Simulation of the Potential Distribution of the Glacier Based on Maximum Entropy Model in the Tianshan Mountains, China
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Description
3.2. Research Method
3.2.1. Collection of Glacier Sampling Points
3.2.2. Environmental Parameters
3.2.3. Glacier Distribution Model Processing
3.2.4. Model Adaptability and Determination of Glacier Potential Distribution Area
4. Results
4.1. Potential Distribution of Tienshan Glaciers in China under Current Climate Environment
4.1.1. Overall Characteristics of the Glacier Potential Distribution
4.1.2. Spatial Characteristics of the Glacier Potential Distribution
4.2. Features of the Glacier Shifts in Tianshan Mountains of China under Future Climate Scenarios
5. Discussion
5.1. Importance of Environmental Variables to Potential Distribution of Mountain Glaciers
5.2. Threshold Range of Environmental Factors Affecting Potential Distribution of Glaciers
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kehrwald, N.M.; Thompson, L.G.; Tandong, Y.; Mosley-Thompson, E.; Schotterer, U.; Alfimov, V.; Beer, J.; Eikenberg, J.; Davis, M.E. Mass loss on Himalayan glacier endangers water resources. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, G.; Wang, Y. Response of biomass spatial pattern of alpine vegetation to climate change in permafrost region of the Qinghai-Tibet Plateau, China. J. Mount. Sci. 2010, 7, 301–314. [Google Scholar] [CrossRef]
- Adler, C.; Huggel, C.; Orlove, B.; Nolin, A. Climate change in the mountain cryosphere: Impacts and responses. Region. Environ. Change 2019, 19, 1225–1228. [Google Scholar] [CrossRef] [Green Version]
- Robson, B.A.; Nuth, C.; Dahl, S.O.; Hölbling, D.; Strozzi, T.; Nielsen, P.R. Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sens. Environ. 2015, 170, 372–387. [Google Scholar] [CrossRef] [Green Version]
- Aizen, V.B.; Kuzmichenok, V.A.; Surazakov, A.B.; Aizen, E.M. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Glob. Planet. Chang. 2007, 56, 328–340. [Google Scholar] [CrossRef]
- Stefaniak, A.M.; Robson, B.A.; Cook, S.J.; Clutterbuck, B.; Midgley, N.G.; Labadz, J.C. Mass balance and surface evolution of the debris-covered Miage Glacier, 1990–2018. Geomorphology 2021, 373. [Google Scholar] [CrossRef]
- Li, Z.; Li, K.; Wang, L. Study on recent glacier changes and their impact on water resources in xinjiang, north western china. Quat. Sci. 2010, 30, 96–106. (In Chinese) [Google Scholar]
- Azam, M.F.; Srivastava, S. Mass balance and runoff modelling of partially debris-covered Dokriani Glacier in monsoon-dominated Himalaya using ERA5 data since 1979. J. Hydrol. 2020, 590. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China. J. Geograph. Sci. 2017, 72, 1606–1620. (In Chinese) [Google Scholar]
- Miles, K.E.; Hubbard, B.; Irvine-Fynn, T.D.L.; Miles, E.S.; Quincey, D.J.; Rowan, A.V. Hydrology of debris-covered glaciers in High Mountain Asia. Earth Sci. Rev. 2020, 207, 207. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Liu, Y.; Hu, B.X.; Hao, Y.; Huo, X.; Fan, Y.; Yeh, T.J.; Wang, Z.-L. Analyzing effects of climate change on streamflow in a glacier mountain catchment using an ARMA model. Quat. Int. 2015, 358, 137–145. [Google Scholar] [CrossRef]
- Wortmann, M.; Bolch, T.; Su, B.; Krysanova, V. An efficient representation of glacier dynamics in a semi-distributed hydrological model to bridge glacier and river catchment scales. J. Hydrol. 2019, 573, 136–152. [Google Scholar] [CrossRef] [Green Version]
- Carey, M.; Baraer, M.; Mark, B.G.; French, A.; Bury, J.; Young, K.R.; McKenzie, J.M. Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru). J. Hydrol. 2014, 518, 60–70. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Z.; Li, Q.; Wang, S.; Cheng, L. Sensitivity analysis of glacier systems to climate warming in China. J. Geogr. Sci. 2008, 18, 190–200. [Google Scholar] [CrossRef]
- Mira, K.; Rijan, B.; Rakesh, K. Future projection of cryospheric and hydrologic regimes in Koshi River basin, Central Himalaya, using coupled glacier dynamics and glacio-hydrological models. J. Glaciol. 2020, 66, 1–15. [Google Scholar] [CrossRef]
- Cowton, T.R.; Sole, A.J.; Nienow, P.W.; Slater, D.A.; Christoffersen, P. Linear response of east Greenland’s tidewater glaciers to ocean/atmosphere warming. Proc. Natl. Acad. Sci. USA 2018, 115, 7907–7912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecol. Model. 2008, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Li, A.; Lei, G.; Xie, X. A SD-MaxEnt-CA model for simulating the landscape dynamic of natural ecosystem by considering socio-economic and natural impacts. Ecol. Model. 2019, 410. [Google Scholar] [CrossRef]
- Lababpour, A. The response of dust emission sources to climate change: Current and future simulation for southwest of Iran. Sci. Total Environ. 2020, 714. [Google Scholar] [CrossRef]
- Thonfeld, F.; Steinbach, S.; Muro, J.; Hentze, K.; Games, I.; Näschen, K.; Kauzeni, P.F. The impact of anthropogenic land use change on the protected areas of the Kilombero catchment, Tanzania. ISPRS J. Photogramm. Remote Sens. 2020, 168, 41–55. [Google Scholar] [CrossRef]
- Cao, Y.; Li, G.; Cao, Y.; Wang, J.; Fang, X.; Zhou, L.; Liu, Y. Distinct types of restructuring scenarios for rural settlements in a heterogeneous rural landscape: Application of a clustering approach and ecological niche modeling. Habitat. Int. 2020, 104. [Google Scholar] [CrossRef]
- Azareh, A.; Rahmati, O.; Rafiei-Sardooi, E.; Sankey, J.B.; Lee, S.; Shahabi, H.; Ahmad, B.B. Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models. Sci. Total Environ. 2019, 655, 684–696. [Google Scholar] [CrossRef]
- Zhong, Y.; Xue, Z.; Jiang, M.; Liu, B.; Wang, G. The application of species distribution modeling in wetland restoration: A case study in the Songnen Plain, Northeast China. Ecol. Indic. 2021, 121. [Google Scholar] [CrossRef]
- Kaky, E.; Nolan, V.; Alatawi, A.; Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 2020, 60, 60. [Google Scholar] [CrossRef]
- Parisien, M.A.; Moritz, M.A. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol. Monogr. 2009, 79, 127–154. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Li, W.; Li, Z. Quantifying the contributions of snow/glacier meltwater to river runoff in the Tianshan Mountains, Central Asia. Glob. Planet. Chang. 2019, 174, 47–57. [Google Scholar] [CrossRef]
- Li, Q.; Yang, T.; Zhang, F.; Qi, Z.; Li, L. Snow depth reconstruction over last century: Trend and distribution in the Tianshan Mountains, China. Glob. Planet. Chang. 2019, 173, 73–82. [Google Scholar] [CrossRef]
- Xing, W.; Li, Z.; Zhang, H. Spatial-temporal variation of glacier resources in Chinese Tianshan Mountains since 1959. Acta Geogr. Sin. 2017, 72, 1594–1605. (In Chinese) [Google Scholar]
- Lu, X.; Tang, G.; Wang, X.; Liu, Y.; Jia, L.; Xie, G.; Li, S.; Zhang, Y. Correcting GPM IMERG precipitation data over the Tianshan Mountains in China. J. Hydrol. 2019, 575, 1239–1252. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, P.; Singh, V.P.; An, K.; Huang, J. Spatial downscaling of TRMM-based precipitation data using vegetative response in Xinjiang, China. Int. J. Climatol. 2017, 37, 3895–3909. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- He, S.; Su, Y.; Shahtahmassebi, A.R.; Huang, L.; Zhou, M.; Gan, M.; Deng, J.; Zhao, G.; Wang, K. Assessing and mapping cultural ecosystem services supply, demand and flow of farmlands in the Hangzhou metropolitan area, China. Sci. Total Environ. 2019, 692, 756–768. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Wei, J.; Jiang, Z.; Zhang, Y.; Liu, S. Spatiotemporal variability of glacier changes and their controlling factors in the Kanchenjunga region, Himalaya based on multi-source remote sensing data from 1975 to 2015. Sci. Total Environ. 2020, 745. [Google Scholar] [CrossRef]
- Zhou, Z.; Han, N.; Liu, J.; Yan, Z.; Xu, C.; Cai, J.; Shang, Y.; Zhu, J. Glacier variations and their response to climate change in an arid inland river basin of Northwest China. J. Arid. Land 2020, 12, 1–17. [Google Scholar] [CrossRef]
- Azmat, M.; Wahab, A.; Huggel, C.; Qamar, M.U.; Hussain, E.; Ahmad, S.; Waheed, A. Climatic and hydrological projections to changing climate under CORDEX-South Asia experiments over the Karakoram-Hindukush-Himalayan water towers. Sci. Total Environ. 2020, 703. [Google Scholar] [CrossRef]
- Błaszczyk, M.; Jania, J.; Ciepły, M.; Grabiec, M.; Ignatiuk, D.; Kolondra, L.; Kruss, A.; Luks, B.; Moskalik, M.; Pastusiak, T.; et al. Factors Controlling Terminus Position of Hansbreen, a Tidewater Glacier in Svalbard. J. Geophys. Res. Earth Surf. 2021, 126. [Google Scholar] [CrossRef]
- Naudiyal, N.; Wang, J.; Ning, W.; Gaire, N.P.; Peili, S.; Yanqiang, W.; Jiali, H.; Ning, S. Potential distribution of Abies, Picea, and Juniperus species in the sub-alpine forest of Minjiang headwater region under current and future climate scenarios and its implications on ecosystem services supply. Ecol. Indic. 2021, 121. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.; Wang, Y.; Wen, S.; Gao, M.; Lv, Y.; Jiang, S.; Jiang, T.; et al. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2020. [Google Scholar] [CrossRef]
- Stoorvogel, J.J.; Bakkenes, M.; Temme, A.J.A.M.; Batjes, N.H.; Brink, B.J.E. S-World: A Global Soil Map for Environmental Modelling. Land Degrad. Dev. 2016, 28, 22–33. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Elith, J.; H Graham, C.; P Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.; J Hijmans, R.; Huettmann, F.; R Leathwick, J.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhang, Y.; Huang, D.; Wang, H.; Cao, Q.; Fan, P.; Yang, N.; Zheng, P.; Wang, R. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci. Total Environ. 2020, 744. [Google Scholar] [CrossRef]
- Wang, G.; Wang, C.; Guo, Z.; Dai, L.; Wu, Y.; Liu, H.; Li, Y.; Chen, H.; Zhang, Y.; Zhao, Y.; et al. Integrating Maxent model and landscape ecology theory for studying spatiotemporal dynamics of habitat: Suggestions for conservation of endangered Red-crowned crane. Ecol. Indic. 2020, 116. [Google Scholar] [CrossRef]
- Araújo, M.B.; Pearson, R.G.; Wilfried, T.; Markus, E. Validation of species–climate impact models under climate change. Glob. Change Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, L.; He, X.; Li, Z.; Wang, P. Evaluation on glaciers ecological services value in the Tianshan Mountains, Northwest China. J. Geograph. Sci. 2019, 29, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Zhao, S. Study of the Spatial Distribution Pattern of the Digital Glacial Geomorphology in China. J. Glaciol. Geocryol. 2009, 31, 587–596. (In Chinese) [Google Scholar]
- Zhao, G.; Zhang, Z.; Liu, L.; Li, Z.; Wang, P.; Xu, L. Simulation and construction of the glacier mass balance in the Manas River Basin, Tianshan, China from 2000 to 2016. J. Geograph. Sci. 2020, 30, 988–1004. [Google Scholar] [CrossRef]
- D’Agostino, R.; Lionello, P. The atmospheric moisture budget in the Mediterranean: Mechanisms for seasonal changes in the Last Glacial Maximum and future warming scenario. Quat. Sci. Rev. 2020, 241. [Google Scholar] [CrossRef]
- Sun, M.; Yao, X.; Li, Z. Estimation of Tailan River Discharge in the Tianshan Mountains in the 21st Century. Clim. Chang. Res. 2012, 8, 33–40. (In Chinese) [Google Scholar]
- Shi, Y.; Liu, S. Estimation on the response of glaciers in China to the global warming in the 21st century. Chin. Sci. Bull. 2000, 45, 668–672. (In Chinese) [Google Scholar] [CrossRef]
- Xie, Z.-C.; Wang, X.; Feng, Q.-H.; Liu, C.-H.; Li, Q.-Y. Modeling the response of glacier systems to climate warming in China. Ann. Glaciol. 2006, 43, 313–316. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Y.; Yao, X.J.; Guo, W.Q.; Xu, J.; Shangguan, D.; Wei, J.; Bao, W.; Wu, L. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 3–16. (In Chinese) [Google Scholar]
- Wang, S.; Zhang, M.; Li, Z.; Wang, F.; Li, H.; Li, Y.; Huang, X. Response of Glacier Area Variation to Climate Change in Chinese Tianshan Mountains in the Past 50 Years. Acta Geogr. Sin. 2011, 66, 38–46. (In Chinese) [Google Scholar]
- Jiao, K.; Jing, Z.; Han, T.; Yang, H.; Ye, B.; Li, Z. Variation of the Glacier No.1 at the Headwaters of the rǜmqi Riverin the Tianshan Mountains during the Past 42 Years and Its Trend Prediction. J. Glaciol. Geocryol. 2004, 3, 253–260. (In Chinese) [Google Scholar]
- Jiang, Z.; Zhang, J.; Zhang, Z.; Liu, S.; Wei, J.; Guo, W.; Zhu, C.; Huang, D. Glacier change and mass balance (1972–2011) in Ulugh Muztagh, eastern Kunlun Mountains, monitored by remote sensing. Remote Sens. Land Resour. 2019, 4, 128–136. (In Chinese) [Google Scholar]
- Mernild, S.H.; Liston, G.E.; Kane, D.L.; Knudsen, N.T.; Hasholt, B. Snow, runoff, and mass balance modeling for the entire Mittivakkat Glacier (1998–2006), Ammassalik Island, SE Greenland. Geogr. Tidsskrift-Danish J. Geogr. 2008, 108, 121–136. [Google Scholar] [CrossRef]
- Liang, P.P.; Liu, S.H.; He, Z.H.; Chen, Y.; Song, S.; Wang, K. Analysis of thermal environment changes in karst area based on exposed bare soils and albedo. Sci. Technol. Eng. 2020, 20, 2376–2383. (In Chinese) [Google Scholar]
- Thind, P.S.; Kumar, D.; John, S. Source apportionment of the light absorbing impurities present in surface snow of the India Western Himalayan glaciers. Atmos. Environ. 2020, 246. [Google Scholar] [CrossRef]
Category | Time | Resolution | Official Website (Accessed Date 27 May 2021) |
---|---|---|---|
Second Glacier Inventory Dataset | 2009 | 30 m | National Cryosphere Desert Data Center (https://www.crensed.ac.cn/portal/) |
Bio01-Bio19 | 1970–2000 (Reference years) | 30″ | Worldclim Global Climate Data (http://www.worldclim.org) |
solar radiation | |||
wind speed | |||
surface reflectance | 2009 | 250 m | Geospatial Data Cloud (http://www.gscloud.cn/) |
ssp126bc | 2041–2060 | 2.5′ | Worldclim Global Climate Data (http://www.worldclim.org) |
ssp585bc | |||
ssp126bc | 2081–2100 | ||
ssp585bc | |||
DEM | — | 90 m | Geospatial Data Cloud (http://www.gscloud.cn/) |
Abbreviation | Description | Contribution (%) | Cumulative Contribution (%) |
---|---|---|---|
Bio13 | Precipitation of Wettest Month (mm) | 30.5 | 30.5 |
Alt | Altitude (m) | 24 | 54.5 |
Bio1 | Annual Mean Temperature (°C) | 10.2 | 64.7 |
Bio4 | Temperature Seasonality (standard deviation × 100) (C of V) | 6.1 | 70.8 |
Bio7 | Temperature Annual Range (Bio5–Bio6) (°C) | 6 | 76.8 |
Sur | surface reflectance | 5 | 81.8 |
Bio6 | Min Temperature of Coldest Month (°C) | 4.8 | 86.6 |
Asp | Aspect (°) | 3.6 | 90.2 |
Bio12 | Annual Precipitation (mm) | 2.6 | 92.8 |
Bio2 | Mean Diurnal Range (Mean of monthly (max temp-min temp)) (°C) | 2.2 | 95 |
SR3 | Solar radiation in March (kJ m−2 day−1) | 1.3 | 96.3 |
SR5 | Solar radiation in May (kJ m−2 day−1) | 1.1 | 97.4 |
Wind01 | wind speed in January (m s−1) | 1.1 | 98.5 |
SR10 | Solar radiation in October(kJ m−2 day−1) | 1 | 99.5 |
Wind10 | Wind speed in October (m s−1) | 0.2 | 99.7 |
Bio14 | Precipitation of Driest Month (mm) | 0.2 | 99.9 |
Slp | Slope (°) | 0.1 | 100 |
Glacier Suitability | Potential Distribution Area /km2 | Coverage Rate /% | Average Altitude /m |
---|---|---|---|
Non suitable | 313,105.65 | 95.5 | — |
Low suitable | 3019.11 | 0.92 | 3907.18 |
Medium suitable | 2801.68 | 0.85 | 3984.5 |
High suitable | 7886.84 | 2.41 | 4198.74 |
Second glacier inventory | 7246.60 | 2.22 | 4202.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, Z.; Liu, L.; Li, Z.; Wang, P.; Xu, L.; Zhao, G.; Tian, H.; Kang, Z.; Chen, H.; et al. Simulation of the Potential Distribution of the Glacier Based on Maximum Entropy Model in the Tianshan Mountains, China. Water 2021, 13, 1541. https://doi.org/10.3390/w13111541
Wang T, Zhang Z, Liu L, Li Z, Wang P, Xu L, Zhao G, Tian H, Kang Z, Chen H, et al. Simulation of the Potential Distribution of the Glacier Based on Maximum Entropy Model in the Tianshan Mountains, China. Water. 2021; 13(11):1541. https://doi.org/10.3390/w13111541
Chicago/Turabian StyleWang, Tongxia, Zhengyong Zhang, Lin Liu, Zhongqin Li, Puyu Wang, Liping Xu, Guining Zhao, Hao Tian, Ziwei Kang, Hongjin Chen, and et al. 2021. "Simulation of the Potential Distribution of the Glacier Based on Maximum Entropy Model in the Tianshan Mountains, China" Water 13, no. 11: 1541. https://doi.org/10.3390/w13111541
APA StyleWang, T., Zhang, Z., Liu, L., Li, Z., Wang, P., Xu, L., Zhao, G., Tian, H., Kang, Z., Chen, H., & Zhang, X. (2021). Simulation of the Potential Distribution of the Glacier Based on Maximum Entropy Model in the Tianshan Mountains, China. Water, 13(11), 1541. https://doi.org/10.3390/w13111541