Field Scale Demonstration of Fly Ash Amended Bioretention Cells for Stormwater Phosphorus Removal: A Review of 12 Years of Work
Abstract
:1. Introduction
2. Fly Ash
3. Bioretention Cells
3.1. Cells Sampled in 2014
3.2. Cell Design
3.3. Cell Construction
4. 2014 Sampling and Monitoring
4.1. Stormwater Flow and Phosphorus Sampling
4.2. Core Sampling Phosphorus Concentrations
4.3. Annual Phosphorus Retention
4.4. Remaining Adsorption Potential of 2014 BRC Media
4.5. Observations on the Extraction Methods
5. Other Research on These BRC
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, G.O.; Storm, D.E.; Chavez, R.A. Grand lake, Oklahoma watershed implementation project, task 5.3 bioretention cell design, evaluation and technology demonstration. EPA grant C9-996100-12. In Report to the Oklahoma Conservation Commission, Biosystems & Ag Eng; Oklahoma State University: Stillwater, OK, USA, 2008; p. 64. [Google Scholar]
- Grand Lake O’ the Cherokees Watershed Alliance Foundation. Grand Lake Watershed Plan. 2008. Available online: www.ok.gov (accessed on 26 March 2021).
- Chavez, R.A.; Brown, G.O.; Storm, D.E. Bioretention cell design and construction specifications. In Proceedings of the ASABE Annual International Meeting, Minneapolis, MN, USA, 17–20 June 2007; p. 072268. [Google Scholar]
- Vogel, J.R.; Brown, G.O.; Storm, D.E.; Coffman, R.; Phillips, S. Bioretention cells for mass load reduction of phosphorus and sediment in urban watersheds in Oklahoma, US-EPA grant C9-00F56701. In Report to the Oklahoma Secretary of the Environment, Biosystems & Ag Eng; Oklahoma State University: Stillwater, OK, USA, 2016; p. 98. [Google Scholar]
- Marvin, J.T.; Passeport, E.; Drake, J. State-of-the-art review of phosphorus sorption amendments in bioretention media: A systematic literature review. J. Sustain. Water Built Environ. 2020, 6, 03119001. [Google Scholar] [CrossRef]
- Wendling, L.A.; Douglas, G.B.; Coleman, S.; Yuan, Z. Nutrient and dissolved organic carbon removal from natural waters using industrial by-products. Sci. Total Environ. 2013, 442, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, C.; Lei, T.; Li, Y. Experimental study and simulation of water quality purification of urban surface runoff using nonvegetated bioswales. Ecol. Eng. 2016, 95, 706–713. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zhang, J.; Li, Y. Bioswale column experiments and simulation of pollutant removal from urban road stormwater runoff. Desalin. Water Treat. 2016, 57, 24894–24912. [Google Scholar] [CrossRef]
- Houle, J.J.; Ballestero, T.P.; Puls, T.A. The performance analysis of two relatively small capacity urban retrofit stormwater controls. J. Water Manag. Model. 2017, 25, 417. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Dong, W.; Li, H. Purification effects of amended bioretention columns on phosphorus in urban rainfall runoff. Water Sci. Technol. 2018, 78, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liang, Z.; Li, Y.; Li, P.; Jiang, C. Experimental study and simulation of phosphorus purification effects of bioretention systems on urban surface runoff. PLoS ONE 2018, 13, e0196339. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, J.; Li, Y.; Li, H. Adsorption characteristics of several bioretention-modified fillers for phosphorus. Water 2018, 10, 831. [Google Scholar] [CrossRef] [Green Version]
- Cording, A.; Hurley, S.; Adair, C. Influence of critical bioretention design factors and projected increases in precipitation due to climate change on roadside bioretention performance. J. Environ. Eng. 2018, 144, 04018082. [Google Scholar] [CrossRef]
- Liu, J.; Davis, A.P. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention. Environ. Sci. Technol. 2014, 48, 607–614. [Google Scholar] [CrossRef]
- Shrestha, P.; Hurley, S.E.; Wemple, B.C. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecol. Eng. 2018, 112, 116–131. [Google Scholar] [CrossRef]
- Brown, G.O.; Chavez, R.A.; Storm, D.E.; Smolen, M.D. Construction and performance of bioretention cells. In Proceedings of the World Environmental and Water Resources Congress 2009, Kansas City, MO, USA, 17–21 May 2009; ASCE: Reston, VA, USA, 2009; pp. 981–990. [Google Scholar]
- American Coal Council. Coal-Ash-Production-and-Use Survey Report. 2021. Available online: www.americancoalcouncil.org (accessed on 26 March 2021).
- US Environmental Protection Agency. Disposal of coal combustion residuals from electric utilities. Fed. Regist. 2015, 80, 37988. [Google Scholar]
- Zhang, W.; Brown, G.O.; Storm, D.E. Enhancement of heavy metals retention in sandy soil by amendment with fly ash. Trans. Am. Soc. Agric. Biol. Eng. 2021, 51, 1247–1254. [Google Scholar] [CrossRef]
- Zhang, W.; Brown, G.O.; Storm, D.E.; Zhang, H. Fly ash-amended sand as filter media in bioretention cells to improve phosphorus removal. Water Environ. Res. 2008, 80, 507–516. [Google Scholar] [CrossRef]
- ASTM. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, C618-19; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- US Environmental Protection Agency. National Water Quality Inventory: 2000 Report, EPA-841/R-02-001; US Environmental Protection Agency: Washington, DC, USA, 2002.
- U.S. Environmental Protection Agency. Toxicity Characteristic. 40 Code of Federal Regulations, Section 261.24; US Environmental Protection Agency: Washington, DC, USA, 2006.
- Zhang, W.; Brown, G.O.; Storm, D.E. Enhancement of phosphorus removal in bioretention cells by soil amendment. In Proceedings of the ASABE Annual International Meeting, Portland, OR, USA, 9–12 July 2006; p. 062193. [Google Scholar]
- ASTM. Standard Test Method for 24-h Batch Type Experiments of Contaminant Sorption by Soils and Sediments, D4646-03; ASTM International: West Conshohocken, PA, USA, 2004. [Google Scholar]
- US Department of Agriculture. Web Soil Survey. Available online: Websoilsurvey.nrcs.usda.gov (accessed on 1 June 2021).
- Prince George’s County Department of Environmental Resources. Bioretention Manual. Program & Planning Division; Department of Environmental Resources: Prince George’s County, MD, USA, 2002.
- Hunt, W.F.; White, N. Designing Rain Gardens (Bio-Retention Areas). Urban Waterways. AG-588-3; North Carolina Cooperative Extension Service: Raleigh, NC, USA, 2001.
- Low Impact Development (LID) Center. Urban Design Tools; Low impact Development Center, Inc.: Beltsville, MD, USA, 1999; Available online: www.lid-stormwater.net (accessed on 5 October 2005).
- Lee, J.H.; Bang, K.W.; Ketchum, L.H.; Choe, J.S.; Yu, M.J. First flush analysis of urban storm runoff. Sci. Total Environ. 2002, 293, 163–175. [Google Scholar] [CrossRef]
- Hathaway, J.M.; Tucker, R.S.; Spooner, J.M.; Hunt, W.F. A traditional analysis of the first flush effect for nutrients in stormwater runoff from two small urban catchments. Water Air Soil Pollut. 2012, 223, 5903–5915. [Google Scholar] [CrossRef]
- Megan, P. (Oklahoma State University, Stillwater, OK, USA). Personal communication, 2006. [Google Scholar]
- Autodesk Inc. Autodesk Inventor 10; Autodesk, Inc.: San Rafael, CA, USA, 2006. [Google Scholar]
- Hershfield, D.M. Technical Paper No. 40: Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years; Engineering Division, Soil Conservation Commission Service, USDA: Washington, DC, USA, 1961.
- Chavez, R.A.; Brown, G.O.; Storm, D.E. Bioretention cell design for full scale project in Grove, Oklahoma. In Proceedings of the ASABE Annual International Meeting, Portland, OR, USA, 9–12 July 2006; p. 062305. [Google Scholar]
- Christianson, R.D.; Brown, G.O.; Chavez, R.A.; Storm, D.E. Modeling field-scale bioretention cells with heterogeneous infiltration media. Trans. Am. Soc. Agric. Biol. Eng. 2012, 55, 1193–1201. [Google Scholar] [CrossRef]
- Chavez, R.A.; Brown, G.O.; Coffman, R.R.; Storm, D.E. Design, construction and lessons learned from Oklahoma bioretention cell demonstration project. Appl. Eng. Agric. 2015, 31, 63–71. [Google Scholar]
- Coffman, R.R.; Graves, D.; Vogel, J.R.; Brown, G.O. Vegetation in dryland bioretention systems. Landsc. Res. Rec. 2015, 4, 58–71. [Google Scholar]
- McLemore, A.J. Evaluation of Established Low Impact Development Techniques: Assessing Aged Bioretention Cells and Clogging Pervious Concrete. Ph.D. Dissertation, Oklahoma State University, Stillwater, OK, USA, 2017. [Google Scholar]
- Chavez, R.A.; Brown, G.O.; Storm, D.E. Impact of variable hydraulic conductivity on bioretention cell performance and implications for construction standards. J. Hydraul. Eng. 2013, 139, 707–715. [Google Scholar] [CrossRef]
- Chavez, R.A. Oklahoma Bioretention Technology Demonstration and the Effects of Filter Media Heterogeneity on Performance. Ph.D. Dissertation, Oklahoma State University, Stillwater, OK, USA, 2015. [Google Scholar]
- Kandel, S.; Vogel, J.R.; Penn, C.J.; Brown, G.O. Phosphorus retention by fly ash amended filter media in aged bioretention cells. Water 2017, 9, 746. [Google Scholar] [CrossRef] [Green Version]
- Todeschini, S.; Manenti, S.; Volponi, F.; Ciaponi, C. An analytical methodology for the discharge-stage relation of flexible shape “Palmer-Bowlus” flumes. J. Irrig. Drain. Eng. 2020, 146, 04020017. [Google Scholar] [CrossRef]
- SAS Institute Inc. Interface to ADABAS: Reference; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Oklahoma Water Resources Board (OWRB). Oklahoma Scenic Rivers Phosphorus Criteria Review—Majority Report. 2002. Available online: www.owrb.ok.gov/quality/standards/scenicrivers.php (accessed on 26 March 2021).
- Runkel, R.L.; Crawford, C.G.; Cohn, T.A. Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers; US Geological Survey Techniques and Methods Book 4; USGS: Reston, VA, USA, 2004; Chapter A5.
- Brown, G.O.; The Application of Fly Ash to Treat Stormwater around Poultry Houses. Oklahoma Water Resources Center. 2017. Available online: Ojs.library.okstate.edu/osu/index.php/OWRC/article/view/7866 (accessed on 3 April 2021).
- Komlos, J.; Traver, R.G. Long-term orthophosphate removal in a field-scale stormwater bioinfiltration rain garden. J. Environ. Eng. 2012, 138, 991–998. [Google Scholar] [CrossRef]
- Kandel, S. Phosphorus and Metal Sorption in Aged Bioretention Cells with Fly ash Amended Filter Media. Ph.D. Dissertation, Oklahoma State University, Stillwater, OK, USA, 2016. [Google Scholar]
- Penn, C.J. (Oklahoma State University, Stillwater, OK, USA). Personal communication, 2014. [Google Scholar]
- Youngblood, S.; Vogel, J.R.; Brown, G.O.; Storm, D.E.; McLemore, A.; Kandel, S. Field studies of microbial removal from stormwater by bioretention cells with fly ash amendment. Water 2017, 9, 526. [Google Scholar] [CrossRef] [Green Version]
Mineral | Content (%) | Metal | Concentration in Leachate (mg/L) | ||
---|---|---|---|---|---|
Acetic Acid | Deionized Water | Regulatory Level | |||
SiO2 | 38.1 | Arsenic | 0.07 | 0.02 | 5.0 |
Al2O3 | 18.4 | Cadmium | 0.00 | 0.00 | 1.0 |
Fe2O3 | 5.93 | Lead | 0.00 | 0.00 | 5.0 |
MnO | 0.02 | Zinc | 0.26 | 0.01 | — |
MgO | 5.43 | Chromium | 0.33 | 0.03 | 5.0 |
CaO | 22.9 | Manganese | 0.13 | 0.00 | — |
Na2O | 1.82 | Copper | 0.02 | 0.01 | — |
K2O | 0.56 | Selenium | 0.28 | 0.02 | 1.0 |
Ti2O | 1.39 | Iron | 0.13 | 0.01 | — |
P2O5 | 1.37 | ||||
BaO | 0.69 | Bulk Properties | |||
Cr2O3 | 0.01 | pH | 11.5 | ||
SrO | 0.30 | CEC (meg/100 g) | 78 | ||
Loss on ignition | 0.69 | Exchangeable Ca (mg/kg) | 14,300 | ||
Total | 97.6 | Extractable P (mg/kg) | 13 |
Material | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qm | B | r2 | KF | n | r2 | |
(mg/kg) | (L/kg) | (L/kg) | ||||
5% Fly Ash-Sand | Laboratory Screening Sample | |||||
376 | 2.46 | 0.949 | 205 | 0.268 | 0.994 | |
5% Fly Ash-Sand | 2007 Construction Sample | |||||
385 | 2.89 | 0.998 | 203 | 0.295 | 0.981 | |
BRC | 2014 Core Sample | |||||
ECP | 157 | 0.225 | 0.988 | 31.2 | 2.02 | 0.945 |
GLA | 383 | 0.031 | 0.971 | 19.4 | 1.49 | 0.986 |
GHS | 431 | 0.021 | 0.921 | 17.0 | 1.48 | 0.976 |
SR | 491 | 0.028 | 0.987 | 19.2 | 1.35 | 0.992 |
BRC | Property Type-Location | Impervious Cover (%) | Drainage Area (ha) | Cell Area (m2) | Area Ratio (%) | Filter Volume (m3) | Total Volume (m3) | Average Depth (m) | Ponding Depth (m) | Ponded Runoff Depth (mm) |
---|---|---|---|---|---|---|---|---|---|---|
ECP | Commercial 36°34′44.8″ N 94°46′02.9″ W | 100 | 0.25 | 107 | 4.3 | 97.1 | 128 | 1.20 | 0.45 | 20 |
GHS | Educational 36°35′55.6″ N 94°44′52.5″ W | 90 | 0.65 | 149 | 2.3 | 112 | 161 | 1.08 | 0.30 | 7 |
GLA | Public 36°37′27.4″ N 94°48′59.3″ W | 36 | 0.77 | 323 | 4.2 | 340 | 435 | 1.35 | 0.30 | 13 |
SR | Residential 36°38′58.2″ N 94°49′34.9″ W | 13 | 0.16 | 101 | 6.3 | 63.5 | 93 | 0.92 | 0.30 | 19 |
BRC | n | T-P (mg/L) | Mean Mass Loading (g) | ||||||
---|---|---|---|---|---|---|---|---|---|
Influent | Drain Effluent | Reduction % | p | Influent | Drain Effluent | Reduction % | p | ||
ECP | 20 | 0.12 | 0.03 | 75 | <0.05 | 3.25 | 0.22 | 93 | <0.05 |
GHS | 9 | 0.15 | 0.05 | 67 | <0.05 | 5.13 | 0.83 | 84 | <0.05 |
GLA | 12 | 0.23 | 0.07 | 68 | <0.05 | 12.65 | 6.22 | 51 | >0.05 |
BRC | Material | Extraction | Initial (mg/kg) n = 8 | Final (mg/kg) n = 20 | Increase (mg/kg) | Increase Significance p |
---|---|---|---|---|---|---|
ECP | Top Soil | WS-P | 0.11 ± 0.1 | 1.4 ± 0.2 | 1.3 | 0.001 |
M3-P | 1.7 ± 0.1 | 27.6 ± 4.6 | 25.9 | 0.001 | ||
T-P | 225 ± 14 | 308 ± 87 | 83 | >0.05 | ||
Filter Media | WS-P | 0.1 ± 0.06 | 1 ± 0.3 | 0.9 | 0.001 | |
M3-P | 3.2 ± 0.2 | 7.6 ± 3.7 | 4.4 | 0.05 | ||
T-P | 361 ± 110 | 440 ± 140 | 79 | >0.05 | ||
GHS | Top Soil | WS-P | 0.2 ± 0.01 | 1.5 ± 0.3 | 1.3 | 0.01 |
M3-P | 8 ± 0.07 | 34.7 ± 7.7 | 26.7 | 0.01 | ||
T-P | 265 ± 3.5 | 331 ± 115 | 66 | >0.05 | ||
Filter Media | WS-P | 0.4 ± 0.05 | 0.8 ± 0.3 | 0.4 | 0.05 | |
M3-P | 5 ± 1.4 | 19 ± 7.5 | 14 | 0.01 | ||
T-P | 243 ± 3 | 281 ± 33.7 | 38 | >0.05 | ||
GLA | Top Soil | WS-P | 0.2 ± 0.01 | 2.7 ± 1.2 | 2.5 | 0.05 |
M3-P | 10 ± 0.1 | 30 ± 5 | 20 | 0.01 | ||
T-P | 276 ± 19 | 290 ± 60.8 | 14 | >0.05 | ||
Filter Media | WS-P | 0.3 ± 0.18 | 1 ± 0.8 | 0.7 | 0.05 | |
M3-P | 13 ± 3 | 22.7 ± 8.6 | 9.7 | 0.05 | ||
T-P | 196 ± 28 | 223 ± 53 | 27 | >0.05 | ||
SR | Top Soil | WS-P | 0.1 ± 0.01 | 5.7 ± 1.2 | 5.6 | 0.001 |
M3-P | 5 ± 0.08 | 39.8 ± 18.8 | 34.8 | 0.05 | ||
T-P | 170 ± 17.7 | 312 ± 70 | 142 | >0.05 | ||
Filter Media | WS-P | 0.2 ± 0.04 | 1 ± 0.7 | 0.8 | 0.05 | |
M3-P | 3.8 ± 0.3 | 12.7 ± 8 | 8.9 | 0.05 | ||
T-P | 355 ± 129 | 372 ± 35 | 17 | >0.05 |
BRC | Extraction Concentration (mg/kg) | Depth (m) | Linear Trend | |||
---|---|---|---|---|---|---|
0–0.15 | 0.15–0.30 | 0.30–0.45 | 0.45–0.60 | Significance p | ||
WS-P | 1.4 ± 0.2 | 0.97 ± 0.2 | 1 ± 0.3 | 1.2 ± 0.3 | 0.05 | |
ECP | M3-P | 27.5 ± 4.6 | 6.5 ± 0.8 | 6 ± 0.6 | 10 ± 7 | 0.001 |
T-P | 308 ± 87 | 447 ± 99 | 469 ± 153 | 406 ± 196 | >0.05 | |
WS-P | 1.5 ± 0.3 | 0.67 ± 0.1 | 0.9 ± 0.3 | 0.8 ± 0.4 | 0.001 | |
GHS | M3-P | 34.6 ± 7.6 | 15.4 ± 2.8 | 16.6 ± 4.6 | 31.2 ± 6.3 | 0.001 |
T-P | 331 ± 114 | 279 ± 50 | 282 ± 23 | 285 ± 9 | >0.05 | |
WS-P | 2.6 ± 1.2 | 0.7 ± 0.1 | 1.4 ± 1 | 1.4 ± 0.6 | 0.01 | |
GLA | M3-P | 29 ± 5 | 15 ± 1.8 | 26 ± 8 | 25 ± 9 | 0.01 |
T-P | 290 ± 60 | 207 ± 33 | 255 ± 75 | 205 ± 30 | 0.05 | |
WS-P | 5 ± 1.2 | 1 ± 0.4 | 1 ± 0.6 | 1.2 ± 0.9 | 0.001 | |
SR | M3-P | 39.7 ± 18 | 9.6 ± 3.5 | 7.5 ± 1.7 | 20.6 ± 10 | 0.001 |
T-P | 312 ± 170 | 414 ± 267 | 387 ± 238 | 315 ± 230 | >0.05 |
BRC | Media | Depth (m) | Phosphorus Retained by Extraction Method (kg/year) | Phosphorus Retained by LOADEST T-P (kg/year) | ||
---|---|---|---|---|---|---|
WS-P | M3-P | T-P | ||||
ECP | Top Soil | 0.15 | 0.002 | 0.05 | 0.16 | 0.30 |
Filter media | 0.45 | 0.006 | 0.03 | 0.24 | ||
Total | 0.60 | 0.008 | 0.08 | 0.4 | ||
GHS | Top Soil | 0.15 | 0.004 | 0.08 | 0.29 | 0.27 |
Filter media | 0.45 | 0.004 | 0.13 | 0.04 | ||
Total | 0.60 | 0.008 | 0.21 | 0.33 | ||
GLA | Top Soil | 0.15 | 0.012 | 0.09 | 0.07 | 0.41 |
Filter media | 0.45 | 0.01 | 0.14 | 0.44 | ||
Total | 0.6 | 0.022 | 0.23 | 0.51 | ||
SR | Top Soil | 0.15 | 0.029 | 0.18 | 0.43 | Not Monitored |
Filter media | 0.45 | 0.013 | 0.15 | 0.17 | ||
Total | 0.60 | 0.042 | 0.33 | 0.60 |
Group | Mineral (%) | Sample | ||
---|---|---|---|---|
a | b | c | ||
Calcium Phosphates | Brushite | 13 | 20 | |
Monetite | 15 | 21 | 12 | |
Hydroxyapatite | 19 | 21 | 28 | |
b-tricalcium phosphate | 7 | 10 | 6 | |
Octacalcium phosphate | 8 | 11 | 13 | |
Aluminum Phosphates | Variscite | 9 | 9 | |
Al Oxide Sorbed PO4 | 9 | 12 | ||
Iron Phosphates | Strengite | 11 | ||
Amorphous Fe Phospate | 8 | 8 | ||
Fe Oxide Sorbed P04 | 11 | 13 | ||
Phytic Acid | 5 | |||
R-Factor | 0.0204 | 0.0666 | 0.0207 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogel, J.R.; Chavez, R.A.; Kandel, S.; Brown, G.O. Field Scale Demonstration of Fly Ash Amended Bioretention Cells for Stormwater Phosphorus Removal: A Review of 12 Years of Work. Water 2021, 13, 1632. https://doi.org/10.3390/w13121632
Vogel JR, Chavez RA, Kandel S, Brown GO. Field Scale Demonstration of Fly Ash Amended Bioretention Cells for Stormwater Phosphorus Removal: A Review of 12 Years of Work. Water. 2021; 13(12):1632. https://doi.org/10.3390/w13121632
Chicago/Turabian StyleVogel, Jason R., Rebecca A. Chavez, Saroj Kandel, and Glenn O. Brown. 2021. "Field Scale Demonstration of Fly Ash Amended Bioretention Cells for Stormwater Phosphorus Removal: A Review of 12 Years of Work" Water 13, no. 12: 1632. https://doi.org/10.3390/w13121632
APA StyleVogel, J. R., Chavez, R. A., Kandel, S., & Brown, G. O. (2021). Field Scale Demonstration of Fly Ash Amended Bioretention Cells for Stormwater Phosphorus Removal: A Review of 12 Years of Work. Water, 13(12), 1632. https://doi.org/10.3390/w13121632