Application of SWAT in Hydrological Simulation of Complex Mountainous River Basin (Part II: Climate Change Impact Assessment)
Abstract
:1. Introduction
2. Methodology and Data
2.1. Hydrological Modelling
2.2. Selection of Climate Models
2.3. Bias Correction
2.4. Climatology under Climate Change
2.4.1. Climate Change Impact Analysis of Future Flows
2.4.2. Frequency Analysis
3. Results
3.1. Climate Model Selection
3.2. Bias Correction
3.3. Climatology under Climate Change
3.4. General Hydrology under Climate Change
3.5. Variation in Monthly Flows
3.6. Variation in High and Low Flows
3.7. Frequency Analysis of Flow
3.7.1. One-Day-Maximum Flow
3.7.2. One-Day-Minimum Flow
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wrigley, E.A. Energy and the English industrial revolution. Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 2013, 371, 20110568. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, P.A.; Cleveland, C.J. U.S. Energy transitions 1780–2010. Energies 2014, 7, 7955–7993. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Pathways to Sustainable Energy-Accelerating Energy Transition in UNECE Region; ECE Energy Series no.67; United Nations Publication: New York, NY, USA, 2020; ISBN 9789211172287. [Google Scholar]
- Mohajan, H.K. The First Industrial Revolution: Creation of a New Global Human Era. J. Soc. Sci. Humanit. 2019, 5, 377–387. [Google Scholar]
- Stern, D.I. The role of energy in economic growth. In International Energy and Poverty; Routledge: Milton, UK, 2012; pp. 35–47. ISBN 9781315762203. [Google Scholar] [CrossRef] [Green Version]
- IPCC Drivers, Trends and Mitigation. In Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2015; pp. 351–412. [CrossRef]
- Yoro, K.O.; Daramola, M.O. CO2 Emission Sources, Greenhouse Gases, and the Global Warming Effect; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128196571. [Google Scholar]
- Stern, N.H.; Peters, S.; Bakhshi, V.; Bowen, A.; Cameron, C.; Catovsky, S.; Zenghelis, D. Stern Review: The Economics of Climate Change; Cambridge University Press: Cambridge, UK, 2006; Volume 30, p. 2006. [Google Scholar]
- Le Treut, H.; Cubasch, U.; Allen, M. Historical Overview of Climate Change Science. In Notes; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; Volume 16. [Google Scholar]
- United Nations. United Nations Conference on the Human Environment; United Nations: New York, NY, USA, 1973; Volume 3. [Google Scholar]
- Houghton, E. Climate Change 1995: The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1996; Volume 2, ISBN 0521564360. [Google Scholar]
- United Nations. Report of the United Nations Conference on Environment and Development; United Nations: New York, NY, USA, 1992; Volume l. [Google Scholar]
- United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1998. [Google Scholar]
- UNFCCC. Addendum Part Two: Action Taken by the Conference of the Parties at Its Twenty-First Session. In Proceedings of the Report of the Conference of the Parties on Its Fifteenth Session; Copenhagen, Denmark, 7–19 December 2009, United Nations: New York, NY, USA.
- UNFCCC. Addendum Part Two: Action Taken by the Conference of the Parties at Its Twenty-First Session (FCCC/CP/2015/10/Add.1) and (FCCC/CP/2015/10/Add.3). In Proceedings of the Report of the Conference of the Parties on Its Twenty-First Session; Paris, France, 30 November–13 December 2015, United Nations: New York, NY, USA; p. 01192.
- IPCC. Global Warming of 1.5 °C An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Pörtner, H.-O., Skea, J., Matthews, J.B.R., Tignor, M., Gomis, M.I., Zhai, P., Shukla, P.R., Pidcock, R., Connors, S., Maycock, T., et al., Eds.; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Robock, A.; Turco, R.P.; Harwell, M.A.; Ackerman, T.P.; Andressen, R.; Chang, H.S.; Sivakumar, M.V.K. Use of general circulation model output in the creation of climate change scenarios for impact analysis. Clim. Chang. 1993, 23, 293–335. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Navarro, A.; Moreno, R.; Sánchez, J.L.; García-Ortega, E. Regional climate models: 30 years of dynamical downscaling. Atmos. Res. 2020, 235, 104785. [Google Scholar] [CrossRef]
- Oceanic, N.; Brunswick, N.; Oceanic, N.; Survey, U.S.G.; Oceanic, N.; Biology, E. GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation and simulation characteristics. J. Clim. 2006, 19, 643–674. [Google Scholar]
- Edwards, P.N. History of climate modeling. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef] [Green Version]
- Chylek, P.; Li, J.; Dubey, M.K.; Wang, M.; Lesins, G. Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmos. Chem. Phys. Discuss. 2011, 11, 22893–22907. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.K.; Cha, D.H. Regional climate modeling for Asia. Geosci. Lett. 2020, 7, 13. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Thatcher, M.; McGregor, J.; Dix, M.; Katzfey, J. A new approach for coupled regional climate modeling using more than 10,000 cores. IFIP Adv. Inf. Commun. Technol. 2015, 448, 599–607. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Lutz, A.F.; ter Maat, H.W.; Biemans, H.; Shrestha, A.B.; Wester, P.; Immerzeel, W.W. Selecting representative climate models for climate change impact studies: An advanced envelope-based selection approach. Int. J. Climatol. 2016, 36, 3988–4005. [Google Scholar] [CrossRef] [Green Version]
- Dahal, P.; Shrestha, M.L.; Panthi, J.; Pradhananga, D. Modeling the future impacts of climate change on water availability in the Karnali River Basin of Nepal Himalaya. Environ. Res. 2020, 185, 109430. [Google Scholar] [CrossRef]
- Lutz, A.F.; Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shrestha, A.B.; Bierkens, M.F.P. Climate change impacts on the upper indus hydrology: Sources, shifts and extremes. PLoS ONE 2016, 11, e0165630. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Shrestha, M.; Babel, M.S. Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, Nepal. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Bharati, L.; Bhattarai, U.; Khadka, A.; Gurung, P.; Neumann, L.E.; Penton, D.J.; Dhaubanjar, S.; Nepal, S. From the Mountains to the Plains: Impact of Climate Change on Water Resources in the Koshi River Basin; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2019; Volume 187, ISBN 9290908858. [Google Scholar]
- Molden, D.J.; Shrestha, A.B.; Nepal, S.; Immerzeel, W.W. Downstream implications of climate change in the Himalayas. Water Secur. Clim. Chang. Sustain. Dev. 2016, 65–82. [Google Scholar]
- Devkota, R.P.; Pandey, V.P.; Bhattarai, U.; Shrestha, H.; Adhikari, S.; Dulal, K.N. Climate change and adaptation strategies in Budhi Gandaki River Basin, Nepal: A perception-based analysis. Clim. Chang. 2017, 140, 195–208. [Google Scholar] [CrossRef]
- Khatri, H.B.; Jain, M.K.; Jain, S.K. Modelling of streamflow in snow dominated Budhigandaki catchment in Nepal. J. Earth Syst. Sci. 2018, 127, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pangali Sharma, T.P.; Zhang, J.; Khanal, N.R.; Prodhan, F.A.; Paudel, B.; Shi, L.; Nepal, N. Assimilation of snowmelt runoff model (SRM) using satellite remote sensing data in Budhi Gandaki River Basin, Nepal. Remote Sens. 2020, 12, 1951. [Google Scholar] [CrossRef]
- Marahatta, S.; Aryal, D.; Devkota, L.P. Application of SWAT in Complex Mountainous River Basin (Part I: Model Development). Water 2021. submitted for publication. [Google Scholar]
- Pandey, V.P.; Dhaubanjar, S.; Bharati, L.; Thapa, B.R. Spatio-temporal distribution of water availability in Karnali-Mohana Basin, Western Nepal: Hydrological model development using multi-site calibration approach (Part-A). J. Hydrol. Reg. Stud. 2020, 29, 100690. [Google Scholar] [CrossRef]
- Bhatta, B.; Shrestha, S.; Shrestha, P.K.; Talchabhadel, R. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena 2019, 181, 104082. [Google Scholar] [CrossRef]
- Kaini, S.; Nepal, S.; Pradhananga, S.; Gardner, T.; Sharma, A.K. Impacts of climate change on the flow of the transboundary Koshi River, with implications for local irrigation. Int. J. Water Resour. Dev. 2020, 1–26. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R.; Ramanarayanan, T.S.; Arnold, J.G.; Bednarz, S.T.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil & Water Assessment Tool: Input/output documentation. Version 2012. Texas Water Resources Institute TR-439. 2013. Available online: https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf (accessed on 29 May 2021).
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Jakob Themeßl, M.; Gobiet, A.; Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 2011, 31, 1530–1544. [Google Scholar] [CrossRef]
- Pandey, V.P.; Dhaubanjar, S.; Bharati, L.; Thapa, B.R. Hydrological response of Chamelia watershed in Mahakali Basin to climate change. Sci. Total Environ. 2019, 650, 365–383. [Google Scholar] [CrossRef]
- Lenderink, G.; Buishand, A.; Van Deursen, W. Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci. 2007, 11, 1145–1159. [Google Scholar] [CrossRef]
- Schmidli, J.; Frei, C.; Vidale, P.L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol. 2006, 26, 679–689. [Google Scholar] [CrossRef]
- Terink, W.; Hurkmans, R.T.W.L.; Torfs, P.J.J.F.; Uijlenhoet, R. Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin. Hydrol. Earth Syst. Sci. 2010, 14, 687–703. [Google Scholar] [CrossRef] [Green Version]
- Piani, C.; Weedon, G.P.; Best, M.; Gomes, S.M.; Viterbo, P.; Hagemann, S.; Haerter, J.O. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol. 2010, 395, 199–215. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions. Hydrol. Earth Syst. Sci. 2013, 17, 5061–5077. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D.; Widmann, M. Cross-validation of bias-corrected climate simulations is misleading. Hydrol. Earth Syst. Sci. 2018, 22, 4867–4873. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Gumbel, E.J. Return Period of Flood Flows. Ann. Math. Stat. 1941, 12, 163–190. [Google Scholar] [CrossRef]
- Devkota, R.P.; Maraseni, T. Flood risk management under climate change: A hydro-economic perspective. Water Sci. Technol. Water Supply 2018, 18, 1832–1840. [Google Scholar] [CrossRef]
- Devkota, R.P.; Bhattarai, U. Assessment of climate change impact on floods from a techno-social perspective. J. Flood Risk Manag. 2018, 11, S186–S196. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; TATA McGrawHill Inc.: New York, NY, USA, 1988. [Google Scholar]
- Devkota, L.P.; Gyawali, D.R. Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal. J. Hydrol. Reg. Stud. 2015, 4, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Krajewski, W.F.; Liu, F.; Fang, W.; Xu, Z. Estimating instantaneous peak flow from mean daily flow. Hydrol. Res. 2017, 48, 1474–1488. [Google Scholar] [CrossRef]
- Devkota, R.; Bhattarai, U.; Devkota, L.; Maraseni, T.N. Assessing the past and adapting to future floods: A hydro-social analysis. Clim. Chang. 2020, 163, 1065–1082. [Google Scholar] [CrossRef]
- Dahal, V.; Shakya, N.M.; Bhattarai, R. Estimating the impact of climate change on water availability in Bagmati Basin, Nepal. Environ. Process. 2016, 3, 1–17. [Google Scholar] [CrossRef]
- Dhaubanjar, S.; Prasad Pandey, V.; Bharati, L. Climate futures for Western Nepal based on regional climate models in the CORDEX-SA. Int. J. Climatol. 2020, 40, 2201–2225. [Google Scholar] [CrossRef]
- Pandey, V.P.; Dhaubanjar, S.; Bharati, L.; Thapa, B.R. Spatio-temporal distribution of water availability in Karnali-Mohana Basin, Western Nepal: Climate change impact assessment (Part-B). J. Hydrol. Reg. Stud. 2020, 29, 100691. [Google Scholar] [CrossRef]
- MoFE. Climate Change Scenarios for Nepal for National Adaptation Plan (NAP); Ministry of Forests and Environment: Kathmandu, Nepal, 2019.
- Bajracharya, A.R.; Bajracharya, S.R.; Shrestha, A.B.; Maharjan, S.B. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Sci. Total Environ. 2018, 625, 837–848. [Google Scholar] [CrossRef]
- Mishra, Y.; Nakamura, T.; Babel, M.S.; Ninsawat, S.; Ochi, S. Impact of climate change on water resources of the Bheri River Basin, Nepal. Water 2018, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Phi Hoang, L.; Lauri, H.; Kummu, M.; Koponen, J.; Vliet, M.T.H.V.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F. Mekong River flow and hydrological extremes under climate change. Hydrol. Earth Syst. Sci. 2016, 20, 3027–3041. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xu, Y.J.; Xiao, W.; Wang, J.; Huang, Y.; Yang, H. Climate change impacts on flow and suspended sediment yield in headwaters of high-latitude regions-A case study in China’s far Northeast. Water 2017, 9, 966. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, X.; Zhang, M.; Zhang, L.; Yu, X.; Ren, L.; Liu, Y.; Jiang, S.; Yuan, F. Projected effects of climate change on future hydrological regimes in the upper Yangtze River basin, China. Adv. Meteorol. 2019, 2019, 1545746. [Google Scholar] [CrossRef]
- Wagener, T.; Wheater, H.; Gupta, H.V. Rainfall-Runoff Modelling in Gauged and Ungauged Catchments; World Scientific: Singapore, 2004; ISBN 1860944663. [Google Scholar]
- Kingston, D.G.; Thompson, J.R.; Kite, G. Uncertainty in climate change projections of discharge for the Mekong River Basin. Hydrol. Earth Syst. Sci. 2011, 15, 1459–1471. [Google Scholar] [CrossRef] [Green Version]
- Sapač, K.; Medved, A.; Rusjan, S.; Bezak, N. Investigation of low- and high-flow characteristics of karst catchments under climate change. Water 2019, 11, 925. [Google Scholar] [CrossRef] [Green Version]
Climatic Condition | GCMs for RCP 4.5 | GCMs for RCP 8.5 |
---|---|---|
Cold-dry (p10_10) | HadGEM2-CC_rcp45_r1i1p1 | HadGEM2-ES_rcp85_r1i1p1 |
Cold-wet (p10_90) | GFDL-ESM2G_rcp45_r1i1p1 | GFDL-ESM2M_rcp85_r1i1p1 |
Warm-wet (p90_90) | CanESM2_rcp45_r3i1p1 | CanESM2_rcp85_r3i1p1 |
Warm-dry (p90_10) | MPI-ESM-LR_rcp45_r3i1p1 | MIROC-ESM-CHEM_rcp85_r1i1p1 |
Conditions | Time Window | RCP 4.5 | RCP 8.5 | ||
---|---|---|---|---|---|
Flow (m3/s) | % Change | Flow (m3/s) | % Change | ||
Baseline | 240 | - | 240 | - | |
Cold-Wet (GFDL-ESM2G) | Immediate Future | 283 | 18 | 304 | 27 |
Mid Future | 287 | 20 | 317 | 33 | |
Far Future | 297 | 24 | 358 | 49 | |
Warm-Wet (CanESM2) | Immediate Future | 309 | 29 | 311 | 30 |
Mid Future | 311 | 30 | 315 | 32 | |
Far Future | 306 | 28 | 377 | 57 | |
Cold-Dry (HadGEM) | Immediate Future | 263 | 10 | 251 | 5 |
Mid Future | 297 | 24 | 272 | 14 | |
Far Future | 314 | 31 | 331 | 38 | |
Warm-Dry (MPI-ESM-LR/MIROC-ESM) | Immediate Future | 301 | 26 | 287 | 20 |
Mid Future | 288 | 20 | 334 | 39 | |
Far Future | 281 | 17 | 350 | 46 | |
Ensemble | Immediate Future | 289 | 21 | 288 | 20 |
Mid Future | 296 | 23 | 310 | 29 | |
Far Future | 299 | 25 | 354 | 48 |
Time Window | Return Period (Years) | Baseline Flow (m3/s) | % Change in Flow (RCP 4.5) | % Change in Flow (RCP 8.5) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Warm and Dry | Cold and Dry | Warm and Wet | Cold and Wet | Ensembled | Warm and Dry | Cold and Dry | Warm and Wet | Cold and Wet | Ensembled | |||
IF | 100 | 1544 | 66 | 101 | 153 | 102 | 106 | 204 | 69 | 159 | 137 | 142 |
500 | 1801 | 67 | 109 | 163 | 106 | 111 | 226 | 72 | 171 | 145 | 154 | |
1000 | 1911 | 68 | 111 | 166 | 108 | 113 | 234 | 73 | 175 | 148 | 158 | |
MF | 100 | 1544 | 71 | 126 | 205 | 79 | 120 | 215 | 167 | 180 | 200 | 190 |
500 | 1801 | 72 | 131 | 220 | 79 | 125 | 228 | 183 | 189 | 217 | 204 | |
1000 | 1911 | 72 | 133 | 226 | 78 | 127 | 233 | 188 | 192 | 223 | 209 | |
FF | 100 | 1544 | 114 | 141 | 183 | 97 | 134 | 238 | 175 | 269 | 285 | 242 |
500 | 1801 | 123 | 149 | 197 | 98 | 142 | 254 | 183 | 280 | 309 | 256 | |
1000 | 1911 | 126 | 151 | 202 | 98 | 144 | 260 | 186 | 283 | 317 | 262 |
Time window | Return Period (Years) | Baseline Flow (m3/s) | % Change in Flow (RCP 4.5) | % Change in Flow (RCP 8.5) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Warm and Dry | Cold and Dry | Warm and Wet | Cold and Wet | Ensembled | Warm and Dry | Cold and Dry | Warm and Wet | Cold and Wet | Ensembled | |||
IF | 2 | 56 | 7 | 0 | 9 | 4 | 5 | 5 | 2 | 9 | 7 | 6 |
10 | 47 | 2 | 0 | −9 | −4 | −3 | 6 | −2 | −4 | 4 | 1 | |
20 | 45 | 0 | 0 | −13 | −7 | −5 | 7 | −2 | −7 | 4 | 1 | |
MF | 2 | 56 | −4 | 5 | 4 | −7 | 0 | 0 | −2 | 4 | −2 | 0 |
10 | 47 | −11 | 0 | −11 | −15 | −9 | −11 | −15 | −15 | −15 | −14 | |
20 | 45 | −13 | −2 | −16 | −16 | −12 | −13 | −20 | −20 | −18 | −18 | |
FF | 2 | 56 | −13 | 2 | −2 | −5 | −4 | −5 | 4 | 16 | 4 | 4 |
10 | 47 | −23 | −4 | −17 | −15 | −15 | −15 | −13 | 2 | −2 | −7 | |
20 | 45 | −27 | −7 | −20 | −18 | −18 | −18 | −18 | −2 | −4 | −11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marahatta, S.; Aryal, D.; Devkota, L.P.; Bhattarai, U.; Shrestha, D. Application of SWAT in Hydrological Simulation of Complex Mountainous River Basin (Part II: Climate Change Impact Assessment). Water 2021, 13, 1548. https://doi.org/10.3390/w13111548
Marahatta S, Aryal D, Devkota LP, Bhattarai U, Shrestha D. Application of SWAT in Hydrological Simulation of Complex Mountainous River Basin (Part II: Climate Change Impact Assessment). Water. 2021; 13(11):1548. https://doi.org/10.3390/w13111548
Chicago/Turabian StyleMarahatta, Suresh, Deepak Aryal, Laxmi Prasad Devkota, Utsav Bhattarai, and Dibesh Shrestha. 2021. "Application of SWAT in Hydrological Simulation of Complex Mountainous River Basin (Part II: Climate Change Impact Assessment)" Water 13, no. 11: 1548. https://doi.org/10.3390/w13111548
APA StyleMarahatta, S., Aryal, D., Devkota, L. P., Bhattarai, U., & Shrestha, D. (2021). Application of SWAT in Hydrological Simulation of Complex Mountainous River Basin (Part II: Climate Change Impact Assessment). Water, 13(11), 1548. https://doi.org/10.3390/w13111548