An In-Depth Analysis of Physical Blue and Green Water Scarcity in Agriculture in Terms of Causes and Events and Perceived Amenability to Economic Interpretation
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Definitions and Classifications
3.1.1. Blue and Green Water Definitions
3.1.2. Blue Water Stakeholders
3.1.3. Scarcity Definitions
- Short-term growing season aridity
- Recurrent drought year intermittent droughts
- Soil degradation-induced landscape desiccation (man-made draught)
- Water stress induced by an exorbitant population number per unit of water cycle available.
3.2. Blue and Green Water Scarcity
3.2.1. Blue Water Scarcity
3.2.2. Green Water Scarcity
3.2.3. Blue and Green Water Interchange
3.3. Blue and Green Water Climate Interactions
3.3.1. General Climate Interaction
3.3.2. Europe
3.3.3. Africa
3.3.4. Asia
3.3.5. WANA Region and the “Arc of Crisis”
3.4. Action at a Distance
3.4.1. Climate Teleconnections
3.4.2. Evaporation and Moisture Import/Export
3.5. The Direct Human Intervention Scarcity Driver
3.5.1. Land Use and Land Cover Change
3.5.2. Population Growth
4. Discussion
4.1. Problems with Definitions
4.2. Inequitable Availability
4.3. Inequitable Accessibility
4.4. Blue Water Loss
4.5. Unevenly Distributed Precipitation
4.6. Climate Uncertainty
4.7. Country Scale More Pertinent Than Global
5. Conclusions
6. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ICWE. The Dublin Statement on Water and Sustainable Development. In Proceedings of the ICWE (International Conference on Water and the Environment), Dublin, Ireland, 26–31 January 1992; p. 55. [Google Scholar]
- U.N. Report of the United Nations Conference on Environment and Development. In Proceedings of the United Nations Conference on Environment and Development, Rio de Janeiro, Brazil, 3–14 June 1992; Volume l, p. 492. [Google Scholar]
- Mauss, M. Essai sur le don. Forme et raison de l’échange dans les sociétés archaïques. In Sociologie et Anthropologie; Mauss, M., Ed.; Quadrige/Presses Universitaires de France: Paris, France, 1950; pp. 145–279. [Google Scholar]
- Schellens, M.K.; Gisladottir, J. Critical natural resources: Challenging the current discourse and proposal for a holistic definition. Resources 2018, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Mancini, L.; Benini, L.; Sala, S. Characterization of raw materials based on supply risk indicators for Europe. Int. J. Life Cycle Assess. 2018, 23, 726–738. [Google Scholar] [CrossRef] [Green Version]
- PBL. The Geography of Future Water Challenges; Dutch Government: The Hague, The Netherlands, 2018. [Google Scholar]
- World Economic Forum. Global Risks 2015, 10th ed.; World Economic Forum: Geneva, Switzerland, 2015. [Google Scholar]
- Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.J.H.; Ward, P.J. Towards a global water scarcity risk assessment framework: Incorporation of probability distributions and hydro-climatic variability. Environ. Res. Lett. 2016, 11, 024006. [Google Scholar] [CrossRef] [Green Version]
- Orr, S.; Cartwright, A.; Tickner, D. Understanding Water Risks; WWF: Gland, Switzerland, 2009. [Google Scholar]
- Hillel, D. Out of the Earth: Civilization and the Life of the Soil; University of California Press: Berkeley, CA, USA, 1992. [Google Scholar]
- Wrathall, D.J.; Van Den Hoek, J.; Walters, A.; Devenish, A. Water Stress and Human Migration: A Global, Georeferenced Review of Empirical Research; FAO: Rome, Italy, 2018. [Google Scholar]
- Nagabhatla, N.; Pouramin, P.; Brahmbhatt, R.; Fioret, C.; Glickman, T.; Newbold, K.B.; Smakhtin, V. Water and Migration: A Global Overview; United Nations University, Institute for Environmrnt, Water and Health: Hamilton, ON, Canada, 2020. [Google Scholar]
- Reisner, M. Cadillac Desert: The American West and Its Disappearing Water; Penguin Books: New York, NY, USA, 1993. [Google Scholar]
- Falkenmark, M. Meeting water requirements of an expanding world population. Philos. Trans. R. Soc. B Biol. Sci. 1997, 352, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Portmann, F.T.; Döll, P.; Eisner, S.; Flörke, M. Impact of climate change on renewable groundwater resources: Assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ. Res. Lett. 2013, 8, 024023. [Google Scholar] [CrossRef]
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S. “Freshwater resources,” in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 229–269. [Google Scholar]
- Garrick, D.E.; Hanemann, M.; Hepburn, C. Rethinking the economics of water: An assessment. Oxf. Rev. Econ. Policy 2020, 36, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Seckler, D.; Amarasinghe, U.; Molden, D.; de Silva, R.; Barker, R. World Water Demand And Supply, 1990 to 2025: Scenarios and Issues; In-ternational Irrigation Management Institute (IIMI): Colombo, Sri Lanka, 1998. [Google Scholar]
- Postel, S.L. Water and world population growth. Am. Water Work. Assoc. 2000, 92, 131–138. [Google Scholar] [CrossRef]
- Falkenmark, M. Growing water scarcity in agriculture: Future challenge to global water security. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T.; et al. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Walker, G. Water scarcity in England and Wales as a failure of (meta) governance. Water Altern. 2014, 7, 388–413. [Google Scholar]
- Partain, R.A. UCLA Journal of Environmental Law and Policy Is a Green Paradox Spectre Haunting International Climate Change Laws and Conventions? UCLA J. Environ. Law Policy 2015, 33, 62–131. [Google Scholar]
- Chakkaravarthy, D.N.; Balakrishnan, T. Water Scarcity- Challenging the Future. Int. J. Agric. Environ. Biotechnol. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Gold, A.J.; Mayer, P.M. Land use, climate, and water resources-global stages of interaction. Water 2017, 9, 815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.; Morikawa, M.; Murphy, M.; Schulte, P. Water Scarcity & Climate Change: Growing Risks for Businesses and Investors; Pacific Institute: Oakland, CA, USA, 2009. [Google Scholar]
- FAO. Understanding Water Scarcity FAO. 2020. Physical Water Scarcity Occurs When Water to Meet All Demands. Economic Water Scarcity Is Caused, Places where Water Is Abundant. Available online: http://www.fao.org/resources/infographics/infographics-details/en/c/218939/# (accessed on 21 February 2021).
- Alcamo, J.M.; Vörösmarty, C.J.; Naiman, R.J.; Lettenmaier, D.P.; Pahl-Wostl, C. A grand challenge for freshwater research: Understanding the global water system. Environ. Res. Lett. 2008, 3, 010202. [Google Scholar] [CrossRef]
- Ahopelto, L.; Veijalainen, N.; Guillaume, J.; Keskinen, M.; Marttunen, M.; Varis, O. Can There be Water Scarcity with Abundance of Water? Analyzing Water Stress during a Severe Drought in Finland. Sustainability 2019, 11, 1548. [Google Scholar] [CrossRef] [Green Version]
- Nairizi, S. (Ed.) Irrigated Agriculture Development under Drought and Water Scarcity. 2017. Available online: https://www.icid.org/drought_pub2017.pdf (accessed on 21 February 2021).
- Seckler, D.; Barker, R.; Amarasinghe, U. Water scarcity in the twenty-first century. Int. J. Water Resour. Dev. 1999, 15, 29–42. [Google Scholar] [CrossRef]
- Molden, D. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Earthscan/International Water Management Institute: London, UK, 2007. [Google Scholar]
- Comprehensive Management in Agriculture, FAO: Land and Water 2007. Available online: http://www.fao.org/land-water/resources/graphs-and-maps/en/ (accessed on 21 February 2021).
- Jury, W.A.; Vaux, H. The role ofscience in solving the world’s emerging water problems. Proc. Natl. Acad. Sci. USA 2005, 102, 15715–15720. [Google Scholar] [CrossRef] [Green Version]
- Salameh, E. Water Shortages and Environmental Degradation. In Living with Water Scarcity; Baban, J.M.J., Al-Ansani, N.A., Eds.; Al al-Bayt University Publications: Mafraq, Jordan, 2001; pp. 1–17. [Google Scholar]
- Freeze, A.R.; Cherry, J.A. Groundwater; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1979; Volume 5. [Google Scholar]
- USGS. What Is Groundwater? USGS: Reston, Virginia, 2019. [Google Scholar]
- Watkins, K. Human Development Report 2005–2006 beyond Scarcity: Power, Poverty and the Global Water Crisis; Palgrave Mac-Millan: London, UK, 2006. [Google Scholar]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N. Constraints and po-tentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [Green Version]
- Water Scarcity Drafting Group. Water Scarcity Management in the Context of WFD 2006; Water Scarcity Drafting Group: Brussels, Belgium, 2006. [Google Scholar]
- Brown, A.; Matlock, M.D. A Review of Water Scarcity Indices and Methodologies; The Sustainability Consortium: Scottsdale, Arizona, 2011; p. 106. [Google Scholar]
- Liu, J.; Hong, J.; Gosling, S.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present, and future. Earth’s Future 2017, 5, 545–559. [Google Scholar] [CrossRef]
- Muller, M. Water accounting, corporate sustainability and the public interest. In Water Accounting International Approaches to Policy and Decision-Making, 1st ed.; Monograph Book; Godfrey, J.M., Chalmers, K., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2012; pp. 203–220. [Google Scholar]
- Wada, Y.; Bierkens, M.F.P. Sustainability of global water use: Past reconstruction and future projections. Environ. Res. Lett. 2014, 9, 104003. [Google Scholar] [CrossRef]
- Sood, A.; Prathapar, S.; Smakhtin, V. Green and Blue Water. In Key Concepts in Water Resource Management: A Review and Critical Evaluation; Lautze, J., Ed.; Routledge: London, UK, 2014. [Google Scholar]
- Lazarovitch, N.; Vanderborght, J.; Jin, Y. The Root Zone: Soil Physics and Beyond. Vadose Zone J. 2018, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Falkenmark, M. Land-water linkages: A synopsis. Land and Water Integration and River Basin Management. FAO Land Water Bull. 1995, 1, 15–16. [Google Scholar]
- Falkenmark, M.; Rockström, J. The new blue and green water paradigm: Breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag. 2006, 132, 129–132. [Google Scholar] [CrossRef]
- Mohtar, R.H.; Assi, A.T.; Daher, B.T. Bridging the Water and Food Gap: The Role of the Water-Energy-Food Nexus. Unu-Flores 2015, 5, 1–31. [Google Scholar]
- Wu, H.T. Research on Assessment and Management of Green Water. China Popul. Resour. Environ. 2008, 18, 61–67. [Google Scholar]
- Falkenmark, M.; Rockstrom, J. Balancing Water for Humans and Nature: The New Approach in Ecohydrology; Routledge: London, UK, 2004. [Google Scholar]
- Gleick, P.H. Water use. Annu. Rev. Environ. Resour. 2003, 28, 275–314. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. World fresh water resources. In Water in Crisis: A Guide to the World’s Fresh Water Resources; Gleick, P.H., Ed.; Oxford University Press: New York, NY, USA, 1993; pp. 13–24. [Google Scholar]
- Rockström, J.; Falkenmark, M.; Karlberg, L.; Hoff, H.; Rost, S.; Gerten, D. Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resour. Res. 2009, 45, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Halstead, M.; Kober, T.; Zwaan, B.C.C. Understanding the Energy-Water Nexus; Energy Research Centre of The Netherlands: Petten, The Netherlands, 2014. [Google Scholar]
- Munia, H.; Guillaume, J.H.A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M. Water stress in global transboundary river basins: Significance of upstream water use on downstream stress. Environ. Res. Lett. 2016, 11, 014002. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Gerten, D.; Hoff, H.; Bondeau, A.; Lucht, W.; Smith, P.; Zaehle, S. Contemporary ‘green’ water flows: Simulations with a dynamic global vegetation and water balance model. Phys. Chem. Earth Parts A B C 2005, 30, 334–338. [Google Scholar] [CrossRef]
- Rost, S.; Gerten, D.; Bondeau, A.; Lucht, W.; Rohwer, J.; Schaphoff, S. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 2008, 44, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Postel, S.L. Entering an Era of Water Scarcity: The Challenges Ahead. Ecol. Appl. 2000, 10, 941–948. [Google Scholar] [CrossRef]
- OECD. Thematic Working Group 1: Stakeholder Engagement for Effective Water Governance; OECD: Paris, France, 2014. [Google Scholar]
- Freeman, R.E. Strategic Approach—A Stakeholder Approach; Pittman Publishing: London, UK, 1984. [Google Scholar]
- Newcombe, R. From client to project stakeholders: A stakeholder mapping approach. A Festschrift for Professor Syd Urry. Constr. Manag. Econ. 2003, 21, 841–848, 1925–1999. [Google Scholar] [CrossRef]
- Cleland, D.I.; Ireland, L.R. Project Management Strategic Design and Implementation, 4th ed.; McGraw Hill: New York, NY, USA, 2002. [Google Scholar]
- Howe, C.W. The Effects of Water Resource Development on Economic Growth: The Conditions for Success. Nat. Resour. J. 1976, 16, 939–955. [Google Scholar]
- AQUASTAT. Water Use: Thematic Structure FAO’s Global Information System on Water and Agriculture. Available online: http://www.fao.org/aquastat/en/overview/methodology/water-use (accessed on 22 February 2021).
- Ritchie, H.; Roser, M. Water Use and Stress, Our World in Data. Available online: https://ourworldindata.org/water-use-stress (accessed on 22 February 2021).
- Feige, E.L.; Blau, D.M. The Economics of Natural Resource Scarcity and Implications for Development Policy and International Cooperation. In Resources and Development: Natural Resource Polices and Economic Development in an Interdependent World; Dorner, P., El-Shafie, M.A., Eds.; University of Wisconsin Press: Madison, WI, USA, 1980. [Google Scholar]
- Winpenny, J.T. Managing Water Scarcity for Water Security; FAO: Rome, Italy, 1997. [Google Scholar]
- Applegreen, B. Appendix 3: Keynote paper—Management of water scarcity: National water policy reform in relation to regional development cooperation. In Proceedings of the First FAO E-Mail Conference on Managing Water Scarcity, Rome, Italy, 4 March–9 April 1997. [Google Scholar]
- U.N. Water, a Shared Responsibility: The United Nations World Water Development Report 2 (WWDR 2); U.N.: New York, NY, USA, 2007. [Google Scholar]
- FAO. Coping with Water Scarcity an Action Framework for Agriculture and Food Security; FAO: Rome, Italy, 2012. [Google Scholar]
- FAO. Review of World Water Resources by Country; FAO: Rome, Italy, 2003. [Google Scholar]
- Xu, H.; Wu, M. Water Availability Indices—A Literature Review; Technical Report; Argonne National Laboratory: Illinois, IL, USA, 2017. [Google Scholar]
- Cosgrove, P. Water for Growth and Security. In Water Crisis: Myth or Reality? Marcelino Botin Water Forum 2004; Taylor & Francis: Leyden, The Netherlands, 2006; pp. 37–42. [Google Scholar]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef]
- The Commission to the European Parliament and the Council Eur. Comm. DG Environ., Addressing the Challenge of Water Scarcity and Droughts in the European Union; EU: Brussels, Belgium, 2007; p. 14.
- Postel, S. Pillar of Sand: Can the Irrigation Miracle Last? W. W. Norton & Company: New York, NY, USA, 1999. [Google Scholar]
- Bruinsma, J. The resource outlook to 2050: By how much do land, water and crop yields need to increase by 2050? In Expert Meeting on How to Feed the World in 2050 Food and Agriculture Organization of the United Nations Economic and Social Development Department; FAO: Rome, Italy, 2009; pp. 24–26. [Google Scholar]
- Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockström, J. Greening the global water system. J. Hydrol. 2010, 384, 177–186. [Google Scholar] [CrossRef]
- Bhat, T.A. An Analysis of Demand and Supply of Water in India. J. Environ. Earth Sci. 2014, 4, 67–73. [Google Scholar]
- Abhay, R.K. Measurement of Water Scarcity. In Spatial Diversity and Dynamics in Resources and Urban Development Volume 1: Regional Resources; Dutt, A.K., Noble, A.G., Costa, F.J., Thakur, S.K., Thakur, R.R., Sharma, H.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 277–296. [Google Scholar]
- LMehta, L.; Marshall, S.; Movik, S.; Stirling, A.; Shah, E.; Smith, A.; Thompson, J. Liquid Dynamics: Challenges for Sustainability in Water and Sanitation; STEPS Centre: Brighton, UK, 2007; p. 6. [Google Scholar]
- Keller, A.; Sakthivadivel, R.; Seckler, D. Water Scarcity and the Role of Storage in Development; International Water Management Institute: Colombo, Sri Lanka, 2000. [Google Scholar]
- Damkjaer, S.; Taylor, R. The measurement of water scarcity: Defining a meaningful indicator. Ambio 2017, 46, 513–531. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Khoso, S. Water Shortage; Its Causes, Impacts and Remedial Measures. In Proceedings of the 6th International Civil Engineering Congress, Karachi, Pakistan, 28 December 2013; pp. 1–6. [Google Scholar]
- Molden, D.; Oweis, T.Y.; Pasquale, S.; Kijne, J.W.; Hanjra, M.A.; Bindraban, P.S.; Bouman, B.A.M.; Cook, S.; Erenstein, O.; Farahani, H. et al. Pathways for increasing agricultural water productivity. In Water for Food, Water for Life. A Comprehensive Assessment of Water Management in Agriculture; Molden, D., Ed.; Earthscan-International Water Management Institute: London, UK, 2007; pp. 279–310. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [Green Version]
- Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, 22, 1–19. [Google Scholar] [CrossRef]
- Zhongwei, H.; Hejazi, M.; Tang, Q.; Vernon, C.; Liu, Y.; Chen, M.; Calvin, K. Global agricultural green and blue water consumption under future climate and land use changes. J. Hydrol. 2019, 574, 242–256. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; FAO: Rome, Italy, 2012; p. 66. [Google Scholar]
- Goldewijk, K.K.; Beusen, A.; van Drecht, G.; de Vos, M. The HYDE 3. 1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 2010, 20, 73–86. [Google Scholar] [CrossRef]
- World Bank. Agricultural Land, Total 2015. Available online: https://data.worldbank.org/indicator/AG.LND.AGRI.K2 (accessed on 21 April 2021).
- Allan, J.A. Policy responses to the closure of water resources: Regional and global issues in Water policy: Allocation and management in practice. In Proceedings of the International Conference, Bedford, UK, 23–24 September 1996; p. 384. [Google Scholar]
- Aldaya, M.M.; Hoekstra, A.Y.; Allan, J.A. Strategic Importance of Green Water in iinterntational Crop Trade; UNESCO-IHE: Delft, The Netherlands, 2008. [Google Scholar]
- Leamer, E.E. The Heckscher-Ohlin Model in Theory and Practice; Princeton Study No 77; Princeton University: Princeton, NJ, USA, 1995. [Google Scholar]
- Postel, S. Dividing the Waters: Food Security, Ecosystem Health, and the New Politics of Scarcity; Worldwatch Institute: Washington, DC, USA, 1996; p. 132. [Google Scholar]
- Gleick, P.H. Global Freshwater Resources: Soft-Path Solutions for the 21st Century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [Green Version]
- Rijsberman, F. Troubled water, water troubles: Overcoming an important constraint to food security. In Proceedings of the Sustainable Food Security for All by 2020, An International Conference, Bonn, Germany, 4–6 September 2001; pp. 141–144. [Google Scholar]
- Lenzen, M.; Moran, D.; Bhaduri, A.; Kanemoto, K.; Bekchanov, M.; Geschke, A.; Foran, B. International trade of scarce water. Ecol. Econ. 2013, 94, 78–85. [Google Scholar] [CrossRef]
- Porkka, M.; Gerten, D.; Schaphoff, S.; Siebert, S.; Kummu, M. Causes and trends of water scarcity in food production. Environ. Res. Lett. 2016, 11, 015001. [Google Scholar] [CrossRef] [Green Version]
- Kummu, M.; Guillaume, J.H.A.; De Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- J. Rockström, J.; Falkenmark, M.; Allan, T.; Folke, C.; Gordon, L.; Jägerskog, A.; Kummu, M.;Lannerstad, M.; Meybeck, M.; Molden, D. et al. The Unfolding Water Drama in the Anthropocene: Towards a resilience based perspective on water for global sustainability. J. Hydrol. Eng. 2014, 7, 1249–1261. [Google Scholar]
- Oeurng, C.; Cochrane, T.A.; Chung, S.; Kondolf, M.G.; Piman, T.; Arias, M.E. Assessing climate change impacts on river flows in the Tonle Sap Lake Basin, Cambodia. Water 2019, 11, 618. [Google Scholar] [CrossRef] [Green Version]
- McCabe, G.J.; Wolock, D.M.; Pederson, G.T.; Woodhouse, C.A.; McAfee, S. Evidence that recent warming is reducing upper Colorado river flows. Earth Interact. 2017, 21, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.; Clark, D.; Dankers, R.; Eisner, S.; Fekete, B.; Colón-González, F.; et al. Mul-timodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Han, Y.; Jia, D. Impact of climate change on the blue water footprint of agriculture on a regional scale. Water Sci. Technol. Water Supply 2019, 19, 52–59. [Google Scholar] [CrossRef] [Green Version]
- BIO Intelligence Service. Literature Review On The Potential Climate Change Effects on Drinking Water Resources Across the Eu and the Identification of Priorities Among Different Types of Drinking Water Supplies; BIO Intelligence Service: Paris, France, 2012. [Google Scholar]
- Raskin, P.; Gleick, P.; Kirshen, P.; Pontius, G.; Strzepek, K. Water Futures: Assessment of Long-Range Patterns and Problems Stockholm; Stockholm Environment Institute: Stockholm, Sweden, 1997. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkenmark, M. The Massive Water Scarcity Now Threatening Africa: Why Isn’t It Being Addressed? Ambio 1989, 18, 112–118. [Google Scholar]
- Scholes, R. Global Terrestrial Observing System: Regional Implementation Plan for Southern Africa; FAO: Rome; Italy, 2001. [Google Scholar]
- Rockstrom, J.; Lannerstad, M.; Falkenmark, M. Assessing the water challenge of a new green revolution in developing countries. Proc. Natl. Acad. Sci. USA 2007, 104, 6253–6260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockström, J.; Barron, J.; Fox, P. Water productivity in rain-fed agriculture: Challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; International Water Management Institute: Colombo, Sri Lanka, 2009; pp. 145–162. [Google Scholar]
- Bogardi, J.J.; Fekete, B.M.; Vörösmarty, C.J. Planetary boundaries revisited: A view through the ‘water lens’. Curr. Opin. Environ. Sustain. 2013, 5, 581–589. [Google Scholar] [CrossRef]
- Dearing, J.A.; Wang, R.; Zhang, K.; Dyke, J.G.; Haberl, H.; Hossain, S.; Langdon, P.G.; Lenton, T.M.; Raworth, K.; Brown, S.; et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Chang. 2014, 28, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Nash, K.L.; Cvitanovic, C.; Fulton, E.A.; Halpern, B.S.; Milner-Gulland, E.J.; Watson, R.A.; Blanchard, J.L. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 2017, 1, 1625–1634. [Google Scholar] [CrossRef]
- Häyhä, T.; Lucas, P.L.; van Vuuren, D.P.; Cornell, S.E.; Hoff, H. From Planetary Boundaries to national fair shares of the global safe operating space—How can the scales be bridged? Glob. Environ. Chang. 2016, 40, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Steffen, W.; Persson, Å.; Deutsch, L.; Zalasiewicz, J.; Williams, M.; Richardson, K.; Crumley, C.; Crutzen, P.; Folke, C.; Gordon, L.; et al. The anthropocene: From global change to planetary stewardship. Ambio 2011, 40, 739–761. [Google Scholar] [CrossRef] [Green Version]
- Zipper, S.C.; Jaramillo, F.; Wang-Erlandsson, L.; Cornell, S.E.; Gleeson, T.; Porkka, M.; Häyhä, T.; Crépin, A.; Fetzer, I.; Gerten, D.; et al. Integrating the Water Planetary Boundary With Water Management From Local to Global Scales. Earth’s Future 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Postel, S.L. Water for Food Production: Will There Be Enough in 2025? Bioscience 1998, 48, 629–637. [Google Scholar] [CrossRef] [Green Version]
- DeFraiture, C.; Molden, D.; Amarasinghe, U.; Makin, I. PODIUM: Projecting water supply and demand for food production in 2025. Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. 2001, 26, 869–876. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.; Fetzer, I.; Bennett, E.; Biggs, R.; Carpenter, S.; de Vries, W.; de Wit, C.; et al. Planetary boundaries: Guiding changing planet. Science 2015, 347, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordhaus, T.; Shellenberger, M.; Blomqvist, L. The Planetary Boundaries Hypothesis: Review of the Evidence; Breakthrough Institute: Oakland, CA, USA, 2012. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.I.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Berger, M.; van der Ent, R.; Eisner, S.; Bach, V.; Finkbeiner, M. Water Accounting and Vulnerability Evaluation (WAVE): Considering Atmospheric Evaporation Recycling and the Risk of Freshwater Depletion in Water Footprinting. Environ. Sci. Technol. 2014, 48, 4521–4528. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Huang, G.; Liuc, L.; Li, Y.; Zhang, X.; Xu, X. Multi-dimensional diagnosis model for the sustainable development of regions facing water scarcity problem: A case study for Guangdong, China. Sci. Total Environ. 2020, 734, 139394. [Google Scholar] [CrossRef]
- Quinteiro, P.; Ridoutt, B.G.; Arroja, L.; Dias, A.C. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: A review. Int. J. Life Cycle Assess. 2018, 23, 164–180. [Google Scholar] [CrossRef]
- Huang, J.; Ridoutt, B.G.; Thorp, K.R.; Wang, X.; Lan, K.; Liao, J.; Tao, X.; Wu, C.; Huang, J.; Chen, F.; et al. Water-scarcity footprints and water productivities indicate unsustainable wheat production in China. Agric. Water Manag. 2019, 224, 105744. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging Trends in Global Freshwater Availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Richey, A.S.; Thomas, B.F.; Lo, M.-H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.C.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 51, 5217–5237. [Google Scholar] [CrossRef] [PubMed]
- Falkenmark, M. Water resilience and human life support—Global outlook for the next half century. Int. J. Water Resour. Dev. 2020, 36, 377–396. [Google Scholar] [CrossRef] [Green Version]
- Wang-Erlandsson, L.; van der Ent, R.J.; Gordon, L.J.; Savenije, H.H.G. Contrasting roles of interception and transpiration in the hydrological cycle—Part 1: Temporal characteristics over land. Earth Syst. Dyn. 2014, 5, 441–469. [Google Scholar] [CrossRef] [Green Version]
- van der Ent, R.J.; Wang-Erlandsson, L.; Keys, P.W.; Savenije, H.H.G. Contrasting roles of interception and transpiration in the hydrological cycle—Part 2: Moisture recycling. Earth Syst. Dyn. Discuss. 2014, 5, 281–326. [Google Scholar]
- Bunsri, T.; Sivakumar, M.; Hagare, D. Simulation of water movement through unsaturated infiltration-redistribution system. J. Appl. Fluid Mech. 2009, 2, 45–53. [Google Scholar]
- Eekhout, J.P.C.; Hunink, J.E.; Terink, W.; de Vente, J. Why increased extreme precipitation under climate change negatively affects water security. Hydrol. Earth Syst. Sci. 2018, 22, 5935–5946. [Google Scholar] [CrossRef] [Green Version]
- Maeda, E.E.; Pellikka, P.K.E.; Clark, B.J.F.; Siljander, M. Prospective changes in irrigation water requirements caused by agricultural expansion and climate changes in the eastern arc mountains of Kenya. J. Environ. Manag. 2011, 92, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Smerdon, B.D. A synopsis of climate change effects on groundwater recharge. J. Hydrol. 2017, 555, 125–128. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R.; Van Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M. Groundwater and climate change: Recent advances and a look forward. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Emori, S.; Brown, S.J. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Rao, K.K.; Patwardhan, S.K.; Kulkarni, A.; Kamala, K.; Sabade, S.S.; Kumar, K.K. Projected changes in mean and extreme precipitation indices over India using PRECIS. Glob. Planet. Chang. 2014, 113, 77–90. [Google Scholar] [CrossRef]
- Shongwe, M.E.; van Oldenborgh, G.J.; van den Hurk, B.J.J.M.; de Boer, B.; Coelho, C.A.S.; van Aalst, M.K. Projected changes in mean and extreme precipitation in Africa under global warming. Part I: Southern Africa. J. Clim. 2009, 22, 3819–3837. [Google Scholar] [CrossRef]
- Shongwe, M.E.; van Oldenborgh, G.J.; van den Hurk, B.; van Aalst, M. Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. J. Clim. 2011, 24, 3718–3733. [Google Scholar] [CrossRef] [Green Version]
- Meixner, T.; Manning, A.; Stonestrom, D.A.; Allen, D.M.; Ajami, H.; Blasch, K.W.; Brookfield, A.E.; Castro, C.L.; Clark, J.F.; Gochis, D.J.; et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 2016, 534, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Rosa, L.; Rulli, M.C.; Davis, K.F.; Chiarelli, D.D.; Passera, C.; D’Odorico, P. Closing the yield gap while ensuring water sustainability. Environ. Res. Lett. 2018, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J. Review and classification of indicators of green water availability and scarcity. Hydrol. Earth Syst. Sci. 2015, 19, 4581–4608. [Google Scholar] [CrossRef] [Green Version]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J.; Hogeboom, R.J.; Mekonnen, M.M. Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proc. Natl. Acad. Sci. USA 2019, 116, 4893–4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J.; Hogeboom, R.J.; Mekonnen, M.M. Supplement: Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proc. Natl. Acad. Sci. USA 2019, 116, 4893–4898. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Xie, Z.; Zhao, Y.; Lu, F.; Song, X.; Li, L.; Song, X. The assessment of Green Water Based on the SWAT Model: A case study in the Hai River Basin, China. Water 2018, 10, 798. [Google Scholar] [CrossRef] [Green Version]
- Velpuri, N.M.; Senay, G.B. Partitioning Evapotranspiration into Green and Blue Water Sources in the Conterminous United States. Sci. Rep. 2017, 7, 1–12. [Google Scholar]
- Pieper, M.; Kupfer, T.; Thylmann, D.; Bos, U. Introduction to Water Assessment in GaBi Version 2.2. 2018. Available online: https://www.gabi-software.com/fileadmin/Documents/Introduction_to_Water_Assessment_V2.2_03.pdf (accessed on 21 February 2021).
- Quinteiro, P.; Rafael, S.; Vicente, B.; Marta-Almeida, M.; Rocha, A.; Arroja, L.; Dias, A.C. Mapping green water scarcity under climate change: A case study of Portugal. Sci. Total Environ. 2019, 696, 134024. [Google Scholar] [CrossRef]
- Liang, J.; Liu, G.; Zhang, H.; Li, X.; Qian, Z.; Lei, M.; Li, X.; Peng, Y.; Li, S.; Zeng, G. Interactive effects of climate variability and human activities on blue and green water scarcity in rapidly developing watershed. J. Clean. Prod. 2020, 265, 121834. [Google Scholar] [CrossRef]
- Herrnegger, M.; Nachtnebel, H.P.; Haiden, T. Evapotranspiration in high alpine catchments–an important part of the water balance! Hydrol. Res. 2012, 43, 460–475. [Google Scholar] [CrossRef] [Green Version]
- Dahl, M.; Nilsson, B.; Langhoff, J.H.; Refsgaard, J.C. Review of classification systems and new multi-scale typology of groundwater–surface water interaction. J. Hydrol. 2007, 344, 1–16. [Google Scholar] [CrossRef]
- Kong, J.; Xin, P.; Hua, G.-F.; Luo, Z.-Y.; Shen, C.-J.; Chen, D.; Li, L. Effects of vadose zone on groundwater table fluctuations in unconfined aquifers. J. Hydrol. 2015, 528, 397–407. [Google Scholar] [CrossRef]
- Ringersma, J.; Batjes, N.; Dent, D. Green Water: Definitions and Data for Assessment; ISRIC-World Soil Information: Wageningen, The Netherlands, 2003. [Google Scholar]
- Andrade, R.; Rangarajan, R. Transient resistivity response to infiltrating water front through vadose zone. HydroResearch 2019, 2, 12–20. [Google Scholar] [CrossRef]
- Karlberg, L.; Rockström, J.; Falkenmark, M. Water resource implications of upgrading rainfed agriculture—Focus of green and blue water trade-offs. In Rainfed Agriculture: Unlocking the Potential; Wani, S.P., Rockström, J., Oweis, T., Eds.; CABI (CAB International): Wallingford, UK, 2009; pp. 44–53. [Google Scholar]
- Gerrits, A.M.J.; Savenije, H.H.G. Interception. In Treatise on Water Science; Wilderer, P., Ed.; Academic Press: Oxford, UK, 2011; Volume 2, pp. 89–101. [Google Scholar]
- Gerrits, A.M.J.; Savenije, H.H.G.; Veling, E.J.M.; Pfister, L. Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resour. Res. 2009, 45, 1–15. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Coe, M.T.; Johnson, M.S. A review of green-and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: What could irrigated agriculture mean for Amazonia? Hydrol. Earth Syst. Sci. 2016, 20, 2179–2194. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y. Green-blue water accounting in a soil water balance. Adv. Water Resour. 2018, 129, 112–117. [Google Scholar] [CrossRef]
- Mao, G.; Liu, J.; Zheng, Y.T.Á.Y.Z.Á.C. Assessing the interlinkage of green and blue water in an arid catchment in Northwest China. Environ. Geochem. Health 2020, 42, 933–953. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Chen, H.W. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hegerl, G.C.; Broennimann, S.; Cowan, T.; Friedman, A.R.; Hawkins, E.; Iles, C.E.; Mueller, W.; Schurer, A.; Undorf, S. Causes of climate change over the historical record. Environ. Res. Lett. 2019, 14, 123006. [Google Scholar] [CrossRef]
- Barker, S.; Knorr, G.; Edwards, R.L.; Parrenin, F.; Putnam, A.E.; Skinner, L.C.; Wolff, E.; Ziegler, M. 800,000 Years of abrupt climate variability. Science 2011, 334, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Aldieri, C.P.; Vinci, L. Climate Change and Knowledge Spillovers for Cleaner Production. J. Clean. Prod. 2020, 271, 122729. [Google Scholar] [CrossRef]
- UNFCCC. Climate Change Science—The Status of Climate Change Science Today; United Nations Framework Convention on Climate Change (UNFCCC): Bonn, Germany, 2011. [Google Scholar]
- Deser, C.; Phillips, A.S.; Alexander, M.A.; Smoliak, B.V. Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Clim. 2014, 27, 2271–2296. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.M.; Deser, C.; Smoliak, B.V.; Phillips, A.S. Attribution of Climate Change in the Presence of Internal Variability. In Climate Change: Multidecadal and Beyond; Chang, C.-P., Ghil, M., Latif, M., Wallace, J.M., Eds.; World Scientific: Singapore, 2015; pp. 1–29. [Google Scholar]
- Hoerling, M.; Eischeid, J.; Perlwitz, J. Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. J. Clim. 2010, 23, 2131–2145. [Google Scholar] [CrossRef]
- Martel, J.L.; Mailhot, A.; Brissette, F.; Caya, D. Role of natural climate variability in the detection of anthropogenic climate change signal for mean and extreme precipitation at local and regional scales. J. Clim. 2018, 31, 4241–4263. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Chung, E.S.; Behlil, F.; Darwish, M.S.J. Spatiotemporal changes in precipitation extremes in the arid province of Pakistan with removal of the influence of natural climate variability. Theor. Appl. Climatol. 2020, 142, 1447–1462. [Google Scholar] [CrossRef]
- Winsberg, E. Values and uncertainties in the predictions of global climate models. Kennedy Inst. Ethics J. 2012, 22, 111–137. [Google Scholar] [CrossRef]
- Palmer, T.N.; Doblas-Reyes, F.J.; Hagedorn, R.; Weisheimer, A. Probabilistic prediction of climate using multi-model ensembles: From basics to applications. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1991–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, T.; Buizza, R.; Hagedorn, R.; Lawrence, A.; Leutbecher, M.; Smith, L.A. Ensemble prediction: A pedagogical perspective. ECMWF Newsl. 2006, 106, 10–17. [Google Scholar]
- Hagedorn, R.; Doblas-Reyes, F.J.; Palmer, T.N. The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A Dyn. Meteorol. Oceanogr. 2005, 57, 219–233. [Google Scholar]
- Pappenberger, F.; Bartholmes, J.; Thielen, J.; Anghel, E. TIGGE: Medium Range Multi Model Weather Forecast Ensembles in Flood Forecasting (a Case Study); ECMWF: Reading, UK, 2008; p. 557. [Google Scholar]
- Li, S.; Robertson, A.W. Evaluation of submonthly precipitation forecast skill from global ensemble prediction systems. Mon. Weather Rev. 2015, 143, 2871–2889. [Google Scholar] [CrossRef]
- Arnell, N.W.; Lowe, J.A.; Challinor, A.J.; Osborn, T.J. Global and regional impacts of climate change at different levels of global temperature increase. Clim. Chang. 2019, 155, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Pitman, A.J.; Arneth, A.; Ganzeveld, L. Review: Regionalizing global climate models. Int. J. Climatol. 2012, 32, 321–337. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J. Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [Green Version]
- Feser, F.; Rrockel, B.; Storch, H.; Winterfeldt, J.; Zahn, M. Regional climate models add value to global model data a review and selected examples. Bull. Am. Meteorol. Soc. 2011, 92, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- de Castro, M.; Gallardo, C.; Jylha, K.; Tuomenvirta, H. The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Clim. Chang. 2007, 81 (Suppl. 1), 329–341. [Google Scholar] [CrossRef]
- Christensen, J.H.; Kjellström, E.; Giorgi, F.; Lenderink, G.; Rummukainen, M. Weight assignment in regional climate models. Clim. Res. 2010, 44, 179–194. [Google Scholar] [CrossRef]
- Kendon, E.J.; Ban, N.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Evans, J.P.; Fosser, G.; Wilkinson, J.M. Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Am. Meteorol. Soc. 2017, 98, 79–94. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. (Eds.) Climate Change and Water; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
- Dore, M.H.I. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.I.; Donat, M.G.; Pitman, A.J.; Knutti, R.; Wilby, R.L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 2016, 529, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnell, N.W.; Brown, S.; Gosling, S.N.; Hinkel, J.; Huntingford, C.; Lloyd-Hughes, B.; Lowe, J.A.; Osborn, T.; Nicholls, R.J.; Żelazowski, P. Global-scale climate impact functions: The relationship between climate forcing and impact. Clim. Chang. 2016, 134, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Hocke, K. Relation between short-term and long-term variations of precipitation. Climate 2017, 5, 96. [Google Scholar] [CrossRef] [Green Version]
- Fatichi, S.; Ivanov, V.Y.; Caporali, E. Investigating interannual variability of precipitation at the global scale: Is there a connection with seasonality? J. Clim. 2012, 25, 5512–5523. [Google Scholar] [CrossRef]
- Allan, R.P.; Soden, B.J. Atmosphere Warming and the Amplification of Precipitation Extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [Green Version]
- Kummu, M.; Gerten, D.; Heinke, J.; Konzmann, M.; Varis, O. Climate-driven interannual variability of water scarcity in food production: A global analysis. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 6931–6962. [Google Scholar]
- Smirnov, O.; Zhang, M.; Xiao, T.; Orbell, J.; Lobben, A.; Gordon, J. The relative importance of climate change and population growth for exposure to future extreme droughts. Clim. Chang. 2016, 138, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Fox-Rabinovitz, M.; Côté, J.; Dugas, B.; Déqué, M.; McGregor, J.L. Variable resolution general circulation models: Stretched-grid model intercomparison project (SGMIP). J. Geophys. Res. Atmos. 2006, 111, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Buizza, R. Horizontal resolution impact on short- and long-range forecast error. Q. J. R. Meteorogical Soc. 2010, 136, 1020–1035. [Google Scholar] [CrossRef]
- Kim, I.W.; Oh, J.; Woo, S.; Kripalani, R.H. Evaluation of precipitation extremes over the Asian domain: Observation and modelling studies. Clim. Dyn. 2019, 52, 1317–1342. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef] [Green Version]
- Eichenlaub, V.L. Lakes, effects on climate. In Climatology. Encyclopedia of Earth Science; Springer: Boston, MA, USA, 1987. [Google Scholar]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, L.; Søndergaard, E.; Lauridsen, M.; Liboriussen, T.L.; Bjerring, R.; Johanssen, F.; Landkildehus, L.S.; Kronvang, B.; Andersen, H.E.; Trolle, D. Recent climate induced changes in freshwaters in Denmark. In Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies; Goldman, C.R., Kumagari, M., Robarts, R.D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 156–171. [Google Scholar]
- Llopart, M.; Coppola, E.; Giorgi, F.; da Rocha, R.P.; Cuadra, S.V. Climate change impact on precipitation for the Amazon and La Plata basins. Clim. Chang. 2014, 125, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Hu, H.; Tian, F.; Li, C.; Khan, M.Y.A. Projected climate change impacts on future streamflow of the Yarlung Tsangpo-Brahmaputra River. Glob. Planet. Chang. 2019, 175, 144–159. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.; Chiang, J.C.H.; Lan, C.W.; Chung, C.H.; Liao, Y.C.; Lee, C.J. Increase in the range between wet and dry season precipitation. Nat. Geosci. 2013, 6, 263–267. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.; Leung, L.R. Changes in temporal variability of precipitation over land due to anthropogenic forcings. Environ. Res. Lett. 2017, 12, 024009. [Google Scholar] [CrossRef]
- Schurer, A.P.; Ballinger, A.P.; Friedman, A.R.; Hegerl, G.C. Human influence strengthens the contrast between tropical wet and dry regions. Environ. Res. Lett. 2020, 15, 1–12. [Google Scholar] [CrossRef]
- Hirji, R.; Ibrekk, H.O. Environmental and Water Resources Management; Environment Strategy Paper No. 2; World Bank, Environment Department: Washington, DC, USA, 2001. [Google Scholar]
- Destouni, G.; Asokan, S.M.; Jarsj, J. Inland hydro-climatic interaction: Effects of human water use on regional climate. Geophys. Res. Lett. 2010, 37, 1–6. [Google Scholar] [CrossRef]
- Farsani, I.F.; Farzaneh, M.R.; Besalatpour, A.A.; Salehi, M.H.; Faramarzi, M. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed. Theor. Appl. Climatol. 2019, 136, 169–184. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Du, X.; Wang, J. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada. Sci. Total Environ. 2018, 601–602, 425–440. [Google Scholar] [CrossRef]
- Chen, Z.; Grasby, S.E.; Osadetz, K.G. Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J. Hydrol. 2004, 290, 43–62. [Google Scholar] [CrossRef]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef] [Green Version]
- Dettinger, M.; Udall, B.; Georgakakos, A. Western water and climate change. Ecol. Appl. 2015, 25, 2069–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifton, C.F.; Day, K.T.; Luce, C.H.; Grant, G.E.; Safeeq, M.; Halofsky, J.E.; Staab, B.P. Effects of climate change on hydrology and water resources in the Blue Mountains, Oregon, USA. Clim. Serv. 2018, 10, 9–19. [Google Scholar] [CrossRef]
- Gober, P.; Kirkwood, C.W. Vulnerability assessment of climate-induced water shortage in Phoenix. Proc. Natl. Acad. Sci. USA 2010, 107, 21295–21299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backlund, P.; Janetos, A.; Schimel, D. The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States; U.S. Environmental Protection Agenc: Washington, DC, USA, 2008. [Google Scholar]
- Seneviratne, S.I.; Wilhelm, M.; Stanelle, T.; Hurk, B.V.D.; Hagemann, S.; Berg, A.; Cheruy, F.; Higgins, M.E.; Meier, A.; Brovkin, V.; et al. Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 2013, 40, 5212–5217. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.M.; Sedláček, J.; Hawkins, E.; Knutti, R. Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett. 2014, 41, 8554–8562. [Google Scholar] [CrossRef] [Green Version]
- Molden, D.; Frenken, K.; Barker, R.; de Fraiture, C.; Mati, B.; Svendsen, M.; Sadoff, C.W.; Finlayson, M.; Atapattu, S.; Giordano, M.; et al. Trends in water and agricultural development. In Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Molden, D., Ed.; Earthscan: London, UK; International Water Management Institute: Colombo, Sri Lanka, 2007; pp. 57–89. [Google Scholar]
- Falkenmark, M.; Lannerstad, M. Consumptive water use to feed humanity—Curing a blind spot. Hydrol. Earth Syst. Sci. 2005, 9, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Shiklomanov, I.A. Appraisal and Assessment of World Water Resources. Water Int. 2000, 25, 11–32. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Alcamo, J.; Henrichs, T. Critical regions: A model-based estimation of world water resources sensitive to global changes. Aquat. Sci. 2002, 64, 352–362. [Google Scholar] [CrossRef]
- Srinivasan, V.; Lambin, E.F.; Gorelick, S.M.; Thompson, B.H.; Rozelle, S. The nature and causes of the global water crisis: Syndromes from a meta-analysis of coupled human-water studies. Water Resour. Res. 2012, 48, W10516. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S. Identifying Climate-Induced Groundwater Depletion in GRACE Observations. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-Y.; Lo, M.-H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.-F.; Ducharne, A.; Yang, Z.-L. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gurdak, J.J. Climate-induced pumping. Nat. Geosci. 2017, 10, 71–72. [Google Scholar] [CrossRef]
- Strosser, P.; Dworak, T.; Delvaux, P.A.G.; Berglund, M.; Schmidt, G.; Mysiak, J.; Kossida, M.; Iacovides, I.; Ashton, V. Gap Analysis of the Water Scarcity and Droughts Policy in the EU; Gap Analysis of the Water Scarcity and Droughts Policy in the EU, European Commission Tender: Brussels, Belgium, 2012. [Google Scholar]
- Orth, R.; Destouni, G. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 2018, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Semmler, T.; Jacob, D. Modeling extreme precipitation events—A climate change simulation for Europe. Glob. Planet Chang. 2004, 44, 119–127. [Google Scholar] [CrossRef]
- Fleig, A.K.; Tallaksen, L.M.; James, P.; Hisdal, H.; Stahl, K. Attribution of European precipitation and temperature trends to changes in synoptic circulation. Hydrol. Earth Syst. Sci. 2015, 19, 3093–3107. [Google Scholar] [CrossRef] [Green Version]
- Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J.; Vidale, P.L. Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Nikulin, A.; Kjellström, G.; Hansson, E.; Strandberg, U.; Ullerstig, G. Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63:41–55. Tellus A 2011, 63, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnæs, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Chang. 2007, 81 (Suppl. 1), 71–95. [Google Scholar] [CrossRef] [Green Version]
- Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef]
- Kelemen, A.; Munch, W.; Poelman, H.; Gakova, Z.; Dijkstra, L.; Torighelli, B. Regions 2020, an Assessment of Future Challenges for E.U. Regions 2868; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Dankers, R.; Hiederer, R. Extreme Temperatures and Precipitation in Europe: Analysis of a High-Resolution Climate Change Scenario; JRC Scientific and Technical Reports; European Commission Joint Research Centre Institute for Environment and Sustainability: Brussels, Belgium, 2008. [Google Scholar]
- Lavers, D.A.; Villarini, G. The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol. 2015, 522, 382–390. [Google Scholar] [CrossRef]
- Alpert, P.; Ben-Gai, T.; Baharad, A.; Benjamini, Y.; Yekutieli, D.; Colacino, M.; Diodato, L.; Ramis, C.; Homar, V.; Romero, R.; et al. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys. Res. Lett. 2002, 29, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Black, E.; Brayshaw, D.J.; Rambeau, C.M.C. Past, present and future precipitation in the Middle East: Insights from models and observations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 5173–5184. [Google Scholar] [CrossRef]
- Qian, B.; Xu, H. Spatial-Temporal Structure of Quasi-Periodic Oscillations in Precipitation over Europe. Int. J. Climatol. 2000, 20, 1583–1598. [Google Scholar] [CrossRef]
- Leander, R.; Buishand, T.A.; Tank, A.M.G.K. An alternative index for the contribution of precipitation on very wet days to the total precipitation. J. Clim. 2014, 27, 1365–1378. [Google Scholar] [CrossRef]
- Sánchez, M.; Gallardo, E.; Gaertner, C.; Arribas, M.; Castro, A. Future climate extreme events in the Mediterranean simulated by a regional climate model: A first approach. Glob. Planet Chang. 2004, 44, 163–180. [Google Scholar] [CrossRef]
- Rajczak, J.; Pall, P.; Schär, C. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J. Geophys. Res. Atmos. 2013, 118, 3610–3626. [Google Scholar] [CrossRef]
- Gao, X.; Pal, J.S.; Giorgi, F. Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys. Res. Lett. 2006, 33, 2–5. [Google Scholar] [CrossRef]
- Mourato, S.; Moreira, M.; Corte-Real, J. Interannual variability of precipitation distribution patterns in Southern Portugal. Int. J. Climatol. 2010, 30, 1784–1794. [Google Scholar] [CrossRef]
- van den Besselaar, E.J.M.; Tank, A.M.G.K.; Buishand, T.A. Trends in European precipitation extremes over 1951–2010. Int. J. Climatol. 2013, 33, 2682–2689. [Google Scholar] [CrossRef]
- Hagemann, S.; Chen, C.; Clark, D.B.; Folwell, S.; Gosling, S.N.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.; Voss, F.; et al. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dyn. 2013, 4, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Benateau, S.; Gaudard, A.; Stamm, C.; Altermatt, F. Climate Change and Freshwater Ecosystems: Impacts on Water Quality and Ecological Status; Hydro-CH2018 Project. Federal Office for the Environment (FOEN): Bern, Switzerland, 2019. [Google Scholar]
- Mastrotheodoros, T.; Pappas, C.; Molnar, P.; Burlando, P.; Manoli, G.; Parajka, J.; Rigon, R.; Szeles, B.; Bottazzi, M.; Hadjidoukas, P.; et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Chang. 2020, 10, 155–161. [Google Scholar] [CrossRef]
- Nilsen, I.B.; Fleig, A.K.; Tallaksen, L.M.; Hisdal, H. Recent trends in monthly temperature and precipitation patterns in Europe. IAHS-AISH Proc. Rep. 2014, 363, 132–137. [Google Scholar]
- Giannini, A.; Biasutti, M.; Held, I.M.; Sobel, A.H. A global perspective on African climate. Clim. Chang. 2008, 90, 359–383. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1199–1265. [Google Scholar]
- U.N. Population 2030: Demographic Challenges and Opportunities for Sustainable Development Planning; U.N.: New York, NY, USA, 2015. [Google Scholar]
- Marshall, M.; Funk, C.; Michaelsen, J. Examining evapotranspiration trends in Africa. Clim Dyn 2012, 38, 1849–1865. [Google Scholar] [CrossRef]
- U.N. Probabilistic Projections Population Indicators Sub-Sahara. In Department of Economic and Social Affairs Population Dynamics; U.N.: New York, NY, USA, 2020; Available online: https://population.un.org/wpp/Download/Probabilistic/Population/ (accessed on 22 April 2021).
- Beck, L.; Bernauer, T. How will combined changes in water demand and climate affect water availability in the Zambezi river basin? Glob. Environ. Chang. 2011, 21, 1061–1072. [Google Scholar] [CrossRef]
- Chiang, J.C.H.; Sobel, A.H. Tropical Tropospheric Temperature Variations Caused by ENSO and Their Influence on the Remote Tropical Climate. J. Clim. 2002, 15, 2616–2631. [Google Scholar] [CrossRef] [Green Version]
- Carter, R.; Parker, A. Climate Change, population Trends and Groundwater in Africa. Hydrol. Sci. J. 2009, 54, 676–689. [Google Scholar] [CrossRef] [Green Version]
- Hulme, M. Rainfall changes in Africa: 1931–1960 to 1961–1990. Int. J. Clim. 2002, 12, 685–699. [Google Scholar] [CrossRef]
- Rushton, K.R.; Eilers, V.H.M.; Carter, R.C. Improved soil moisture balance methodology for recharge estimation. J. Hydrol. 2006, 318, 379–399. [Google Scholar] [CrossRef]
- Mafuta, C. The Value of Green Water Management in Sub-Saharan Africa: A Review. J. Contemp. Water Res. Educ. 2018, 165, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Amogu, O.; Descroix, L.; Yéro, K.S.; Le Breton, É.; Mamadou, I.; Ali, A.; Vischel, T.; Bader, J.-C.; Moussa, I.B.; Gautier, E.; et al. Increasing river flows in the Sahel? Water 2010, 2, 170–199. [Google Scholar] [CrossRef] [Green Version]
- Descroix, L.; Mahé, G.; Lebel, T.; Favreau, G.; Galle, S.; Gautier, E.; Olivry, J.-C.; Albergel, J.; Amogu, O.; Cappelaere, B.; et al. Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. J. Hydrol. 2009, 375, 90–102. [Google Scholar] [CrossRef]
- Kundzewicz, Z.; Doll, P. Will groundwater ease freshwater stress under climate change? Hydrol. Sci. J. 2009, 54, 665–675. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Dochartaigh, B.Ó.; Macdonald, D. A Literature Review of Recharge Estimation and Groundwater Resource Assessment in Africa; British Geological Survey: London, UK, 2010. [Google Scholar]
- Gbobaniyi, E.; Sarr, A.; Sylla, M.B.; Diallo, I.; Lennard, C.; Dosio, A.; Dhiédiou, A.; Kamga, A.; Klutse, N.A.B.; Hewitson, B.; et al. Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int. J. Climatol. 2014, 34, 2241–2257. [Google Scholar] [CrossRef]
- Stanzel, P.; Kling, H.; Bauer, H. Climate change impact on West African rivers under an ensemble of CORDEX climate projections. Clim. Serv. 2018, 11, 36–48. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble model ensemble. Clim. Chang. 2012, 114, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannini, A.; Saravanan, R.; Chang, P. Oceanic Forcing of Sahel Rainfall on Interannual to Interdecadal. Science 2003, 302, 1027–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WASH Cluster Somalia and UNICEF, Water, Sanitation, and Hygiene Assessment Report Somalia—December 2019; UNICEF: New York, NY, USA, 2019.
- Alam, U.Z. Questioning the Water Wars Rationale: A Case Study of the Indus Waters Treaty. Geogr. J. 2002, 168, 341–353. [Google Scholar] [CrossRef]
- UNFCC. Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries; UNFCCC: New York, USA, 2012. [Google Scholar]
- Dosio, A.; Jones, R.G.; Jack, C.; Lennard, C.; Nikulin, G.; Hewitson, B. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 2019, 53, 5833–5858. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; Döll, P.; Kabat, P.; Jimenez, B.; Miller, K.A.; Oki, T.; Sen, Z.; Shiklomanov, I.A. Freshwater Resources and Their Management in Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution ofWorking Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate, Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 173–210. [Google Scholar]
- Arndt, D.S.; Baringer, M.O.; Johnson, M.R. State of the climate in 2009. Bull. Am. Meteorol. Soc. 2010, 91. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, C.; Ye, A.; Zheng, T.; Nie, X.; Tu, A.; Zhu, H.; Zhang, S. Impacts of climate and land-use change on blue and green water: A case study of the Upper Ganjiang river basin, China. Water 2020, 12, 1–18. [Google Scholar] [CrossRef]
- Yuan, Z.; Xu, J.; Meng, X.; Wang, Y.; Yan, B.; Hong, X. Impact of climate variability on blue and green water flows in the Erhai Lake Basin of Southwest China. Water 2019, 11, 424. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Jia, Y.; Hao, C.; Qiu, Y.; Niu, C.; Liu, H. Temporal and spatial changes of blue water and green water in the Taihang Mountain Region, China, in the past 60 years. Hydrol. Sci. J. 2019, 63, 2040–2056. [Google Scholar] [CrossRef]
- Zang, C.F.; Liu, J.; van der Velde, M.; Kraxner, F. Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 2859–2870. [Google Scholar] [CrossRef] [Green Version]
- Gosain, A.K.; Rao, S.; Arora, A. Climate change impact assessment of water resources of India. Curr. Sci. 2011, 101, 356–371. [Google Scholar]
- Lee, M.-H.; Bae, D.-H. Climate Change Impact Assessment on Green and Blue Water over Asian Monsoon Region. Water Resour. Manag. 2015, 29, 2407–2427. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Naveendrakumar, G.; Vithanage, M.; Kwon, H.-H.; Chandrasekara, S.; Iqbal, M.; Pathmarajah, S.; Fernando, K.; Obeysekera, J. South Asian perspective on temperature and rainfall extremes: A review. Atmos. Res. 2019, 225, 110–120. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, S.; Saeed, F.; Islam, M.N.; Ismail, M. Projections of Precipitation and Temperature over the South Asian Countries in CMIP6. Earth Syst. Environ. 2020, 4, 297–320. [Google Scholar] [CrossRef]
- Endo, N.; Matsumoto, J.; Lwin, T. Trends in precipitation extremes over Southeast Asia. Sci. Online Lett. Atmos. 2009, 5, 168–171. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Qian, W.; Yang, S.; Lin, Z. Regional features of precipitation over Asia and summer extreme precipitation over Southeast Asia and their associations with atmospheric-oceanic conditions. Meteorol. Atmos. Phys. 2010, 106, 57–73. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- IMF. Too Slow for Too Long; IMF: Washington, DC, USA, 2016. [Google Scholar]
- El-Beltagy, A.; Madkour, M. Impact of climate change on arid lands agriculture. Agric. Food Secur. 2012, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- el Kharraz, J.; El-Sadek, A.; Ghaffour, N.; Mino, E. Water scarcity and drought in WANA countries. Procedia Eng. 2012, 33, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Rosegrant, M.W.; Cai, X. Global Water Demand and Supply Projections: Part 2. Results and Prospects to 2025. Water Int. 2002, 27, 170–182. [Google Scholar] [CrossRef]
- Mohammed, T.; Al-Amin, A.Q. Climate change and water resources in Algeria: Vulnerability, impact and adaptation strategy. Econ. Environ. Stud. 2018, 18, 411–429. [Google Scholar] [CrossRef]
- Rahmani, A.; Brahim, C. Water Supply Prediction for the Next 10 Years in Algeria: Risks and Challenges. Irrig. Drain. Syst. Eng. 2017, 6, 1–7. [Google Scholar]
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Chang. 2020, 20, 15. [Google Scholar] [CrossRef] [Green Version]
- Zeroual, A.; Assani, A.A.; Meddi, H.; Bouabdelli, S.; Zeroual, S.; Alkama, R. Assessment of Projected Precipitations and Temperatures Change Signals over Algeria Based on Regional Climate Model: RCA4 Simulations. In Water Resources in Algeria—Part I Assessment of Surface and Groundwater Resources; Negm, A.M., Bouderbala, A., Chenchouni, H., Barceló, D., Eds.; Springer: Berlin, Germany, 2020; pp. 135–159. [Google Scholar]
- Oduor, A.R.; Gadain, H.M. Potential of Rainwater Harvesting in Somalia; EU-FAO, Somalia Water and Land Information Management: Mogadishu, Somalia, 2007. [Google Scholar]
- African Development Bank Group. Improving Access to Water and Sanitation Services in Somalia; African Development Bank Group: Abidjan, Côte d’Ivoire, 2016. [Google Scholar]
- Noman, A.A.; Al-Jailani, J. Investigation of the potential of fogwater harvesting in the Western Mountainous parts of the Yemen. Arab Gulf J. Sci. Res. 1989, 25, 50–58. [Google Scholar]
- Giesecke, C. Yemen’s Water Crisis Review of Background and Potential Solutions; USAID Knowledge Services Center: Washington, DC, USA, 2012. [Google Scholar]
- Hadil, M.; Elayah, M.; Schuplen, L. Yemen between the Impact of the Climate Change and the Ongoing Saudi-Yemen War: A Real Tragedy; GPBC and CIDIN: Nijmegen, The Netherlands, 2017. [Google Scholar]
- Egyptian Ministry of Resources and Irrigation. Water for the Future: National Water Resources Plan For Egypt—2017; Ministry of Water Resources and Irrigation (Egypt): Cairo, Egypt, 2005. [Google Scholar]
- McKenzie, S. Egypt’s Choice: From the Nile Basin Treaty to the Cooperative Framework Agreement, an International Legal Analysis. Transnatl. Law Contemp. Probl. 2012, 21, 571–598. [Google Scholar]
- Wheeler, K.G.; Jeuland, M.; Hall, J.W.; Zagona, E.; Whittington, D. Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Abdel-Dayem, S. Water quality management in Egypt. Int. J. Water Resour. Dev. 2011, 27, 181–202. [Google Scholar] [CrossRef]
- UNDP. Egypt’s National Strategy for Adaptation to Climate Change and Disaster Risk Reduction; The Egyptian Cabinet Information and Decision Support Center: Cairo, Egypt, 2011. [Google Scholar]
- Conway, D. The climate and hydrology of the Upper Blue Nile river. Geogr. J. 2000, 166, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Elshamy, M.E.; Seierstad, I.A.; Sorteberg, A. Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrol. Earth Syst. Sci. 2009, 13, 551–565. [Google Scholar] [CrossRef] [Green Version]
- Sušnik, J.; Vamvakeridou-Lyroudia, L.S.; Baumert, N.; Kloos, J.; Renaud, F.G.; La Jeunesse, I.; Mabrouk, B.; Savić, D.A.; Kapelan, Z.; Ludwig, R.; et al. Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile delta, Egypt. Sci. Total Environ. 2015, 503–504, 279–288. [Google Scholar] [CrossRef]
- Coffel, E.D.; Keith, B.; Lesk, C.; Horton, R.M.; Bower, E.; Lee, J.; Mankin, J.S. Future Hot and Dry Years Worsen Nile Basin Water Scarcity Despite Projected Precipitation Increases. Earth’s Futur. 2019, 7, 967–977. [Google Scholar] [CrossRef] [Green Version]
- Agrawala, S.; Moehner, A.; Raey, M.E.; Conway, D.; van Aalst, M.; Hagenstad, M.; Smith, J. Development and Climate Change in Egypt: Focus on Coastal Resources and the Nile; OECD: Paris, France, 2004. [Google Scholar]
- Gosling, S.N.; Dunn, R.; Carrol, F.; Christidis, N.; Fullwood, J.; de Gusmao, D.; Golding, N.; Good, L.; Hall, T.; Kendon, L.; et al. Climate: Observations, Projections and Impacts; Met Office Hadley Centre: Exeter, UK, 2011. [Google Scholar]
- Ludwig, F.; Vellinga, P. Impacts of Climate Change on Water Resource Management in Egypt and The Netherlands. In 42nd Meeting of the Egyptian-Dutch Advisory Panel on Water Management; MWRI: Cairo, Egypt; Alterra: Wageningen, The Netherlands, 2008. [Google Scholar]
- Assaf, H.; Erian, W.; Gafrej, R.; Herrmann, S.; McDonnell, R.; Taimeh, A. Adaptation to a Changing Climate in the Arab Countries. In Adaptation to a Changing Climate in the Arab Countries; Verner, D., Ed.; World Bank: Washington, DC, USA, 2012; pp. 109–151. [Google Scholar]
- Kelley, C.P.; Mohtadi, S.; Cane, M.A.; Seager, R.; Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. USA 2015, 112, 3241–3246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, N.; Wasimi, S.A.; Al-Ansari, N. Climate Change Impacts on Water Resources of Greater Zab River, Iraq. J. Civ. Eng. Archit. 2016, 10, 1384–1402. [Google Scholar]
- Procházka, P.; Hönig, V.; Maitah, M.; Pljucarská, I.; Kleindienst, J. Evaluation of Water Scarcity in Selected Countries of the Middle East. Water 2018, 10, 1482. [Google Scholar] [CrossRef] [Green Version]
- Herein, M.; Drótos, G.; Haszpra, T.; Márfy, J.; Tél, T. The theory of parallel climate realizations as a new framework for teleconnection analysis. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouachani, R.; Bargaoui, Z.; Ouarda, T. Power of teleconnection patterns on precipitation and streamflow variability of upper Medjerda Basin. Int. J. Climatol. 2013, 33, 58–76. [Google Scholar] [CrossRef]
- Westra, S.; Renard, B.; Thyer, M. The ENSO-precipitation teleconnection and its modulation by the interdecadal pacific oscillation. J. Clim. 2015, 28, 4753–4773. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.H.; Smerdon, J.E.; Coats, S.; Williams, A.P.; Cook, B.I.; Cook, E.R.; Seager, R. Precipitation, temperature, and teleconnection signals across the combined North American, monsoon Asia, and old world drought atlases. J. Clim. 2017, 30, 7141–7155. [Google Scholar] [CrossRef] [PubMed]
- Mamalakis, A.; Yu, J.Y.; Randerson, J.T.; Aghakouchak, A.; Foufoula-Georgiou, E. A new interhemispheric teleconnection increases predictability of winter precipitation in southwestern US. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plewa, K.; Perz, A.; Wrzesiński, D. Links between teleconnection patterns and water level regime of selected Polish lakes. Water 2019, 11, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bódai, T.; Drótos, G.; Ha, K.-J.; Lee, J.-Y.; Haszpra, T.; Chung, E.-S. Nonlinear forced change and nonergodicity: The case of ENSO-Indian monsoon and global precipitation teleconnections. In Proceedings of the JpGU-AGU Joint Meeting 2020 For a borderless World of Geoscience, Chiba, Japan, 24–28 May 2020; pp. 1–31. [Google Scholar]
- Keys, P.W.; Barnes, E.A.; van der Ent, R.J.; Gordon, L.J. Variability of moisture recycling using a precipitationshed framework. Hydrol. Earth Syst. Sci. 2014, 18, 3937–3950. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Gu, G.; Sapiano, M.; Wang, J.J.; Huffman, G.J. Global Precipitation: Means, Variations and Trends During the Satellite Era (1979–2014). Surv. Geophys. 2017, 38, 679–699. [Google Scholar] [CrossRef] [Green Version]
- Davey, M.K.; Brookshaw, A.; Ineson, S. The probability of the impact of ENSO on precipitation and near-surface temperature. Clim. Risk Manag. 2014, 1, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Abtew, W.; Melesse, A.M.; Dessalegne, T. El Nino Southern Oscillation link to the Blue Nile River Basin hydrology. Hydrol. Process. 2009, 23, 3653–3660. [Google Scholar] [CrossRef]
- Abtew, W.; Melesse, A. Climate Teleconnections and Water Management. In Nile River Basin; Melesse, A., Abtew, W., Setegn, S., Eds.; Springer: Berlin, Germany, 2014; pp. 7–21. [Google Scholar]
- Alhamshry, A.; Fenta, A.A.; Yasuda, H.; Shimizu, K.; Kawai, T. Prediction of summer rainfall over the source region of the Blue Nile by using teleconnections based on sea surface temperatures. Theor. Appl. Climatol. 2019, 137, 3077–3087. [Google Scholar] [CrossRef]
- Eltahir, E.A.B. El Nino and the natural variability of the Nile River. Water Resour. Res. 1991, 32, 131–1376. [Google Scholar] [CrossRef]
- Molla, F.; Kebede, A.; Raju, U.J.P. The Impact of the El-Niño Southern Oscillation Precipitation and the Surface Temperature over the Upper Blue Nile Region. J. Sci. Res. Rep. 2019, 21, 1–15. [Google Scholar] [CrossRef]
- Arpe, K.; Bengtsson, L.; Golitsyn, G.S.; Mokhov, I.I.; Semenov, V.A.; Sporyshev, P.V. Connection between Caspian Sea level variability and ENSO. Geophys. Res. Lett. 2000, 27, 2693–2696. [Google Scholar] [CrossRef] [Green Version]
- Roghani, R.; Soltani, S.; Bashari, H. Influence of southern oscillation on autumn rainfall in Iran (1951–2011). Theor. Appl. Climatol. 2015, 124, 411–423. [Google Scholar] [CrossRef]
- Dehghani, M.; Salehi, S.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Ghamisi, P. Spatial analysis of seasonal precipitation over Iran: Co-variation with climate indices. ISPRS Int. J. Geo-Information 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Wu, Y. The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci. 1989, 6, 21–32. [Google Scholar]
- Hasanean, H. Precipitation variability over the Mediterranean and its linkage with El Nino Southern Oscillation (ENSO). J. Meteorol. 2004, 29, 151–160. [Google Scholar]
- Pozo-Vazquez, D.; Gámiz-Fortis, S.R.; Tovar-Pescador, J.; Esteban-Parra, M.J.; Castro-Díez, Y. El Niño–Southern Oscillation events and associated European winter precipitation anomalies. Int. J. Climatol. 2005, 25, 17–31. [Google Scholar] [CrossRef]
- George, D.G. The impact of the North Atlantic Oscillation on the development of ice on Lake Windermere. Clim. Chang. 2007, 81, 455–468. [Google Scholar] [CrossRef]
- Funk, C.; Dettinger, M.D.; Michaelsen, J.C.; Verdin, J.P.; Brown, M.; Barlow, M.; Hoell, A. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl. Acad. Sci. USA 2008, 105, 11081–11086. [Google Scholar] [CrossRef] [Green Version]
- Holman, I.P.; Rivas-Casado, M.; Bloomfield, J.P.; Gurdak, J.J. Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence. Hydrogeol. J. 2011, 19, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Kuss, A.J.M.; Gurdak, J.J. Groundwater level response in U.S. principal aquifers to ENSO, NAO, PDO, and AMO. J. Hydrol. 2014, 519, 1939–1952. [Google Scholar] [CrossRef]
- Velasco, E.M.; Gurdak, J.J.; Dickinson, J.E.; Ferré, T.P.A.; Corona, C.R. Interannual to multidecadal climate forcings on groundwater resources of the U.S. West Coast. J. Hydrol. Reg. Stud. 2017, 11, 250–265. [Google Scholar] [CrossRef] [Green Version]
- Rust, W.; Holman, I.; Bloomfield, J.; Cuthbert, M.; Corstanje, R. Understanding the potential of climate teleconnections to project future groundwater drought. Hydrol. Earth Syst. Sci. 2019, 23, 3233–3245. [Google Scholar] [CrossRef] [Green Version]
- Abiy, A.Z.; Melesse, A.M.; Seyoum, W.M.; Abtew, W. Drought and climate teleconnection and drought monitoring. In Extreme Hydrology and Climate Variability; Melesse, A.M., Abtew, W., Senay, G., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 275–295. [Google Scholar]
- Amini, M.; Ghadami, M.; Fathian, F.; Modarres, R. Teleconnections between oceanic–atmospheric indices and drought over Iran using quantile regressions. Hydrol. Sci. J. 2020, 65, 2286–2295. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Branstator, G.W.; Arkin, P.A. Origins of the 1988 North American Drought. Science. Science 1988, 242, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Seager, R. The turn of the century North American drought: Global context, dynamics, and past analogs. J. Clim. 2007, 20, 5527–5552. [Google Scholar] [CrossRef] [Green Version]
- Mo, K.C.; Schemm, J.K.E.; Yoo, S.H. Influence of ENSO and the Atlantic Multidecadal Oscillation on drought over the United States. J. Clim. 2009, 22, 5962–5982. [Google Scholar] [CrossRef] [Green Version]
- Räsänen, T.A.; Lindgren, V.; Guillaume, J.H.A.; Buckley, B.M.; Kummu, M. On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia. Clim. Past 2016, 12, 1889–1905. [Google Scholar] [CrossRef] [Green Version]
- Meza, F.J. Recent trends and ENSO influence on droughts in Northern Chile: An application of the Standardized Precipitation Evapotranspiration Index. Weather Clim. Extrem. 2013, 1, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kang, D.; Yoo, C.; Im, J.; Lee, M.-I. Recent ENSO influence on East African drought during rainy seasons through the synergistic use of satellite and reanalysis data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 17–26. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.M. The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeorol. 2012, 13, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Hooshyaripor, F.; Faraji-Ashkavar, S.; Koohyian, F.; Tang, Q.; Noori, R. Annual flood damage influenced by El Niño in the Kan River basin, Iran. Nat. Hazards Earth Syst. Sci. 2020, 20, 2739–2751. [Google Scholar] [CrossRef]
- Wang, S.Y.S.; Huang, W.R.; Hsu, H.H.; Gillies, R.R. Role of the strengthened El Niño teleconnection in the May 2015 floods over the southern Great Plains. Geophys. Res. Lett. 2015, 42, 8140–8146. [Google Scholar] [CrossRef] [Green Version]
- Najibi, N.; Devineni, N.; Lu, M. Hydroclimate drivers and atmospheric teleconnections of long duration floods: An application to large reservoirs in the Missouri River Basin. Adv. Water Resour. 2017, 100, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Gough, W.A. The teleconnection between floods in the middle reaches of the Yangtze River and El Niño events. In Proceedings of the Predictions in Ungauged Basins: PUB Kick-Off (Proceedings of the PUB Kick-Off Meeting, Brasilia, Brazil, 20–22 November 2002; Volume 14, pp. 376–380. [Google Scholar]
- Kundzewicz, Z.W.; Szwed, M.; Pińskwar, I. Climate variability and floods—A global review. Water 2019, 11, 1399. [Google Scholar] [CrossRef] [Green Version]
- Whan, K.; Zwiers, F. The impact of ENSO and the NAO on extreme winter precipitation in North America in observations and regional climate models. Clim. Dyn. 2017, 48, 1401–1411. [Google Scholar] [CrossRef] [Green Version]
- Lü, J.; Li, Y.; Zhai, P.; Chen, J.; Zhao, T. Teleconnection Patterns Impacting on the Summer Consecutive Extreme Rainfall in Central-Eastern China. In Proceedings of the 40th NOAA Annual Climate Diagnostics and Prediction Workshop, Denver, CO, USA, 26–29 October 2015; pp. 1–5. [Google Scholar]
- Deng, Y.; Jiang, W.; He, B.; Chen, Z.; Jia, K. Change in Intensity and Frequency of Extreme Precipitation and its Possible Teleconnection With Large-Scale Climate Index Over the China From 1960 to 2015. J. Geophys. Res. Atmos. 2018, 123, 2068–2081. [Google Scholar] [CrossRef]
- Sun, X.; Renard, B.; Thyer, M.; Westra, S.; Lang, M. A global analysis of the asymmetric effect of ENSO on extreme precipitation. J. Hydrol. 2015, 530, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, M.H.; Ambrizzi, T.; Liebmann, B. Extreme precipitation events and their relationship with ENSO and MJO phases over northern South America. Int. J. Climatol. 2017, 37, 2977–2989. [Google Scholar] [CrossRef]
- Krichak, S.O.; Breitgand, J.S.; Gualdi, S.; Feldstein, S.B. Teleconnection-extreme precipitation relationships over the Mediterranean region. Theor. Appl. Climatol. 2014, 117, 679–692. [Google Scholar] [CrossRef]
- Casanueva, A.; Rodríguez-Puebla, C.; Frías, M.D.; González-Reviriego, N. Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrol. Earth Syst. Sci. 2014, 18, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Duzenli, E.; Tabari, H.; Willems, P.; Yilmaz, M.T. Decadal variability analysis of extreme precipitation in Turkey and its relationship with teleconnection patterns. Hydrol. Process. 2018, 32, 3513–3528. [Google Scholar] [CrossRef]
- Brubaker, K.; Entekhabi, D.; Eagleson, P. Estimation of continental precipitation recycling. J. Clim. 1993, 6, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Brubaker, K.L.; Entekhabi, D. Analysis of Feedback Mechanisms in Land-Atmosphere Interaction Analysis of feedback mechanisms in land-atmosphere interaction. Water Resour. Res. 1996, 32, 1343–1357. [Google Scholar] [CrossRef]
- Budyko, M.I.; Drozdov, O.A. Zakonomernosti vlagooborota v atmosfere (Regularities of the hydrologic cycle in the atmosphere). Izv. Akad. Nauk SSSR, Ser. Geogr. 1953, 4, 5–14. [Google Scholar]
- Eltahir, E.A.B.; Bras, R.L. Precipitation recycling. Rev. Geophys. 1996, 34, 367–378. [Google Scholar] [CrossRef]
- Burde, G.I.; Zangvil, A. The estimation of regional precipitation recycling. Part I: Review of recycling models. J. Clim. 2001, 14, 2497–2508. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Brubaker, K.L. Global characterization of the hydrologic cycle from a quasi-isentropic back-trajectory analysis of atmospheric water vapor. J. Hydrometeorol. 2007, 8, 20–37. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Brubaker, K.L.; DelSole, T. Import and export of atmospheric water vapor between nations. J. Hydrol. 2009, 365, 11–22. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Brubaker, K.L. Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J. Geophys. Res. 1999, 104, 19383–19397. [Google Scholar] [CrossRef]
- Dirmeyer, P. What water vapor back-trajectory analysis can tell us about climate variability. In Proceedings of the 8th EGU Leonardo Conference 25 October 2016, Ourense, Spain, 25–27 October 2016. [Google Scholar]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Stohl, A. Computation, accuracy and applications of trajectories—A review and bibliography. Atmos. Environ. 1998, 32, 947–966. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc. 2002, 83, 1631–1648. [Google Scholar] [CrossRef]
- Bisselink, B.; Dolman, A.J. Precipitation recycling: Moisture sources over Europe using ERA-40 data. J. Hydrometeorol. 2008, 9, 1073–1083. [Google Scholar] [CrossRef]
- Dyn, C.; Hoyos, I.; Cañón, F.D.J.; Martínez, B.J.A. Moisture origin and transport processes in Colombia, northern South America. Clim. Dyn. Dyn. 2018, 50, 971–990. [Google Scholar]
- Ryoo, J.; Waliser, D.E. Trajectory analysis on the origin of air mass and moisture associated with Atmospheric Rivers over the west coast of the United States. Atmos. Chem. Phys. Discuss. 2011, 11, 11109–11142. [Google Scholar]
- Jana, S.; Rajagopalan, B.; Alexander, M.A.; Ray, A.J. Understanding the Dominant Sources and Tracks of Moisture for Summer Rainfall in the Southwest United States. J. Geophys. Res. Atmos. 2018, 123, 4850–4870. [Google Scholar] [CrossRef]
- Hua, L.; Zhong, L.; Ke, Z. Characteristics of the precipitation recycling ratio and its relationship with regional precipitation in China. Theor. Appl. Climatol. 2017, 127, 513–531. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Chern, J.D. Simulation of water sources and precipitation recycling for the MacKenzie, Mississippi, and Amazon River basins. J. Hydrometeorol. 2006, 7, 312–329. [Google Scholar] [CrossRef] [Green Version]
- Nieto, R.; Gallego, D.; Trigo, R.; Ribera, P.; Gimeno, L. Dynamic identification of moisture sources in the Orinoco basin in equatorial South America. Hydrol. Sci. J. 2008, 53, 602–617. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. Anthropogenic effects on the hydrological cycle. In Hydrological Cycle—Volume I; Shiklomanov, I.A., Ed.; Unesco Eolss: New York, NY, USA, 1996; p. 7. [Google Scholar]
- Keys, P.W.; van der Ent, R.J.; Gordon, L.J.; Hoff, H.; Nikoli, R.; Savenije, H.H.G. Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 2012, 9, 733–746. [Google Scholar] [CrossRef] [Green Version]
- Gimeno, L.; Stohl, A.; Trigo, R.M.; Dominguez, F.; Yoshimura, K.; Yu, L.; Drumond, A.; Durán-Quesada, A.M.; Nieto, R. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 2012, 50, 1–41. [Google Scholar] [CrossRef]
- de Vrese, P.; Hagemann, S.; Claussen, M. Asian irrigation, African rain: Remote impacts of irrigation. Geophys. Res. Lett. 2016, 43, 3737–3745. [Google Scholar] [CrossRef] [Green Version]
- Stickler, C.M.; Coe, M.T.; Costa, M.; Nepstad, D.C.; McGrath, D.G.; Dias, L.C.P.; Rodrigues, H.O.; Soares-Filho, B.S. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl. Acad. Sci. USA 2013, 110, 9601–9606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, E.; Endter-Wada, J.; Li, S. Characterizing and Contextualizing the Water Challenges of Megacities. J. Am. Resour. Assovcation 2015, 51, 1–26. [Google Scholar] [CrossRef]
- Keys, P.W.; Wang-Erlandsson, L.; Gordon, L.J. Megacity precipitationsheds reveal tele- connected water security challenges. PLoS ONE 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhabra, A.; Geist, H.; Houghton, R.A.; Haberl, H.; Braimoh, A.K.; Vlek, P.L.G.; Patz, J.; Xu, J.; Ramankutty, N.; Coomes, O. et al. Land-Use and Land-Cover Change: Loval Processes and Global Impacts. In Land-Use and Land-Cover Change: Loval Processes and Global Impacts; Lambin, E., Geist, H., Eds.; Springer: Berlin, Germany, 2006; pp. 71–116. [Google Scholar]
- Mustard, J.F.; Desfries, R.S.; Fisher, T.; Moran, E. Land Use and Land Cover Change Pathways and Impacts. In Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on Earth’s Surface; Gutman, G., Janetos, A.C., Justice, C.O., Moran, E.F., Mustard, J.F., Rindfuss, R.R., Skole, D., Turner, B.L.I., Cochrane, M.A., Eds.; Springer: Berlin, Germany, 2004; pp. 411–429. [Google Scholar]
- Hogeboom, R.J.; Knook, L.; Hoekstra, A.Y. The blue water footprint of the world’s artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation. Adv. Water Resour. 2018, 113, 285–294. [Google Scholar] [CrossRef]
- Veldkamp, T.; Wada, Y.; Aerts, J.; Döll, P.; Gosling, S.N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Fekete, B.M.; Wisser, D.; Mayorga, E.; Bouwman, L.; Vörösmarty, C.; Kroeze, C.; Wollheim, W. Millennium Ecosystem Assessment scenario drivers (1970-2050): Climate and hydrological alterations. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef] [Green Version]
- Meyer, W.B.; Turner, B.L. Human population growth and global land cover change. Annu. Revis. Ecol. Syst. 1992, 23. [Google Scholar] [CrossRef]
- Ruddiman, W.F. The anthropogenic greenhouse era began thousands of years ago. Clim. Chang. 2003, 61, 261–293. [Google Scholar] [CrossRef]
- Krausmann, F.; Erb, K.; Gingrich, S.; Haberl, H.; Bondeau, A.; Gaube, V.; Lauk, C.; Plutzar, C.; Searchinger, T.D. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. USA 2013, 110, 10324–10329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitousek, P.M.; Ehrlich, P.R.; Ehrlich, A.H.; Matson, P.A. Human Appropriation of the Products of Photosynthesis. Am. Inst. Biol. Sci. Stable 1986, 36, 368–373. [Google Scholar] [CrossRef]
- Rojstaczer, S.; Sterling, S.M.; Moore, N.J. Human Appropriation of Photosynthesis Products. Science 2001, 294, 2549–2552. [Google Scholar] [CrossRef]
- Potter, C.; Klooster, S.; Genovese, V. Net primary production of terrestrial ecosystems from 2000 to 2009. Clim. Chang. 2012, 115, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Kazama, S.; Oki, T. The Effects of Climate Change on Water Resources. Clim. Res. 2011, 47, 77–82. [Google Scholar]
- Ky, R. Impact of Climate Change on Water Resources. J. Earth Sci. Clim. Chang. 2014, 5, 1–6. [Google Scholar]
- Trenberth, K.E. Climate change caused by human activities is happening and it already has major consequences. J. Energy Nat. Resour. Law 2018, 36, 463–481. [Google Scholar] [CrossRef]
- Wang, R.; Zimmerman, J. Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World. Environ. Sci. Technol. 2016, 50, 5143–5153. [Google Scholar] [CrossRef]
- Lade, S.J.; Steffen, W.; De Vries, W.; Carpenter, S.R.; Donges, J.F.; Gerten, D.; Hoff, H.; Newbold, T.; Richardson, K.; Rockström, J. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 2019, 3, 119–128. [Google Scholar] [CrossRef]
- Goldewijk, K.K. Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochem. Cycles 2001, 15, 417–433. [Google Scholar] [CrossRef]
- Delzeit, R.; Zabel, F.; Meyer, C.; Václavík, T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Chang. 2017, 17, 1429–1441. [Google Scholar] [CrossRef] [Green Version]
- FAO. Crop Production and Natural Resource Use FAO. 2020. Available online: http://www.fao.org/3/y4252e/y4252e06.htm (accessed on 22 April 2021).
- Gregory, P.J.; George, T.S. Feeding nine billion: The challenge to sustainable crop production. J. Exp. Bot. 2011, 62, 5233–5239. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Gregory, P.J.; Van Vuuren, D.; Obersteiner, M.; Havlik, P.; Rounsevell, M.; Woods, J.; Stehfest, E.; Bellarby, J. Competition for land. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2941–2957. [Google Scholar] [CrossRef] [Green Version]
- Eitelberg, D.A.; van Vliet, J.; Verburg, P.H. A review of global potentially available cropland estimates and their consequences for model-based assessments. Glob. Chang. Biol. 2015, 21, 1236–1248. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, C.; Van Meijl, H.; Kyle, P.; Nelson, G.C.; Fujimori, S.; Gurgel, A.C.; Havlik, P.; Heyhoe, E.; Mason-D’Croz, D.; Popp, A.; et al. Land-use change trajectories up to 2050: Insights from a global agro-economic model comparison. Agric. Econ. 2014, 45, 69–84. [Google Scholar] [CrossRef]
- Defries, S.; Foley, A.; Asner, P. Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Beard, J.T.D.; Bennett, E.M.; Cumming, G.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G. Trade-offs across Space, Time, and Ecosystem Services. Ecol. Soc. 2006, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Huq, N.; Bruns, A.; Ribbe, L. Interactions between freshwater ecosystem services and land cover changes in southern Bangladesh: A perspective from short-term (seasonal) and long-term (1973–2014) scale. Sci. Total Environ. 2020, 650, 132–143. [Google Scholar] [CrossRef]
- Gordon, L.J.; Steffen, W.; Jönsson, B.F.; Folke, C.; Falkenmark, M.; Johannessen, Å. Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci. USA 2005, 102, 7612–7617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verburg, P.H.; van Eck, J.R.R.; de Nijs, T.C.M.; Dijst, M.J.; Schot, P. Determinants of land-use change patterns in the Netherlands. Environ. Plan. B Plan. Des. 2004, 31, 125–150. [Google Scholar] [CrossRef] [Green Version]
- Kissinger, G.; Herold, M.; de Sy, V. Drivers of Deforestation and Forest Degradation: A Synthesis for REDD+Policymakers Vancouver, Canada; Lexeme Consulting: Vancouver, BC, Canada, 2012. [Google Scholar]
- Persson, M.; Henders, S.; Kastner, T. Trading Forests: Quantifying the Contribution of Global Commodity Markets to Emissions from Tropical Deforestation; Center for Global Development: Washington, DC, USA, 2014. [Google Scholar]
- Heistermann, M.; Müller, C.; Ronneberger, K. Land in sight? Achievements, deficits and potentials of continental to global scale land-use modeling. Agric. Ecosyst. Environ. 2006, 114, 141–158. [Google Scholar] [CrossRef]
- Land Matrix, Land Matrix: Africa. Available online: https://landmatrix.org/map (accessed on 21 February 2021).
- Johansson, E.L.; Fader, M.; Seaquist, J.W.; Nicholas, K.A. Green and blue water demand from large-scale land acquisitions in Africa. Proc. Natl. Acad. Sci. USA 2016, 113, 11471–11476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA. 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- Zhang, X.; Zwiers, F.W.; Hegerl, G.; Lambert, F.H.; Gillett, N.P.; Solomon, S.; Stott, P.A.; Nozawa, T. Detection of human influence on twentieth-century precipitation trends. Nat. Lett. 2007, 448, 461–466. [Google Scholar] [CrossRef]
- Stott, P.A. Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
- Garg, V.; Nikam, B.R.; Thakur, P.K.; Aggarwal, S.P.; Gupta, P.K.; Srivastav, S.K. Human-induced land use land cover change and its impact on hydrology. HydroResearch 2019, 1, 48–56. [Google Scholar] [CrossRef]
- Balling, R.J. The climatic impacts of a Sonoran vegetation discontinuity. Clim. Chang. 1988, 13, 99–109. [Google Scholar] [CrossRef]
- Campra, P.; Garcia, M.; Canton, Y.; Palacios-Orueta, A. Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain. J. Geophys. Res. Atmos. 2008, 113, 1–10. [Google Scholar] [CrossRef]
- Kvalevag, M.; Myhre, G.; Bonan, G.; Levis, S. Anthropogenic land cover changes in a GCM with surface albedo changes based on MODIS data. Int. J. Climatol. 2010, 30, 2105–2117. [Google Scholar] [CrossRef]
- Davin, E.L.; de Noblet-Ducoudré, N.; Friedlingstein, P. Impact of land cover change on surface climate: Relevance of the radiative forcing concept. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Lee, E.; Sacks, W.J.; Chase, T.N.; Foley, J.A. Simulated impacts of irrigation on the atmospheric circulation over Asia. J. Geophys. Res. Atmos. 2011, 116, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.; Sr, R.A.P.; Hubbard, K.G.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S.; Beltrán-Przekurat, A.; et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 2014, 34, 929–953. [Google Scholar] [CrossRef] [Green Version]
- Tolba, M.K.; El-Kholy, O.A. (Eds.) The World Environment 1972–1992: Two Decades of Challenge; Chapman & Hall: London, UK, 1992. [Google Scholar]
- Weaver, C.P.; Avissar, R. Atmospheric disturbances caused by human modification of the landscape. Bull. Am. Meteorol. Soc. 2001, 82, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Niyogi, D.D.S.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2002, 360, 1705–1719. [Google Scholar] [CrossRef]
- Avissar, R.; Werth, D. Global hydroclimatological teleconnections resulting from tropical deforestation. J. Hydrometeorol. 2005, 6, 134–145. [Google Scholar] [CrossRef]
- Wang-Erlandsson, L.; Fetzer, I.; Keys, P.W.; van der Ent, R.J.; Savenije, H.H.G.; Gordon, L.J. Remote land use impacts on river flows through atmospheric teleconnections. Hydrol. Earth Syst. Sci. 2018, 22, 4311–4328. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Shao, Y.; Jiang, Q.; Xiao, L.; Yan, H.; Gao, X.; Wang, L.; Liu, P. Impacts of climate change and human activity on the runoff changes in the Guishui River Basin. Land 2020, 9, 291. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Lüthi, D.; Litschi, M.; Schär, C. Land-atmosphere coupling and climate change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.; Wu, Q. Significant anthropogenic-induced changes of climate classes since 1950. Sci. Reports Nat. Publ. Gr. 2015, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magrin, G.O.; Marengo, J.A.; Boulanger, J.-P.; Buckeridge, M.S.; Castellanos, E.; Poveda, G.; Scarano, F.R.; Vicuña, S.; Alfaro, E.; Anthelme, F.; et al. Central and South America in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1499–1566. [Google Scholar]
- Pervez, S.; Henebry, G.M. Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. J. Hydrol. Reg. Stud. 2015, 3, 285–311. [Google Scholar] [CrossRef] [Green Version]
- Tekleab, S.; Mohamed, Y.; Uhlenbrook, S.; Wenninger, J. Hydrologic responses to land cover change: The case of Jedeb mesoscale catchment, Abay/Upper Blue Nile Basin, Ethiopia. Hydrol. Process. 2014, 28, 5149–5161. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Fenta, A.A.; Sultan, D.; Yibeltal, M.; et al. Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2019, 689, 347–365. [Google Scholar] [CrossRef] [PubMed]
- ESA Climate Change Initiative—Land Cover led by UC Louvain, Global Land Cover Maps 1992–2015. 2017. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download.php (accessed on 22 April 2021).
- Brink, A.B.; Eva, H.D. Monitoring 25 years of land cover change dynamics in Africa: A sample based remote sensing approach. Appl. Geogr. 2009, 29, 501–512. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A.; Norman, J.; McSweeney, K. The global distribution of cultivable lands: Current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 2002, 11, 377–392. [Google Scholar] [CrossRef] [Green Version]
- Pitman, A.J.; De Noblet-Ducoudré, N.; Avila, F.B.; Alexander, L.V.; Boisier, J.P.; Brovkin, V.; Delire, C.; Cruz, F.; Donat, M.G.; Gayler, V.; et al. Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations. Earth Syst. Dyn. Discuss. 2012, 3, 597–641. [Google Scholar]
- Niu, X.; Tang, J.; Wang, S.; Fu, C. Impact of future land use and land cover change on temperature projections over East Asia. Clim. Dyn. 2019, 52, 6475–6490. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Schurgers, G.; Ahlström, A.; Rummukainen, M.; A Miller, P.; Smith, B.; May, W. Impacts of land use on climate and ecosystem productivity over the Amazon and the South American continent. Environ. Res. Lett. 2017, 12, 054016. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, L. Sensitivity of Surface Temperature to Land Use and Land Cover Change-Induced Biophysical Changes: The Scale Issue. Geophys. Res. Lett. 2019, 46, 9678–9689. [Google Scholar] [CrossRef]
- Falkenmark, M.; Widstrand, C. Population and water resources: A delicate balance. Popul Bull 1992, 47, 1–36. [Google Scholar] [PubMed]
- Ehrlich, P.R.; Ehrlich, A.H. Too Many People, Too Much Consumption Yale 360. 2008. Available online: https://e360.yale.edu/features/too_many_people_too_much_consumption (accessed on 21 April 2021).
- van Ypersele, J.P.; Bartiaux, F. The Role of Population Growth in Global Warming. In “International Population Conference”, Inter-national Union for the Scientific Study of Population (IUSSP); Springer: Berlin, Germany, 1973; Volume 4, pp. 33–54. [Google Scholar]
- Rosnick, D. The Consequences of Increased Population Growth for Climate Change; Center for Economic and Policy Research (CEPR): Washington, DC, USA, 2014. [Google Scholar]
- Daly, H.E. Beyond Growth: The Economics of Sustainable Development; Beacon Press: Boston, MA, USA, 1996. [Google Scholar]
- Henderson, K.; Loreau, M. An ecological theory of changing human population dynamics. People Nat. 2019, 1, 31–43. [Google Scholar] [CrossRef] [Green Version]
- World Bank. Renewable Internal Freshwater Resources per Capita (Cubic Meters). 2014. Available online: https://data.worldbank.org/indicator/ER.H2O.INTR.PC?end=2014&start=1970 (accessed on 22 April 2021).
- Word Bank. Population, Total. 2019. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL (accessed on 22 April 2021).
- World Bank. Population, Total—Middle East & North Africa. 2020. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?end=2014&locations=ZQ&start=1970 (accessed on 22 April 2021).
- Roudi-Fahimi, F.; Kent, M.M. Challenges and opportunities—The population of the Middle East and North Africa. Popul. Bull. 2007, 62, 1–19. [Google Scholar]
- World Bank. Renewable Energy Desalination An Emerging Solution to Close the Water Gap in the Middle East and North Africa MENA Development Report; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- World Bank. Beyond Scarcity: Water Security in the Middle East and North Africa MENA Development Series; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Bongaarts, J. Human population growth and the demographic transition. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2985–2990. [Google Scholar] [CrossRef] [Green Version]
- Roser, M. Future Population Growth. In Our World in Data. Available online: https://ourworldindata.org/future-population-growth (accessed on 22 February 2021).
- Piguet, E.; Pécoud, A.; de Guchteneire, P. Migration and climate change: An overview. Refug. Surv. Q. 2011, 30, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Black, R.; Kniveton, D.; Skeldon, R.; Coppard, D.; Murata, A.; Schmidt-verkerk, K. Demographics and Climate Change: Future Trends And their Policy Implications for Migration T-27; Development Research Centre on Migration, Globalisation and Poverty, University of Sussex: Brighton, UK, 2008. [Google Scholar]
- UNHCR. Supplementary Appeal: Somalia Situation 2017; UNHCR: Geneva, Switzerland, 2017. [Google Scholar]
- Maastricht Graduate School of Governance (MGSoG). Somalia Migration Profile: Study on Migration Routes in the East and Horn of Africa; Maastricht Graduate School of Governance (MGSoG): Maastricht, The Netherlands, 2017. [Google Scholar]
- AQUASTAT. Water Uses 2019. Available online: http://www.fao.org/nr/water/aquastat/water_use/print1.stm (accessed on 22 April 2021).
- Falkenmark, M.; Rockström, J.; Karlberg, L. Present and future water requirements for feeding humanity. Food Secur. 2009, 1, 59–69. [Google Scholar] [CrossRef]
- Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; van Vliet, M.T.H.; Yillia, P.; Ringler, C.; et al. Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef] [Green Version]
- UN Water. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water UNESCO; UN Water: Geneva, Switzerland, 2018. [Google Scholar]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- U.N. Water. The United Nations World Water Development Report 2019: Leaving No One Behind; UN Water: Geneva, Switzerland, 2019. [Google Scholar]
- Pitchford, J.D. Relative scarcity and uneven growth. Int. J. Soc. Econ. 1997, 24, 847–858. [Google Scholar] [CrossRef]
- International Task Force on Global Public Goods. Meeting Global Challenges: International Cooperation in the National Interest Stockholm; International Task Force on Global Public Goods: Stockholm, Sweden, 2006. [Google Scholar]
- Leagans, J.P. Concept of Needs. J. Ext. 1964, 2, 89–96. [Google Scholar]
- Beatty, P.T. The concept of need: Proposal for a working definition. J. Community Dev. Soc. 1981, 12, 39–46. [Google Scholar] [CrossRef]
- Samuelson, P.A. Economics: An Introductory Analysis; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1955. [Google Scholar]
- Thaler, R. Toward a positive theory of consumer choice. J. Econ. Behav. Organ. 1980, 1, 39–60. [Google Scholar] [CrossRef]
- Kahneman, D.; Thaler, R.H. Anomalies: Utility maximization and experienced utility. J. Econ. Perspect. 2006, 20, 221–234. [Google Scholar] [CrossRef]
- Hussien, W.A.; Memon, F.A. Assessing and Modelling the Influence of Household Characteristics on Per Capita Water Consumption Content courtesy of Springer Nature, terms of use apply Rights reserved. Water Resour. Manag. 2016. [Google Scholar] [CrossRef] [Green Version]
- de Buck, E.; Borra, V.; de Weerdt, E.; Veegaete, A.V. A Systematic Review of the Amount of Water per Person per Day Needed to Prevent Morbidity and Mortality in (Post-) Disaster Settings. PLoS ONE 2015, 11, e0126395. [Google Scholar] [CrossRef] [Green Version]
- Gleick, P.H.; Iwra, M. Basic Water Requirements. Water Int. 1996, 21, 83–92. [Google Scholar] [CrossRef]
- WHO/SEARO. Minimum Water Quantity Needed for Domestic Uses; WHO/SEARO: Geneva, Switzerland, 2005. [Google Scholar]
- Dalezios, N.R.; Angelakis, A.N.; Eslamian, S.S. Water scarcity management: Part 1: Methodological framework. Int. J. Glob. Environ. Issues 2018, 17, 1–40. [Google Scholar] [CrossRef]
- Molden, D. Scarcity of water or scarcity of management? Int. J. Water Resour. Dev. 2020, 36, 258–268. [Google Scholar] [CrossRef] [Green Version]
- FAO. Land and Water. 2020. Available online: http://www.fao.org/land-water/water/water-scarcity/en/ (accessed on 21 April 2021).
- Bettini, Y.; Brown, R.; de Haan, F.J.; Science, E. Water scarcity and institutional change: Lessons in adaptive governance from the drought experience of Perth, Western. Water Sci. Technol. 2004, 67, 2160–2168. [Google Scholar] [CrossRef]
- Barnes, J. Managing the waters of ba’th country: The politics of water scarcity in Syria. Geopolitics 2009, 14, 510–530. [Google Scholar] [CrossRef]
- Wang, C.; Huang, H.; Zhou, J.; Deng, H.; Fang, C. Analysis of sustainable utilization of water resources based on the improved water resources ecological footprint model: A case study of Hubei Province, China. J. Environ. Manag. 2019, 262. [Google Scholar] [CrossRef]
- Maruyama, T.; Kawachi, T.; Singh, V.P. Entropy-based assessment and clustering of potential water resources availability. J. Hydrol. 2005, 309, 104–113. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, M.; Abbaspour, K.C.; Schulin, R.; Yang, H. Modelling blue and green water resources availability in Iran. Hydrol. Process. 2009, 23, 486–501. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Yang, H.; Srinivasan, R.; Zehnder, A.J.B. Modeling blue and green water availability in Africa. Water Resour. Res. 2008, 44, 1–18. [Google Scholar]
- Xu, Z.; Zuo, D. Simulation of blue and green water resources in the Wei River basin, China in Evolving Water Resources Systems: Understanding, Predicting and Managing Water–Society Interactions. In Proceedings of the ICWRS2014, Bologna, Italy, 4–6 June 2014; pp. 486–491. [Google Scholar]
- Sayyad, G.; Vasel, L.; Besalatpour, A.A.; Gharabaghi, B.; Golmohammadi, G. Modeling Blue and Green Water Resources Availability in an Iranian Data Scarce Watershed Using SWAT. J. Water Manag. Model. 2015, 1–8. [Google Scholar] [CrossRef]
- Xu, H.; Wu, M. A first estimation of county-based greenwater availability and its implications for agriculture and bioenergy production in the United States. Water 2018, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Badou, D.F.; Diekkrüger, B.; Kapangaziwiri, E.; Mbaye, M.L.; Yira, Y.; Lawin, E.A.; Oyerinde, G.T.; Afouda, A. Modelling blue and green water availability under climate change in the Beninese Basin of the Niger River Basin, West Africa. Hydrol. Process. 2018, 32, 2526–2542. [Google Scholar] [CrossRef]
- Alamou, E.A.; Obada, E.; Afouda, A. Assessment of future water resources availability under climate change scenarios in the Mékrou Basin, Benin. Hydrology 2017, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Sordo-Ward, A.; Granados, I.; Iglesias, A.; Garrote, L. Blue water in Europe: Estimates of current and future availability and analysis of uncertainty. Water 2019, 11, 420. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Guan, Y.; Khan, F.; Khan, Y. A Comprehensive Index for Measuring Water Security in an Urbanizing World: The Case of Pakistan’s Capital. Water 2020, 12, 166. [Google Scholar] [CrossRef] [Green Version]
- Reilly, T.E.; Dennehy, K.F.; Alley, W.M.; Cunningham, W.L. U.S.G.S. Circular 1323: Ground-Water Availability in the United States; U.S. Geological Survey: Reston, VA, USA, 2008. [Google Scholar]
- MacDonald, A.M.; Bonsor, H.C.; Dochartaigh, B.É.Ó.; Taylor, R.G. Quantitative maps of groundwater resources in Africa. Environ. Res. Lett. 2012, 7, 024009. [Google Scholar] [CrossRef]
- Al-Ghazawy, O. Africa floats on underground water reserves. Nat. Middle East. Available online: https://www.natureasia.com/en/nmiddleeast/article/10.1038/nmiddleeast.2012.72 (accessed on 22 April 2021). [CrossRef]
- National Agricultural Statistics Service. Irrigation and Water Management: Results from the 2018 Irrigation and Water Management Survey (Highlights); United States Department of Agriculture: Washington, DC, USA, 2019. [Google Scholar]
- Fung, F.; Lopez, A.; New, M. Water availability in +2°C and +4°C worlds. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 99–116. [Google Scholar] [CrossRef]
- Latrubesse, E.M. Patterns of anabranching channels: The ultimate end-member adjustment of Mega Rivers. Geomorphology 2008, 101, 130–145. [Google Scholar] [CrossRef]
- Czaya, E. Rivers of the World; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Allan, J.A. Virtual water: A strategic resource. Global solutions to regional deficits Ground Water. Ground Water 1998, 36, 545–546. [Google Scholar] [CrossRef]
- Burek, P.; Langan, S.; Cosgrove, W.; Fischer, G.; Kahil, T.; Magnuszewski, P.; Satoh, Y.; Tramberend, S.; Wada, Y.; Wiberg, D. The Water Futures and Solutions Initiative of IIASA; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2016. [Google Scholar]
- Shiklomanov, I.A. Assessment of Water Resources and Water Availability in the World: Scientific and Technical Report; Russian State Hydrological Institute: St. Petersburg, Russia, 1996. [Google Scholar]
- Grove, A.T. The geography of semi-arid lands. Phil. Trans. R. Soc. Lond. B 1977, 278, 457–475. [Google Scholar]
- Mortimore, M.; Anderson, S.; Cotula, L.; Davies, J.; Faccer, K.; Hesse, C.; Morton, J.; Nyangena, W.; Skinner, J.; Wolfangel, C. Dryland Opportunities: A new paradigm for people, ecosystems and development; IIED: London, UK, 2009. [Google Scholar]
- United Nations Environment Management Group. Global Drylands: A UN System-Wide Response; United Nations Environment Management Group: Geneva, Switzerland, 2011. [Google Scholar]
- Bychkov, I.; Gagarinova, O.; Orlova, I.; Bogdanov, V. Water Protection Zoning as an Instrument of Preservation for Lake Baikal. Water 2018, 10, 1474. [Google Scholar] [CrossRef] [Green Version]
- Afanas’ev, A.N. Vodnye resursy i vodnyi balans basseina oz. Baikal (Water Resources and Water Balance of the Baikal Lake Basin); Nauka: Moscow, Russia, 1976. [Google Scholar]
- Fry, A.; Haden, E.; Martin, M.; Fry, A.; Haden, E.; Martin, M. Facts and Trends: Water. World Business Council for Sustainable Development; UN Water: Geneva, Switzerland, 2005. [Google Scholar]
- Demin, A.P. Water resources and food program. Water Resour. 2014, 41, 232–241. [Google Scholar] [CrossRef]
- UNESCO. Map of the World Distribution of Arid Regions: Explanatory Note; UNESCO: Paris, France, 1979; Volume 7. [Google Scholar]
- Flint, A.L.; Flint, L.E.; Hevesi, J.A.; Blainey, J.B. Fundamental Concepts of Recharge in the Desert Southwest: A Regional Modeling Perspective. In Groundwater Recharge in a Desert Environment: The Southwestern United States Water Science and Application; American Geophysical Union: Washington, DC, USA, 2004; Volume 9, pp. 159–184. [Google Scholar]
- Dynesius, M.; Nilsson, C. Fragmentation and flow regulation of rivers. Sci. New Ser. 1994, 266, 753–762. [Google Scholar]
- Postel, P.; Daily, S.L.; Ehrlich, G.C. Human Appropriation of Renewable Fresh Water. Science 1996, 271, 785–788. [Google Scholar] [CrossRef]
- Biggs, E.M.; Duncan, J.M.A.; Atkinson, P.M.; Dash, J. Plenty of water, not enough strategy: How inadequate accessibility, poor governance and a volatile government can tip the balance against ensuring water security: The case of Nepal. Environ. Sci. Policy 2013, 33, 388–394. [Google Scholar] [CrossRef]
- Ogino, S.Y.; Yamanaka, M.D.; Mori, S.; Matsumoto, J. How much is the precipitation amount over the tropical coastal region? J. Clim. 2016, 29, 1231–1236. [Google Scholar] [CrossRef]
- Curtis, S. Means and Long-Term Trends of Global Coastal Zone Precipitation. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jahfer, S.; Vinayachandran, P.N.; Nanjundiah, R.S. Long-Term impact of Amazon River runoff on northern hemispheric climate. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyaquiçã, P.; Veleda, D.; Lefèvre, N.; Araujo, M.; Noriega, C.; Caniaux, G.; Servain, J.; Silva, T. Amazon plume salinity response to ocean teleconnections. Front. Mar. Sci. 2017, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.L.; Brando, P.M.; Phillips, O.L.; van der Heijden, G.M.F.; Nepstad, D. The 2010 Amazon drought. Science 2011, 331, 554. [Google Scholar] [CrossRef] [PubMed]
- Dai, A.; Trenberth, K.E. Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations. J. Hydrometeorol. 2002, 3, 660–687. [Google Scholar] [CrossRef] [Green Version]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Qian, T.; Trenberth, K.E.; Milliman, J.D. Changes in continental freshwater discharge from 1948 to 2004. J. Clim. 2009, 22, 2773–2792. [Google Scholar] [CrossRef]
- Shi, X.; Qin, T.; Nie, H.; Weng, B.; He, S. Changes in major global river discharges directed into the ocean. Int. J. Environ. Res. Public Health 2019, 16, 1469. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.J.; Holmes, R.M.; McClelland, J.; Vörösmarty, C.J.; Lammers, R.B.; Shiklomanov, A.I.; Shiklomanov, I.A.; Rahmstorf, S. Increasing river discharge to the Arctic Ocean. Science 2002, 298, 2171–2173. [Google Scholar] [CrossRef] [Green Version]
- L’Vovich, M.L.; White, G.F. Use and transformation of terrestrial water systems. In The Earth as Transformed by Human Action; Turner, B.L., II, Clark, W.C., Kates, R.W., Richards, J.F., Mathews, J.T., Meyer, W.B., Eds.; Cambridge University Press: Cambridge, UK, 1990; pp. 235–252. [Google Scholar]
- Thober, S.; Kumar, R.; Wanders, N.; Marx, A.; Pan, M.; Rakovec, O.; Samaniego, L.; Sheffield, J.; Wood, E.F.; Zink, M. Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environ. Res. Lett. 2017, 13. [Google Scholar] [CrossRef]
- Machado, M.J.; Botero, B.A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G. Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrol. Earth Syst. Sci. 2015, 19, 2561–2576. [Google Scholar] [CrossRef] [Green Version]
- Odry, J.; Arnaud, P. Comparison of flood frequency analysis methods for ungauged catchments in France. Geoscience 2017, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T. WG4: Flood Frequency Estimation Methods and Environmental Change; Centre for Ecology and Hydrology Bailrigg: Lancaster, UK, 2013. [Google Scholar]
- Lawrence, D. Uncertainty introduced by flood frequency analysis in projections for changes in flood magnitudes under a future climate in Norway. J. Hydrol. Reg. Stud. 2020, 28, 100675. [Google Scholar] [CrossRef]
- Yin, J.; Guo, S.; Gu, L.; He, S.; Ba, H.; Tian, J.; Li, Q.; Chen, J. Projected changes of bivariate flood quantiles and estimation uncertainty based on multi-model ensembles over China. J. Hydrol. 2020, 585. [Google Scholar] [CrossRef]
- Hu, L.; Nikolopoulos, E.I.; Marra, F.; Anagnostou, E.N. Sensitivity of flood frequency analysis to data record, statistical model, and parameter estimation methods: An evaluation over the contiguous United States. J. Flood Risk Manag. 2020, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Topaloǧlu, F. Regional flood frequency analysis of the basins of the East Mediterranean region. Turkish J. Agric. Forestry 2005, 29, 287–295. [Google Scholar]
- Yu, X.; Cohn, T.A.; Stedinger, J.R. Flood frequency analysis in the context of climate change. In Proceedings of the World Environment Water Resource Congress 2015, Floods, Droughts, Ecosyst, Austin, TX, USA, 17–21 May 2015; pp. 2376–2385. [Google Scholar]
- Demissie, S.; Cunnane, C. Representation of Climate Change in Flood Frequency Estimation; National University of Ireland: Galway, Ireland, 2002. [Google Scholar]
- Maghsood, F.F.; Moradi, H.; Bavani, A.R.M.; Panahi, M.; Berndtsson, R.; Hashemi, H. Climate change impact on flood frequency and source area in northern Iran under CMIP5 scenarios. Water 2019, 11, 273. [Google Scholar] [CrossRef] [Green Version]
- Reynard, N.; Crooks, S.; Wilby, R.; Kay, A. Climate change and flood frequency in the UK. In Proceedings of the 39th Defra Flood and Coastal Flood management Conference, York, UK, 29 June–1 July 2004; pp. 1–12. [Google Scholar]
- Salles, C.; Chu, Y.; Perrin, J.L.; Tournoud, M.G.; Boudet, L.; Cres, F.N.; Rodier, C.; Zheng, S.; Huang, L.; Ma, Y. Flood duration frequency analysis in a changing climate: The methodology applied to Fengle River (Yangtze basin, China). IAHS-AISH Proc. Rep. 2014, 363, 54–59. [Google Scholar]
- Olsson, T.; Jakkila, J.; Veijalainen, N.; Backman, L.; Kaurola, J.; Vehviläinen, B. Impacts of climate change on temperature, precipitation and hydrology in Finland—Studies using bias corrected Regional Climate Model data. Hydrol. Earth Syst. Sci. 2015, 19, 3217–3238. [Google Scholar] [CrossRef] [Green Version]
- Morton, J.F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, C.; Takayabu, Y. Response of precipitation extremes to warming: What have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned? Environ. Res. Lett. 2020, 15. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.H.; Ho, Y.S. Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Glob. Planet. Chang. 2011, 77, 13–20. [Google Scholar] [CrossRef]
- Sarhadi, A.; Soulis, E.D. Time-varying extreme rainfall intensity-duration-frequency curves in a changing climate. Geophys. Res. Lett. 2017, 44, 2454–2463. [Google Scholar] [CrossRef]
- Liang, S.; Wang, W.; Zhang, D. Characteristics of annual and seasonal precipitation variation in the upstream of Minjiang River, Southwestern China. Adv. Meteorol. 2018, 18, 1–15. [Google Scholar] [CrossRef]
- Li, W.; He, X.; Scaioni, M.; Yao, D.; Mi, C.; Zhao, J.; Chen, Y.; Zhang, K.; Gao, J.; Li, X. Annual precipitation and daily extreme precipitation distribution: Possible trends from 1960 to 2010 in urban areas of China. Geomatics Nat. Hazards Risk 2019, 10, 1694–1711. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Zhang, C.; Zou, X. A Comprehensive Analysis of the Changes in Precipitation Patterns over Beijing during 1960–2012. Adv. Meteorol. 2019, 2019, 1–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, C. Analysis of Annual and Seasonal Precipitation Variation in the Qinba Mountain area, China. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tošić, I.; Hrnjak, I.; Gavrilov, M.B.; Unkašević, M.; Marković, S.B.; Lukić, T. Annual and seasonal variability of precipitation in Vojvodina, Serbia. Theor. Appl. Climatol. 2013, 117, 331–341. [Google Scholar] [CrossRef]
- Bajat, B.; Pejović, M.; Luković, J.; Manojlović, P.; Ducić, V.; Mustafić, S. Mapping average annual precipitation in Serbia (1961–1990) by using regression kriging. Theor. Appl. Climatol. 2013, 112, 1–13. [Google Scholar] [CrossRef]
- Zubovic, J.; Jelocnik, M.; Zdravkovic, A.; Subic, J.; Radovanovic, S. Using Spatial and Seasonal Panel Model to Determine Impact of Climatic Factors on Maize Yields in Serbia. Rom. Biotechnol. Lett. 2018, 23, 13383–13393. [Google Scholar]
- Modarres, R.; Sarhadi, A. Rainfall trends analysis of Iran in the last half of the twentieth century. J. Geophys. Res. Atmos. 2009, 114, 1–10. [Google Scholar] [CrossRef]
- Khalili, K.; Tahoudi, M.N.; Mirabbasi, R.; Ahmadi, F. Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stoch. Environ. Res. Risk Assess. 2016, 30, 1205–1221. [Google Scholar] [CrossRef]
- Khozeymehnezhad, H.; Tahroudi, M.N. Annual and seasonal distribution pattern of rainfall in Iran and neighboring regions. Arab. J. Geosci. 2019, 12, 271. [Google Scholar] [CrossRef]
- Guhathakurta, P.; Rajeevan, M. Trends in the rainfall pattern over India. Int. J. Climatol. 2008, 28, 1453–1469. [Google Scholar] [CrossRef]
- Fishman, R. More uneven distributions overturn benefits of higher precipitation for crop yields. Environ. Res. Lett. 2016, 11, 024004. [Google Scholar] [CrossRef]
- Rai, P.; Dimri, A.P. Changes in rainfall seasonality pattern over India. Meteorol. Appl. 2020, 27, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.E.; Funk, C.; Fink, A.H. Rainfall over the African continent from the 19th through the 21st century. Glob. Planet. Chang. 2018, 165, 114–127. [Google Scholar] [CrossRef]
- Mardero, S.; Schmook, B.; Christman, Z.; Metcalfe, S.E.; de la Barreda-Bautista, B. Recent disruptions in the timing and intensity of precipitation in Calakmul, Mexico. Theor. Appl. Climatol. 2020, 140, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Ragno, E.; AghaKouchak, A.; Love, C.A.; Cheng, L.; Vahedifard, F.; Lima, C.H.R. Quantifying Changes in Future Intensity-Duration-Frequency Curves Using Multimodel Ensemble Simulations. Water Resour. Res. 2018, 54, 1751–1764. [Google Scholar] [CrossRef]
- Government of India; Ministry of Environment and Forests. India Second National Communication to the United Nations Framework Convention on Climate Change; Ministry of Environment and Forests, Government of India: New Delhi, India, 2012. [Google Scholar]
- Ghil, M.; Lucarini, V. The physics of climate variability and climate change. Rev. Mod. Phys. 2020, 92, 035002. [Google Scholar] [CrossRef]
- Cooke, R.M. Messaging climate change uncertainty. Nat. Clim. Chang. 2015, 5, 8–10. [Google Scholar] [CrossRef]
- Nearing, G.S.; Tian, Y.; Gupta, H.V.; Clark, M.P.; Harrison, K.W.; Weijs, S.V. A philosophical basis for hydrological uncertainty. Hydrol. Sci. J. 2016, 61, 1666–1678. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.; Ghosh, S.; Pathak, A.; Sahai, A.K. Hydrologic impacts of climate change: Comparisons between hydrological parameter uncertainty and climate model uncertainty. J. Hydrol. 2018, 566, 1–22. [Google Scholar] [CrossRef]
- Dayon, G.; Boé, J.; Martin, É.; Gailhard, J. Impacts of climate change on the hydrological cycle over France and associated uncertainties. Comptes Rendus Geosci. 2018, 350, 141–153. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V.; Benestad, R.E.; Hov, Ø.; Piniewski, M.; Otto, I.M. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 2017, 79, 1–8. [Google Scholar] [CrossRef]
- Clark, M.P.; Wilby, R.L.; Gutmann, E.; Vano, J.A.; Gangopadhyay, S.; Wood, A.W.; Fowler, H.J.; Prudhomme, C.; Arnold, J.R.; Brekke, L.D. Characterizing Uncertainty of the Hydrologic Impacts of Climate Change. Curr. Clim. Chang. Rep. 2016, 2, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Schmied, H.M.; Adam, L.; Eisner, S.; Fink, G.; Flörke, M.; Kim, H.; Oki, T.; Portmann, F.T.; Reinecke, R.; Riedel, C.; et al. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol. Earth Syst. Sci. 2016, 20, 2877–2898. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.R.; Laizé, C.L.R.; Green, A.J.; Acreman, M.C.; Kingston, D.G. Climate change uncertainty in environmental flows for the Mekong River. Hydrol. Sci. J. 2014, 59, 935–954. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, F.O.; Hammonds, J.S. Propagation of uncertainty in risk assessments: The need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variabi. Risk Anal. 1994, 14, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, S.; Lickley, M.; Strzepek, K. Learning about climate change uncertainty enables flexible water infrastructure planning. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Stakhiv, E.Z. Policy implications of climate change impacts on water resources management. Water Policy 1998, 1, 159–175. [Google Scholar] [CrossRef]
- Haasnoot, M.; Kwakkel, J.H.; Walker, W.E.; Maat, J.T. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Chang. 2013, 23, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Farmer, W.H.; Vogel, R.M. On the deterministic and stochastic use of hydrologic models. Water Resour. Res. 2016, 52, 5619–5633. [Google Scholar] [CrossRef] [Green Version]
- Tase, N. Area-Deficit-Intensity Characteristics of Droughts; Colorado State University: Fort Collins, CO, USA, 1976; Volume 87. [Google Scholar]
- Yevjevich, V. Structural Analysis of Hydrologic Time Series; Colorado State University: Fort Collins, CO, USA, 1972; p. 56. [Google Scholar]
- Petelczyc, M.; Gac, J.M. Separation of deterministic and stochastic components from time series. Acta Phys. Pol. B, Proc. Suppl. 2014, 7, 395–405. [Google Scholar] [CrossRef]
- Fatichi, S.; Barbosa, S.M.; Caporali, E.; Silva, M.E. Deterministic versus stochastic trends: Detection and challenges. J. Geophys. Res. Atmos. 2009, 114, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ha-Duong, M. Review of Risk and Uncertainty Concepts for Climate Change Assessments Including Human Dimensions; CIRED–Centre international de recherche sur l’environnement et le développement: Nogent-sur-Marne, France, 2012. [Google Scholar]
- Chen, Y.; Fanke, M.; Glanemann, N. Knightian Uncertainty and Climate Change; CESifo: Munich, Germany, 2011. [Google Scholar]
- Smith, L.A.; Stern, N. Uncertainty in science and its role in climate policy. Phil. Trans. R. Soc. A 2011, 369. [Google Scholar] [CrossRef] [Green Version]
- Knight, F.H. Risk, Uncertainty, and Profit; Liberty Fund, Inc.: Indianapolis, IN, USA, 1921. [Google Scholar]
- Baumgärtner, S.; Engler, J.-O. An axiomatic foundation of entropic preferences under Knightian uncertainty. In Beiträge zur Jahrestagung des Vereins für Socialpolitik 2018: Digitale Wirtschaft—Session: Theory—Concepts; Informationszentrum Wirtschaft: Kiel, , 2018; p. 57. [Google Scholar]
- Mittelstaedt, C.; Baumgärtner, S. Preference Functions for Knightian Uncertainty Zurich; ETH: Zurich, Switzerland, 2020. [Google Scholar]
- Georgescu-Roegen, N. The Entropy Law and the Economic Process in Retrospect. East. Econ. J. 1986, 12, 3–25. [Google Scholar]
- Faber, M.; Frick, M.; Zahrnt, D. Absolute and Relative Scarcity MINE Website. 2019. Available online: www.nature-economy.com (accessed on 22 February 2021).
- Dooge, J.C.I. The hydrologic cycle as a closed system. Int. Assoc. Sci. Hydrol. Bull. 1968, 13, 58–68. [Google Scholar] [CrossRef]
- Konings, A.G.; Feng, X.; Molini, A.; Manzoni, S.; Vico, G.; Porporato, A. Thermodynamics of an idealized hydrologic cycle. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, T.; Wang-Erlandsson, L.; Zipper, S.C.; Porkka, M.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemontese, L.; Gordon, L.J.; et al. The Water Planetary Boundary: Interrogation and Revision. One Earth 2020, 2, 223–234. [Google Scholar] [CrossRef]
- United Nations. Concise Report on the World Population Situation in 2014; United Nations: New York, NY, USA, 2014. [Google Scholar]
- Our World in Data, Renewable Freshwater Resources. Our World in Data. 2021. Available online: https://ourworldindata.org/grapher/internal-renewable-freshwater-resources-by-region (accessed on 21 May 2021).
- Faber, M.; Manstetten, R.; Müller, G. Interdisziplinäre Umweltforschung aus ökonomischer Sicht. Naturwissenschaften 1994, 81, 193–199. [Google Scholar] [CrossRef]
- Baumgärtner, S.; Becker, C.; Faber, M.; Manstetten, R. Relative and absolute scarcity of nature. Assessing the roles of economics and ecology for biodiversity conservation. Ecol. Econ. 2006, 59, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Hummel, S. Relative water scarcity and country relations along cross-boundary rivers: Evidence from the Aral Sea basin. Int. Stud. Q. 2017, 61, 795–808. [Google Scholar] [CrossRef]
- Yoffe, S.; Wolf, A.T.; Giordano, M. Conflict and cooperation over international freshwater resources: Indicators of basins at risk. J. Am. Water Resour. Assoc. 2003, 39, 1109–1126. [Google Scholar] [CrossRef] [Green Version]
- Akamani, K.; Wilson, P.I. Toward the adaptive governance of transboundary water resources. Conserv. Lett. 2011, 4, 409–416. [Google Scholar] [CrossRef]
- Armitage, D.; De Loë, R.C.; Morris, M.; Edwards, T.W.D.; Gerlak, A.K.; Hall, R.I.; Huitema, D.; Ison, R.; Livingstone, D.; Macdonald, G.; et al. Science–policy processes for transboundary water governance. Ambio 2015, 44, 353–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poynder, J. Literary Extracts from English and other Works; John Hatchard & Son: London, UK, 1844; Volume 1. [Google Scholar]
- Dolan, F.; Lamontagne, J.; Link, R.; Hejazi, M.; Reed, P.; Edmonds, J. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, Y.; Naumann, G.; Corral, S.; Barbosa, P. Water footprint expands with gross domestic product. Sustainability 2020, 12, 8741. [Google Scholar] [CrossRef]
- Aqueduct, Aqueduct Country Rankings Aqueduct. 2019. Available online: https://www.wri.org/applications/aqueduct/country-rankings/ (accessed on 22 April 2021).
- Amjath-Babu, T.; Bhaskar, P.; Aggarwal, P. Do Virtual Water Transfers Act as an Adaptation Mechanism to Droughts? A Global Analysis; FAO: Rome, Italy, 2016. [Google Scholar]
- Hoekstra, A.Y. The Relation between International Trade and Freshwater Scarcity; Working Paper; World Trade Organization Economic Research and Statistics Division: Geneva, Switzerland, 2010. [Google Scholar]
- Roson, R.; Sartori, M. Water Scarcity and Virtual Water Trade in the Mediterranean; IEFE The Center for Research on Energy and Environmental Economics and Policy at Bocconi University Milano: Milano, Italy, 2010. [Google Scholar]
- Novo, P.; Garrido, A.; Varela-Ortega, C. Are virtual water ‘flows’ in Spanish grain trade consistent with relative water scarcity? Ecol. Econ. 2009, 68, 1454–1464. [Google Scholar] [CrossRef] [Green Version]
- Carrión, J.; Fernández, S.; Jiménez-Moreno, G.; Fauquette, S.; Gil-Romera, G.; González-Sampériz, P.; Finlayson, C. The historical origins of aridity and vegetation degradation in southeastern Spain. J. Arid Environ. 2010, 74, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Tejedor, E.; de Luis, M.; Cuadrat, J.M.; Esper, J.; Saz, M.Á. Tree-ring-based drought reconstruction in the Iberian Range (east of Spain) since 1694. Int. J. Biometeorol. 2016, 60, 361–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Odorico, P.; Carr, J.; Dalin, C.; Dell’Angelo, J.; Konar, M.; Laio, F.; Ridolfi, L.; Rosa, L.; Suweis, S.; Tamea, S.; et al. Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 2019, 14, 053001. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zisopoulou, K.; Panagoulia, D. An In-Depth Analysis of Physical Blue and Green Water Scarcity in Agriculture in Terms of Causes and Events and Perceived Amenability to Economic Interpretation. Water 2021, 13, 1693. https://doi.org/10.3390/w13121693
Zisopoulou K, Panagoulia D. An In-Depth Analysis of Physical Blue and Green Water Scarcity in Agriculture in Terms of Causes and Events and Perceived Amenability to Economic Interpretation. Water. 2021; 13(12):1693. https://doi.org/10.3390/w13121693
Chicago/Turabian StyleZisopoulou, Kalomoira, and Dionysia Panagoulia. 2021. "An In-Depth Analysis of Physical Blue and Green Water Scarcity in Agriculture in Terms of Causes and Events and Perceived Amenability to Economic Interpretation" Water 13, no. 12: 1693. https://doi.org/10.3390/w13121693
APA StyleZisopoulou, K., & Panagoulia, D. (2021). An In-Depth Analysis of Physical Blue and Green Water Scarcity in Agriculture in Terms of Causes and Events and Perceived Amenability to Economic Interpretation. Water, 13(12), 1693. https://doi.org/10.3390/w13121693