × 10−4 |
S3 | Rice land | 0.9966 | 0.9957 | 0.9964 | 0.3452 | 0.4823 | 0.6638 | 1.365 × 10−4 |
S3 | Dry land | 0.9952 | 0.9940 | 0.9948 | 0.3452 | 0.4780 | 0.6615 | 2.021 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Lei, G.; Yu, P. Eco-Compensation Schemes for Controlling Agricultural Non-Point Source Pollution in Maoli Lake Watershed. Water 2021, 13, 1536. https://doi.org/10.3390/w13111536
Zheng Y, Lei G, Yu P. Eco-Compensation Schemes for Controlling Agricultural Non-Point Source Pollution in Maoli Lake Watershed. Water. 2021; 13(11):1536. https://doi.org/10.3390/w13111536
Chicago/Turabian StyleZheng, Yumei, Guangchun Lei, and Peng Yu. 2021. "Eco-Compensation Schemes for Controlling Agricultural Non-Point Source Pollution in Maoli Lake Watershed" Water 13, no. 11: 1536. https://doi.org/10.3390/w13111536
APA StyleZheng, Y., Lei, G., & Yu, P. (2021). Eco-Compensation Schemes for Controlling Agricultural Non-Point Source Pollution in Maoli Lake Watershed. Water, 13(11), 1536. https://doi.org/10.3390/w13111536