Wastewater Treatment and Wood Production of Willow System in Cold Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Pilot Plant
2.3. Analytical Methods
3. Results
3.1. Water Balance
3.2. Mass Removal Rate
3.2.1. COD and BOD5
3.2.2. Nitrogen
3.2.3. Phosphorus
3.2.4. E. coli
3.3. Tree Growth
4. Discussion
4.1. Treatment Performance of the Wastewater Irrigated Short Rotation Coppice System in a Cold Climate
4.2. Design Recommendations for Mongolia
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khurelbaatar, G.; Sullivan, C.; Van Afferden, M.; Rahman, K.; Fühner, C.; Gerel, O.; Londong, J.; Müller, R. Application of primary treated wastewater to short rotation coppice of willow and poplar in Mongolia: Influence of plants on treatment performance. Ecol. Eng. 2017, 98, 82–90. [Google Scholar] [CrossRef]
- Postila, H.; Heiderscheidt, E. Function and biomass production of willow wetlands applied in the polishing phase of sewage treatment in cold climate conditions. Sci. Total. Environ. 2020, 727, 138620. [Google Scholar] [CrossRef] [PubMed]
- US-EPA. Process Design Manual: Land Treatment of Municipal Wastewater Effluents; US Environmental Protection Agency: Washington, DC, USA, 2006.
- US-EPA. Natural Systems for Wastewater Treatment in Cold Climates; US Environmental Protection Agency: Washington, DC, USA, 1987.
- Rosenqvist, H.; Aronsson, P.; Hasselgren, K.; Perttu, K. Economics of using municipal wastewater irrigation of willow coppice crops. Biomass Bioenergy 1997, 12, 1–8. [Google Scholar] [CrossRef]
- Börjesson, P.; Berndes, G. The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenergy 2006, 30, 428–438. [Google Scholar] [CrossRef]
- Ou, Z.; Sun, T.; Li, P.; Yediler, A.; Yang, G.; Kettrup, A. A production-scale ecological engineering forest system for the treatment and reutilization of municipal wastewater in the Inner Mongolia, China. Ecol. Eng. 1997, 9, 71–88. [Google Scholar] [CrossRef]
- US-EPA. Process Design Manual for Land Treatment of Municipal Wastewater; US Environmental Protection Agency: Washington, DC, USA, 1981.
- DIN EN 1899-2. Water Quality Determination of Biochemical Oxygen Demand after n Days (BODn)-Part2: Method for Undiluted Samples, German Standard; Deutsche Institut für Normen DIN: Berlin, Germany, 1998. [Google Scholar]
- MNS 5668. Method for Microbiological Analysis of Wastewater; Mongolian Standard: Ulaanbaatar, Mongolia, 2006. [Google Scholar]
- Tzanakakis, V.; Paranychianakis, N.; Kyritsis, S.; Angelakis, A. Wastewater treatment and biomass production by slow rate systems using different plant species. Water Supply 2003, 3, 185–192. [Google Scholar] [CrossRef]
- Tanner, C.C.; Sukias, J.; Upsdell, M.P. Relationships between Loading Rates and Pollutant Removal during Maturation of Gravel-Bed Constructed Wetlands. J. Environ. Qual. 1998, 27, 448–458. [Google Scholar] [CrossRef]
- Sakai, A. Freezing Resistance in Willows from Different Climates. Ecology 1970, 51, 485–491. [Google Scholar] [CrossRef]
- Gregersen, P.; Brix, H. Zero-discharge of nutrients and water in a willow dominated constructed wetland. Water Sci. Technol. 2001, 44, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidi, W.; Piccioni, E.; Bonari, E.; Nissim, W.G. Evapotranspiration and crop coefficient of poplar and willow short-rotation coppice used as vegetation filter. Bioresour. Technol. 2008, 99, 4832–4840. [Google Scholar] [CrossRef] [PubMed]
- Paranychianakis, N.; Angelakis, A.N.; Leverenz, H.; Tchobanoglous, G. Treatment of Wastewater with Slow Rate Systems: A Review of Treatment Processes and Plant Functions. Crit. Rev. Environ. Sci. Technol. 2006, 36, 187–259. [Google Scholar] [CrossRef]
- Tzanakakis, V.; Paranychianakis, N.; Angelakis, A. Nutrient removal and biomass production in land treatment systems receiving domestic effluent. Ecol. Eng. 2009, 35, 1485–1492. [Google Scholar] [CrossRef]
- Tzanakakis, V.; Paranychianakis, N.; Londra, P.; Angelakis, A. Effluent application to the land: Changes in soil properties and treatment potential. Ecol. Eng. 2011, 37, 1757–1764. [Google Scholar] [CrossRef]
- Holm, B.; Heinsoo, K. Municipal wastewater application to Short Rotation Coppice of willows—Treatment efficiency and clone response in Estonian case study. Biomass Bioenergy 2013, 57, 126–135. [Google Scholar] [CrossRef]
- Hardcastle, P.; Calder, I.; Dingwall, C.; Garrett, W.; McChesney, I.; Mathews, J.; Savill, P. A Review of the Potential Impacts of Short Rotation Forestry; Final Report; LTS International Ltd.: Penicuik, UK, 2006. [Google Scholar]
- Dimitriou, I.; Aronsson, P. Wastewater and sewage sludge application to willows and poplars grown in lysimeters–Plant response and treatment efficiency. Biomass Bioenergy 2011, 35, 161–170. [Google Scholar] [CrossRef]
- Perttu, K.; Kowalik, P. Salix vegetation filters for purification of waters and soils. Biomass Bioenergy 1997, 12, 9–19. [Google Scholar] [CrossRef]
- Perlack, R.; Ranney, J.; Barron, W.; Cushman, J.; Trimble, J. Short-rotation intensive culture for the production of energy feedstocks in the US: A review of experimental results and remaining obstacles to commercialization. Biomass 1986, 9, 145–159. [Google Scholar] [CrossRef]
- Dolgorsuren, G.; Bron, G.; van der Linden, W. Integrated Water Management National Assessment Report, Strengthening Integrated Water Resources Management in Mongolia; The Ministry of Environment and Green Development of Mongolia: Bator, Mongolia, 2012; Volume 2. [Google Scholar]
- MoMo-II. Integrated Water Resources Management for Central Asia: Model Region Mongolia; Project Report Case Study in the Kharaa River Basin: Leipzig, Germany, 2017. [Google Scholar]
- Sperling, M.V.; de Lemos Chernicharo, C.A. Biological Wastewater Treatment in Warm Climate Regions; IWA: London, UK, 2005. [Google Scholar]
Parameter | Unit | Method | Equipment | Remark |
---|---|---|---|---|
pH | - | Standard method | SenTix 41/Multi 340i | |
EC | µS·cm−1 | Standard method | TetraCon 925/Multi 340i | |
DO | mg·L−1 | Standard method | TetraCon 925/Multi 340i | |
COD | mg·L−1 | LCK 314, 15–150 mg·L−1 | LT200 and DR 2800 | |
TN | mg·L−1 | Laton LCK 238, 5–40 mg·L−1 | LT200 and DR 2800 | |
NH4-N | mg·L−1 | LCK 303, 2–47 mg·L−1 | DR 2800 | Filtered |
NO2-N | mg·L−1 | LCK 341, 0.015–0.6 mg·L−1 | DR 2800 | Filtered |
NO3-N | mg·L−1 | LCK 339, 0.23–13.5 mg·L−1 | DR 2800 | Filtered |
PO4-P | mg·L−1 | LCK 349, 0.05–1.5 mg·L−1 | DR 2800 | Filtered |
TP | mg·L−1 | LCK 349, 0.05–1.5 mg·L−1 | LT200 and DR 2800 | |
BOD5 | mg·L−1 | DIN EN 1899-2 (1998) | OXiTop IS 6 | |
E. coli | MPN·(100 mL)−1 | MNS 5668: 2006 |
Parameter | Study Year | Option A: External Winter Storage | Option B: Internal Winter Storage | ||||
---|---|---|---|---|---|---|---|
Load (g·m−2) | Removal (g·m−2) | Removed Percentage (%) | Load (g·m−2) | Removal (g·m−2) | Removed Percentage (%) | ||
COD | 1 | 258 | 155 | 60 | 573 | 392 | 68 |
2 | 311 | 283 | 91 | 642 | 403 | 63 | |
BOD5 | 1 | 128 | 118 | 92 | 212 | 186 | 88 |
2 | 194 | 189 | 97 | 390 | 323 | 83 | |
TN | 1 | 105 | 65 | 62 | 232 | 86 | 37 |
2 | 106 | 88 | 84 | 206 | 76 | 35 | |
NH4+-N | 1 | 82 | 82 | 99 | 190 | 177 | 93 |
2 | 93 | 93 | 100 | 183 | 156 | 85 | |
TP | 1 | 8.6 | 3.2 | 37 | 19.1 | 7.8 | 41 |
2 | 9.4 | 7.8 | 83 | 18.3 | 9.4 | 52 |
Parameter | Study Year | Bed A: External Winter Storage | Bed B: Internal Winter Storage | ||||
---|---|---|---|---|---|---|---|
Irrigation water | Drainage water | Log reduction | Irrigation water | Drainage water | Log reduction | ||
E.coli | 1 | 1.26E + 11 * | 8.18E + 09 * | 1.2 | 2.02E + 11 * | 4.41E + 10 * | 0.7 |
2 | 3.09E + 11 ** | 1.04E + 10 ** | 1.5 | 6.31E + 11 ** | 2.57E + 11 ** | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khurelbaatar, G.; van Afferden, M.; Sullivan, C.M.; Fühner, C.; Amgalan, J.; Londong, J.; Müller, R.A. Wastewater Treatment and Wood Production of Willow System in Cold Climate. Water 2021, 13, 1630. https://doi.org/10.3390/w13121630
Khurelbaatar G, van Afferden M, Sullivan CM, Fühner C, Amgalan J, Londong J, Müller RA. Wastewater Treatment and Wood Production of Willow System in Cold Climate. Water. 2021; 13(12):1630. https://doi.org/10.3390/w13121630
Chicago/Turabian StyleKhurelbaatar, Ganbaatar, Manfred van Afferden, Christopher M. Sullivan, Christoph Fühner, Jamsaran Amgalan, Jöerg Londong, and Roland Arno Müller. 2021. "Wastewater Treatment and Wood Production of Willow System in Cold Climate" Water 13, no. 12: 1630. https://doi.org/10.3390/w13121630
APA StyleKhurelbaatar, G., van Afferden, M., Sullivan, C. M., Fühner, C., Amgalan, J., Londong, J., & Müller, R. A. (2021). Wastewater Treatment and Wood Production of Willow System in Cold Climate. Water, 13(12), 1630. https://doi.org/10.3390/w13121630