Pilot and Field Studies of Modular Bioretention Tree System with Talipariti tiliaceum and Engineered Soil Filter Media in the Tropics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Design of Modular Bioretention Tree (MBT) System
2.3. Preparation of Synthetic Stormwater Runoff and Actual Stormwater Runoff
2.4. Analytical Procedures
3. Results
3.1. Pilot Biofilter Study (Phase 1)
3.2. Pilot Biofilter Study (Phase 2)
3.3. Field Study (Phase 3)
3.3.1. Tree-Soil Relationship
3.3.2. Pollutants Removal Performance
4. Discussion
4.1. Comparison to Other Bioretention Systems in the Tropics
4.2. Environmental Influences on Performance of MBT
4.2.1. Initial Pollutant Concentration
4.2.2. Dissolved Percentage of Influent Pollutants
4.2.3. Soil Moisture
5. Conclusions and Impact of Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
S/N | Trees | Growth Rate | Flow Rate | Nitrate Removal | Phosphate Removal |
---|---|---|---|---|---|
1 | Ardisia elliptica | Slow | No change | Effective | Ineffective |
2 | Baccaurea minor | Slow | Improved | Effective | Ineffective |
3 | Barringtonia asiaticum | Moderate | Improved | Ineffective | Ineffective |
4 | Bhesa paniculata | Slow | No change | Effective | Ineffective |
5 | Bhesa robusta | Fast | No change | Ineffective | Ineffective |
6 | Diospyros discolor | Slow | Improved | Ineffective | Ineffective |
7 | Dipterocarpus kerrii | Slow | No change | Ineffective | Ineffective |
8 | Elateriospermum tapos | Moderate | Improved | Effective | Ineffective |
9 | Garcinia cowa | Slow | No change | Ineffective | Ineffective |
10 | Garcinia subelliptica | Slow | Worsened | Ineffective | Ineffective |
11 | Gardenia tubifera | Slow | No change | Effective | Ineffective |
12 | Hopea ferrea | Moderate | Worsened | Effective | Ineffective |
13 | Kopsia arborea | Slow | Improved | Ineffective | Ineffective |
14 | Lithocarpus sundaicus | Fast | Improved | Effective | Ineffective |
15 | Magnolia coco | Slow | Improved | Ineffective | Ineffective |
16 | Memecylon edule | Slow | No change | Ineffective | Ineffective |
17 | Magnolia coco | Slow | Improved | Ineffective | Ineffective |
18 | Memecylon edule | Slow | No change | Ineffective | Ineffective |
19 | Sterculia macrophylla | Moderate | No change | Ineffective | Ineffective |
20 | Suregada multiflora | Moderate | Improved | Ineffective | Ineffective |
21 | Syzygium acuminatissimum | Moderate | Improved | Effective | Ineffective |
22 | Syzygium gratum | Fast | Improved | Ineffective | Ineffective |
23 | Syzygium leucoxylon | Fast | No change | Effective | Ineffective |
24 | Syzygium myrtifolium | Moderate | Worsened | Effective | Ineffective |
25 | Talipalitri tiliaceum (red-leaf variety) | Moderate | Improved | Effective | Ineffective |
26 | Tristaniopsis whiteana | Moderate | No change | Ineffective | Ineffective |
Appendix B
Pollutant | Chemical Used | Target Concentration of the Pollutant (mg/L) |
---|---|---|
Total Suspended Soils (TSS) | Sediment and sand | 100 |
Phosphate (PO43−) | H2KO4P | 1.80 |
Nitrogen (N) | MgN2O6∙6H2O | 0.80 |
C6H5NO2 | 1.30 | |
NH4Cl | 0.40 | |
Copper (Cu) | Cl2Cu | 0.241 |
Lead (Pb) | Cl2Pb | 0.09025 |
Zinc (Zn) | Cl2Zn | 1.127 |
Cadmium (Cd) | CdN2O6∙4H2O | 0.00457 |
Pollutant | Min–Max (Mean) Concentration |
TSS (mg/L) | 78.0–164.0 (121.8) |
TP (mg/L) | 1.63–3.06 (2.20) |
TN (mg/L) | 2.24–4.56 (3.45) |
NO3− (mg/L) | 0.25–0.78 (0.50) |
NH3 (mg/L) | 0.12–0.60 (0.33) |
Zinc, Zn (µg/L) | 666.36–1957.32 (1034.35) |
Cadmium, Cd (µg/L) | 1.21–6.67 (3.74) |
Copper, Cu (µg/L) | 87.26–514.98 (232.28) |
Lead, Pb (µg/L) | 35.21–263.98 (100.26) |
Appendix C
Appendix D
Phase 1 | ||||||
---|---|---|---|---|---|---|
TT1 | ||||||
Pollutant | EMC Removal Efficiency (%) | |||||
Mean | Minimum | Maximum | ||||
Wet | Dry | Wet | Dry | Wet | Dry | |
TSS | 92.5 | 91.5 | 89.1 | 86.4 | 97.4 | 94.2 |
TP | 89.0 | 89.7 | 83.0 | 84.3 | 93.4 | 93.7 |
TN | 68.4 | 53.6 | 61.8 | 45.1 | 73.0 | 61.7 |
Zn | 97.2 | 96.3 | 93.8 | 93.4 | 98.4 | 97.4 |
Cu | 89.4 | 88.6 | 76.1 | 76.6 | 92.1 | 91.9 |
Cd a | 95.3 | 94.6 | 65.5 | 67.2 | 99.6 | 99.6 |
Pb | 85.1 | 84.3 | 72.1 | 71.6 | 90.8 | 91.0 |
TT2 | ||||||
Pollutant | EMC Removal Efficiency (%) | |||||
Mean | Minimum | Maximum | ||||
Wet | Dry | Wet | Dry | Wet | Dry | |
TSS | 91.0 | 88.6 | 82.4 | 80.4 | 98.2 | 94.8 |
TP | 90.3 | 88.2 | 83.3 | 83.0 | 94.5 | 92.6 |
TN | 68.0 | 50.3 | 63.5 | 44.0 | 71.8 | 56.2 |
Zn | 92.5 | 92.1 | 83.2 | 85.5 | 98.8 | 96.9 |
Cu | 83.9 | 84.5 | 74.3 | 75.3 | 92.5 | 91.0 |
Cd b | 94.3 | 96.1 | 84.1 | 84.0 | 99.5 | 99.6 |
Pb | 87.0 | 85.9 | 80.3 | 78.4 | 98.5 | 97.2 |
Phase 2 | ||||||
---|---|---|---|---|---|---|
TT1 | ||||||
Pollutant | EMC Removal Efficiency (%) | |||||
Mean | Minimum | Maximum | ||||
Wet | Dry | Wet | Dry | Wet | Dry | |
TSS | 95.0 | 95.3 | 90.6 | 92.9 | 96.9 | 97.9 |
TP | 91.5 | 90.3 | 75.3 | 84.8 | 98.4 | 93.1 |
TN | 94.1 | 41.7 | 47.0 | 32.1 | 72.8 | 50.9 |
Zn | 98.2 | 98.2 | 96.0 | 97.0 | 99.0 | 99.0 |
Cu | 93.8 | 93.7 | 92.0 | 91.0 | 99.5 | 96.0 |
Cd | 98.6 | 96.9 | 98.1 | 94.7 | 99.1 | 99.0 |
Pb | 92.0 | 91.8 | 88.0 | 88.0 | 95.4 | 94.0 |
TT2 | ||||||
Pollutant | EMC Removal Efficiency (%) | |||||
Mean | Minimum | Maximum | ||||
Wet | Dry | Wet | Dry | Wet | Dry | |
TSS | 94.3 | 95.1 | 88.5 | 91.2 | 97.5 | 97.8 |
TP | 88.0 | 88.9 | 81.0 | 85.9 | 92.1 | 92.2 |
TN | 40.1 | 30.9 | 31.9 | 24.9 | 54.0 | 38.1 |
Zn | 96.2 | 96.3 | 95.0 | 95.0 | 98.0 | 98.0 |
Cu | 93.8 | 92.3 | 93.0 | 84.1 | 95.0 | 96.5 |
Cd | 98.3 | 98.3 | 96.9 | 97.0 | 99.0 | 99.5 |
Pb | 91.9 | 92.4 | 91.0 | 91.0 | 93.5 | 98.3 |
Appendix E
TT1 | |||||
---|---|---|---|---|---|
Paired Samples Test | |||||
Mean | Std Dev | Std Error Mean | df | Sig. (2-tailed) | |
TT1 (TSS Wet)–TT1 (TSS Dry) | 0.953 | 3.539 | 1.119 | 9 | 0.417 |
TT1 (TP Wet)–TT1 (TP Dry) | −0.716 | 4.689 | 1.483 | 9 | 0.641 |
TT1 (TN Wet)–TT1 (TN Dry) | 14.850 | 6.178 | 1.954 | 9 | 0.000 |
TT1 (Zinc Wet)–TT1 (Zinc Dry) | −0.018 | 1.723 | 0.581 | 9 | 0.468 |
TT1 (Copper Wet)–TT1 (Copper Dry) | 0.147 | 2.264 | 0.532 | 9 | 0.154 |
TT1 (Cadmium Wet)–TT1 (Cadmium Dry) | - | - | - | - | - |
TT1 (Lead Wet)–TT1 (Lead Dry) | 0.142 | 2.701 | 0.628 | 9 | 0.573 |
TT2 | |||||
Paired Samples Test | |||||
Mean | Std Dev | Std Error Mean | df | Sig. (2-tailed) | |
TT2 (TSS Wet)–TT2 (TSS Dry) | 2.450 | 6.077 | 1.922 | 9 | 0.234 |
TT2 (TP Wet)–TT2 (TP Dry) | 2.021 | 4.633 | 1.465 | 9 | 0.201 |
TT2 (TN Wet)–TT2 (TN Dry) | 17.706 | 4.044 | 1.348 | 9 | 0.000 |
TT2 (Zinc Wet)–TT2 (Zinc Dry) | −0.084 | 1.203 | 0.416 | 9 | 0.457 |
TT2 (Copper Wet)–TT2 (Copper Dry) | 1.552 | 2.413 | 0.315 | 9 | 0.224 |
TT2 (Cadmium Wet)–TT2 (Cadmium Dry) | - | - | - | 9 | - |
TT2 (Lead Wet)–TT2 (Lead Dry) | −0.544 | 1.892 | 0.621 | 9 | 0.654 |
TT1 | |||||
---|---|---|---|---|---|
Paired Samples Test | |||||
Mean | Std Dev | Std Error Mean | df | Sig. (2-tailed) | |
TT1 (TSS Wet)–TT1 (TSS Dry) | −0.333 | 2.245 | 0.648 | 11 | 0.617 |
TT1 (TP Wet)–TT1 (TP Dry) | 1.150 | 7.595 | 2.192 | 11 | 0.610 |
TT1 (TN Wet)–TT1 (TN Dry) | 22.408 | 10.749 | 3.103 | 11 | 0.000 |
TT1 (Zinc Wet)–TT1 (Zinc Dry) | −0.025 | 1.781 | 0.514 | 11 | 0.962 |
TT1 (Copper Wet)–TT1 (Copper Dry) | 0.133 | 2.570 | 0.742 | 11 | 0.861 |
TT1 (Cadmium Wet)–TT1 (Cadmium Dry) | 1.642 | 1.794 | 0.518 | 11 | 0.009 |
TT1 (Lead Wet)–TT1 (Lead Dry) | 0.158 | 2.578 | 0.744 | 11 | 0.835 |
TT2 | |||||
Paired Samples Test | |||||
Mean | Std Dev | Std Error Mean | df | Sig. (2-tailed) | |
TT2 (TSS Wet)–TT2 (TSS Dry) | −0.742 | 3.631 | 1.048 | 11 | 0.494 |
TT2 (TP Wet)–TT2 (TP Dry) | −0.809 | 3.351 | 0.967 | 11 | 0.421 |
TT2 (TN Wet)–TT2 (TN Dry) | 9.229 | 5.749 | 1.660 | 11 | 0.000 |
TT2 (Zinc Wet)–TT2 (Zinc Dry) | −0.084 | 1.505 | 0.435 | 11 | 0.851 |
TT2 (Copper Wet)–TT2 (Copper Dry) | 1.552 | 3.306 | 0.954 | 11 | 0.132 |
TT2 (Cadmium Wet)–TT2 (Cadmium Dry) | 0.024 | 1.109 | 0.320 | 11 | 0.942 |
TT2 (Lead Wet)–TT2 (Lead Dry) | −0.544 | 2.423 | 0.699 | 11 | 0.453 |
Appendix F
Event | TSS | TP | TN | ||||||
---|---|---|---|---|---|---|---|---|---|
Influent(mg/L) | Effluent(mg/L) | Removal Efficiency (%) | Influent(mg/L) | Effluent(mg/L) | Removal Efficiency (%) | Influent(mg/L) | Effluent(mg/L) | Removal Efficiency (%) | |
1 | 99.8 | 2.6 | 97.4 | 0.19 | 0.03 | 82.4 | 1.47 | 0.34 | 76.9 |
2 | 99.8 | 2.1 | 97.9 | 0.19 | 0.02 | 90.9 | 1.47 | 0.52 | 64.6 |
3 | 296.3 | 0.4 | 99.9 | 0.07 | 0.04 | 46.3 | 0.08 | 0.06 | 25.0 |
4 | 106.6 | 0.8 | 99.2 | 0.10 | 0.01 | 87.0 | 0.46 | 0.33 | 28.3 |
5 | 4.8 | 4.1 | 14.6 | 0.03 | 0.02 | 46.9 | 0.10 | 0.08 | 20.0 |
6 | 6.1 | 18.7 | −206.6 | 0.04 | 0.05 | −19.0 | 0.10 | 0.07 | 30.0 |
7 | 1.4 | 2.1 | −50.0 | 0.02 | 0.03 | −22.7 | 0.29 | 0.23 | 20.7 |
8 | 4.0 | 10.0 | −150.0 | 0.06 | 0.05 | 7.0 | 0.53 | 0.09 | 83.0 |
9 | 1.3 | 0.3 | 76.9 | 0.05 | 0.03 | 34.0 | 0.22 | 0.55 | −150.0 |
10 | 9.0 | 7.5 | 16.7 | 0.05 | 0.08 | −57.1 | 0.61 | 0.32 | 47.5 |
11 | 3.1 | 4.0 | −29.0 | 0.04 | 0.04 | 2.6 | 0.41 | 0.14 | 65.9 |
12 | 42.0 | 6.8 | 83.8 | 0.14 | 0.13 | 7.1 | 0.27 | 0.30 | −11.1 |
13 | 4.6 | 3.0 | 34.8 | 0.04 | 0.04 | −19.4 | 0.21 | 0.12 | 42.9 |
14 | 11.3 | 12.0 | −6.2 | 0.03 | 0.03 | 9.1 | 3.22 | 0.70 | 78.3 |
15 | 28.4 | 0.7 | 97.5 | 0.09 | 0.05 | 46.0 | 0.79 | 0.14 | 82.3 |
16 | 8.4 | 0.7 | 91.7 | 0.03 | 0.02 | 50.0 | 1.88 | 0.39 | 79.3 |
17 | 84.3 | 5.7 | 93.2 | 0.11 | 0.04 | 63.6 | 2.39 | 1.42 | 40.6 |
18 | 7.2 | 6.0 | 16.7 | 0.03 | 0.03 | 6.3 | 0.16 | 0.13 | 18.8 |
19 | 3.1 | 0.8 | 74.2 | 0.19 | 0.04 | 78.6 | 0.25 | 0.19 | 24.0 |
20 | 11.9 | 5.3 | 55.5 | 0.17 | 0.05 | 72.8 | 0.40 | 0.14 | 65.0 |
21 | 20.5 | 3.0 | 85.4 | 0.05 | 0.05 | 6.0 | 0.52 | 0.12 | 76.9 |
22 | 52.3 | 10.0 | 80.9 | 0.11 | 0.06 | 46.9 | 0.52 | 0.15 | 71.2 |
23 | 10.9 | 7.3 | 33.0 | 0.06 | 0.04 | 39.3 | 0.54 | 0.04 | 92.6 |
24 | 71.3 | 11.3 | 84.2 | 0.19 | 0.06 | 66.8 | 0.91 | 0.16 | 82.4 |
25 | 47.5 | 2.0 | 95.8 | 0.05 | 0.04 | 30.2 | 0.50 | 0.23 | 54.0 |
26 | 144.0 | 2.7 | 98.1 | 0.09 | 0.05 | 43.0 | 1.39 | 0.19 | 86.3 |
27 | 3.3 | 0.3 | 90.9 | 0.06 | 0.05 | 21.7 | 0.26 | 0.17 | 34.6 |
Appendix G
Appendix H
Dissolved Phosphorus (DP)/Total Phosphorus (TP) | TP Removal Efficiency (%) | Dissolved Nitrogen (DN)/Total Nitrogen (TN) | TN Removal Efficiency (%) |
---|---|---|---|
13.5 | 71.4 | 77.6 | 21.4 |
15.8 | 66.7 | 78.6 | 52.2 |
19.6 | 90.7 | 80.4 | 76.2 |
19.6 | 82.1 | 80.4 | 76.2 |
20.0 | 86.7 | 81.7 | −10.8 |
29.0 | 42.1 | 84.8 | 63.6 |
30.3 | 63.6 | 85.0 | 42.6 |
31.8 | 32.7 | 87.8 | 64.4 |
35.7 | 7.1 | 87.8 | 76.9 |
39.2 | 5.9 | 87.8 | 76.9 |
47.1 | 47.1 | 87.9 | 40.6 |
50.0 | 46.2 | 91.5 | 86.1 |
50.0 | 42.9 | 91.7 | 70.7 |
50.6 | 48.1 | 92.6 | 28.6 |
57.8 | −17.9 | 93.1 | 79.3 |
60.0 | 46.0 | 93.1 | 79.3 |
60.0 | 40.2 | 93.6 | 47.9 |
63.7 | 33.3 | 94.9 | 21.3 |
68.8 | 31.3 | 96.4 | 92.5 |
70.4 | 33.3 | 96.6 | 82.0 |
73.3 | 6.7 | 98.0 | 24.3 |
77.8 | 22.2 | 99.3 | 78.3 |
81.2 | 2.5 | 99.5 | 83.0 |
84.8 | 5.0 | 99.9 | 52.7 |
100.0 | 13.9 | ||
100.0 | 25.5 | ||
100.0 | 28.2 | ||
100.0 | 34.8 | ||
100.0 | 43.8 | ||
100.0 | 66.0 | ||
100.0 | 78.7 | ||
100.0 | 82.5 |
References
- Roy-Poirier, A.; Champagne, P.; Filion, Y. Review of Bioretention System Research and Design: Past, Present, and Future. J. Environ. Eng. 2010, 136, 878–889. [Google Scholar] [CrossRef]
- Luell, S.K.; Hunt, W.F.; Winston, R.J. Evaluation of undersized bioretention stormwater control measures for treatment of highway bridge deck runoff. Water Sci. Technol. 2011, 64, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Goh, H.W.; Zakaria, N.A.; Lau, T.L.; Foo, K.Y.; Chang, C.K.; Leow, C.S. Mesocosm Study of Enhanced Bioreten-tion Media in Treating Nutrient Rich Stormwater for Mixed Development Area. Urban Water J. 2017, 14, 134–142. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Cheong, B.D.; Ho, B.H. A Multimethod Approach towards Assessing Urban Flood Patterns and Its Associated Vulnerabilities in Singapore. Adv. Meteorol. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Gerber, J.D.; Hartmann, T.; Hengstermann, A. Instruments of Land Policy: Dealing with Scarcity of Land; Routledge: London, UK, 2018. [Google Scholar]
- Lopez-Ponnada, E.V.; Lynn, T.J.; Ergas, S.J.; Mihelcic, J.R. Long-term field performance of a conventional and modified bioretention system for removing dissolved nitrogen species in stormwater runoff. Water Res. 2020, 170, 115336. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Goh, H.W.; Lem, K.S.; Azizan, N.A.; Chang, C.K.; Talei, A.; Leow, C.S.; Zakaria, N.A. A review of bioretention components and nutrient removal under different climates—Future directions for tropics. Environ. Sci. Pollut. Res. 2019, 26, 14904–14919. [Google Scholar] [CrossRef]
- LeFevre, G.; Paus, K.H.; Natarajan, P.; Gulliver, J.; Novak, P.J.; Hozalski, R. Review of Dissolved Pollutants in Urban Storm Water and Their Removal and Fate in Bioretention Cells. J. Environ. Eng. 2015, 141, 04014050. [Google Scholar] [CrossRef]
- Lim, H.S.; Lim, W.; Hu, J.Y.; Ziegler, A.; Ong, S.L. Comparison of Filter Media Materials for Heavy Metal Remov-al from Urban Stormwater Runoff Using Biofiltration Systems. J. Environ. Manag. 2015, 147, 24–33. [Google Scholar] [CrossRef]
- Barrett, M.E.; Limouzin, M.; Lawler, D.F. Effects of Media and Plant Selection on Biofiltration Performance. J. Environ. Eng. 2013, 139, 462–470. [Google Scholar] [CrossRef]
- Angers, D.A.; Caron, J. Plant-induced Changes in Soil Structure: Processes and Feedbacks. Biogeochemistry 1998, 42, 55–72. [Google Scholar] [CrossRef]
- Binkley, D.; Giardina, C. Why Do Tree Species Affect Soils? The Warp and Woof of Tree-Soil Interactions. In Plant-Induced Soil Changes: Processes and Feedbacks; Springer: Dordrecht, The Netherlands, 1998; Volume 42, pp. 89–106. [Google Scholar]
- Van Breemen, N.; Finzi, A.C. Plant-Soil Interactions: Ecological Aspects and Evolutionary Implications. Biogeochemistry 1998, 42, 1–19. [Google Scholar] [CrossRef]
- Skorobogatov, A.; He, J.; Chu, A.; Valeo, C.; van Duin, B. The impact of media, plants and their interactions on bioretention performance: A review. Sci. Total Environ. 2020, 715, 136918. [Google Scholar] [CrossRef]
- Dagenais, D.; Brisson, J.; Fletcher, T.D. The role of plants in bioretention systems; does the science underpin current guidance? Ecol. Eng. 2018, 120, 532–545. [Google Scholar] [CrossRef]
- Tirpak, R.A.; Hathaway, J.M.; Franklin, J.A. Investigating the Hydrologic and Water Quality Performance of Trees in Bioretention Mesocosms. J. Hydrol. 2019, 576, 65–71. [Google Scholar] [CrossRef]
- Frosi, M.H.; Kargar, M.; Jutras, P.; Prasher, S.O.; Clark, O.G. Street tree pits as bioretention units: Effects of soil organic matter and area permeability on the volume and quality of urban runoff. Water Air Soil Pollut. 2019, 230, 152. [Google Scholar] [CrossRef]
- Elliott, R.M.; Adkins, E.R.; Culligan, P.J.; Palmer, M.I. Stormwater infiltration capacity of street tree pits: Quantifying the influence of different design and management strategies in New York City. Ecol. Eng. 2017, 111, 157–166. [Google Scholar] [CrossRef]
- EcosolTM Tree Pit Technical Specification. Available online: https://urbanassetsolutions.com.au/wp-content/uploads/UAS-Tree-Pit-Technical-Specifications-2018.pdf (accessed on 20 June 2021).
- Stockholm Tree Pits. Available online: https://stockholmtreepits.co.uk/ (accessed on 20 June 2021).
- StormTree. Available online: https://www.storm-tree.com/ (accessed on 20 June 2021).
- Macedo, M.B.D.; Lago, C.A.F.D.; Mendiondo, E.M.; Giacomoni, M.H. Bioretention performance under different rainfall regimes in substropical conditions: A case study in Sao Carlos, Brazil. J. Environ. Manag. 2019, 248, 109266. [Google Scholar] [CrossRef]
- Blecken, G.-T.; Zinger, Y.; Deletetić, A.; Fletcher, T.D.; Viklander, M. Influence of Intermittent Wetting and Drying Conditions on Heavy Metal Removal by Stormwater Biofilters. Water Res. 2009, 43, 4590–4598. [Google Scholar] [CrossRef]
- Rahman, Y.A.; Nachabe, M.H.; Ergas, S.J. Biochar amendment of stormwater bioretention systems for nitrogen and Escherichia coli removal: Effect of hydraulic loading rates and antecedent dry periods. Bioresour. Technol. 2020, 310, 123428. [Google Scholar] [CrossRef]
- Manka, B.; Hathaway, J.; Tirpak, R.; He, Q.; Hunt, W. Driving forces of effluent nutrient variability in field scale bioretention. Ecol. Eng. 2016, 94, 622–628. [Google Scholar] [CrossRef]
- Hunt, W.F.; Jarrett, A.R.; Smith, J.T.; Sharkey, L.J. Evaluating Bioretention Hydrology and Nutrient Removal at Three Field Sites in North Carolina. J. Irrig. Drain. Eng. 2006, 132, 600–608. [Google Scholar] [CrossRef]
- Brown, R.A.; Hunt, W.F. Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. J. Environ. Eng. 2011, 137, 1082–1091. [Google Scholar] [CrossRef]
- Kazemi, F.; Golzarian, M.R.; Myers, B. Potential of combined water sensitive urban design systems for salinity treat-ment in urban environments. J. Environ. Manag. 2018, 209, 169–175. [Google Scholar] [CrossRef]
- An Engineered Soil Composition and a Method of Preparing the Same. Singapore Patent Application No. SG2013082722A, 27 August 2013.
- Barrett, J.E.; Burke, I.C. Potential Nitrogen Immobilization in Grassland Soils across a Soil Organic Matter Gradient. Soil Biol. Biochem. 2000, 32, 1707–1716. [Google Scholar] [CrossRef]
- O’Neill, S.W.; Davis, A.P. Water Treatment Residual as a Bioretention Amendment for Phosphorus. I: Evaluation Studies. J. Environ. Eng. 2012, 138, 318–327. [Google Scholar] [CrossRef]
- McGechan, M.B.; Lewis, D.R. Sorption of Phosphorus by Soil, Part 1: Principles, Equations and Models. Biosyst. Eng. 2002, 82, 1–24. [Google Scholar] [CrossRef]
- Xu, D.; Lee, L.Y.; Lim, F.Y.; Lyu, Z.; Zhu, H.; Ong, S.L.; Hu, J. Water treatment residual: A critical review of its applications on pollutant removal from stormwater runoff and future perspectives. J. Environ. Manag. 2020, 259, 109649. [Google Scholar] [CrossRef]
- Hermawan, A.A.; Talei, A.; Leong, J.Y.C.; Jayatharan, M.; Goh, H.W.; Alaghmand, S. Performance Assessment of a Laboratory Scale Prototype Biofiltration System in Tropical Region. Sustainability 2019, 11, 1947. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.C.; Huang, L.; Chang, T.H.A.; Ong, B.L.; Ong, S.L.; Hu, J. Plant Traits for Phytoremediation in the Tropics. Engineering 2019, 5, 841–848. [Google Scholar] [CrossRef]
- Judd, L.A.; Jackson, B.E.; Fonteno, W.C. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants. Plants 2015, 4, 369–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMurtrie, R.E.; Iversen, C.M.; Dewar, R.C.; Medlyn, B.E.; Näsholm, T.; Pepper, D.A.; Norby, R.J. Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging. Ecol. Evol. 2012, 2, 1235–1250. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K. Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content, and how can this be measured? Plant Soil 2001, 230, 185–195. [Google Scholar] [CrossRef]
- Barwick, M.; Van der Schans, A.; Claudy, J.B. Tropical & Subtropical Trees: A Worldwide Encyclopaedic Guide; Thames & Hudson: London, UK, 2004. [Google Scholar]
- Poorter, H.; Bühler, J.; Van Dusschoten, D.; Climent, J.; Postma, J.A. Pot Size Matters: A Meta-Analysis of the Effects of Rooting Volume on Plant Growth. Funct. Plant Biol. 2012, 39, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.C.; Wang, M.; Lai, W.L.; He, F.H.; Chen, Z.H. Plant Growth and Nutrient Removal in Constructed Monoculture and Mixed Wetlands. Hydrobiologia 2011, 661, 251–260. [Google Scholar] [CrossRef]
- Lim, H.S. Variations in the Water Quality of a Small Urban Tropical Catchment: Implications for Load Estimation and Water Quality Monitoring. In The Interactions between Sediments and Water; Springer: Dordrecht, The Netherlands, 2003; pp. 57–63. [Google Scholar]
- Chui, P. Characteristics of Stormwater Quality from Two Urban Watersheds in Singapore. Environ. Monit. Assess. 1997, 44, 173–181. [Google Scholar] [CrossRef]
- Zinger, Y.; Prodanovic, V.; Zhang, K.; Fletcher, T.D.; Deletic, A. The effect of intermittent drying and wetting stormwater cycles on the nutrient removal performances of two vegetated biofiltration designs. Chemosphere 2021, 267, 129294. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for Examination of Water and Wastewater, 22nd ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Joshi, U.M.; Balasubramanian, R. Characteristics and Environmental Mobility of Trace Elements in Urban Runoff. Chemosphere 2010, 80, 310–318. [Google Scholar] [CrossRef]
- Gorbe, E.; Calatayud, A. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Sci. Hortic. 2012, 138, 24–35. [Google Scholar] [CrossRef]
- Makarova, V.; Kazimirko, Y.; Krendeleva, T.; Kukarskikh, G.; Lavrukhina, O.; Pogosyan, S.; Yakovleva, O. Fv/Fm as a Stress Indicator for Woody Plants from Urban-Ecosystem. In Photosynthesis: Mechanisms and Effects; Springer: Dordrecht, The Netherlands, 1998; pp. 4065–4068. [Google Scholar]
- Netto, A.T.; Campostrini, E.; de Oliveira, J.G.; Bressan-Smith, R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, P.; Johnstone, D.M. A Novel Way of Assessing Plant Vitality in Urban Trees. Forests 2018, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- FAWB. Guidelines for Filter Media in Biofiltration Systems (Version 3.01); FAWB: Clayton, Australia, 2009; pp. 1–8. [Google Scholar]
- Bratieres, K.; Fletcher, T.; Deletic, A.; Zinger, Y. Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study. Water Res. 2008, 42, 3930–3940. [Google Scholar] [CrossRef]
- Hatt, B.; Fletcher, T.; Deletic, A. Hydraulic and pollutant removal performance of stormwater filters under variable wetting and drying regimes. Water Sci. Technol. 2007, 56, 11–19. [Google Scholar] [CrossRef]
- Read, J.; Wevill, P.; Fletcher, T.; Deletic, A. Variation among plant species in pollutant removal from stormwater in biofiltration systems. Water Res. 2008, 42, 893–902. [Google Scholar] [CrossRef]
- Lucas, W.C.; Greenway, M. Phosphorus Retention by Bioretention Mesocosms Using Media Formulated for Phosphorus Sorption: Response to Accelerated Loads. J. Irrig. Drain. Eng. 2011, 137, 144–153. [Google Scholar] [CrossRef]
- Ergas, S.J.; Sengupta, S.; Siegel, R.; Pandit, A.; Yao, Y.; Yuan, X.; Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Water Quality Improvement through Bioretention Media: Nitrogen and Phosphorus Removal. Water Environ. Res. 2006, 78, 284–293. [Google Scholar]
- Taylor, G.D.; Fletcher, T.D.; Wong, T.H.; Breen, P.F.; Duncan, H.P. Nitrogen composition in urban runoff—implications for stormwater management. Water Res. 2005, 39, 1982–1989. [Google Scholar] [CrossRef]
- Zhang, H.; Ahmad, Z.; Shao, Y.; Yang, Z.; Jia, Y.; Zhong, H. Bioretention for removal of nitrogen: Processes, operational conditions, and strategies for improvement. Environ. Sci. Pollut. Res. 2021, 28, 10519–10535. [Google Scholar] [CrossRef]
- Rycewicz-Borecki, M.; McLean, J.E.; Dupont, R.R. Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms. Ecol. Eng. 2017, 99, 409–416. [Google Scholar] [CrossRef]
- Barron, N.J.; Hatt, B.; Jung, J.; Chen, Y.; Deletic, A. Seasonal operation of dual-mode biofilters: The influence of plant species on stormwater and greywater treatment. Sci. Total Environ. 2020, 715, 136680. [Google Scholar] [CrossRef]
- Eissenstat, D. Root structure and function in an ecological context. New Phytol. 2000, 148, 353–354. [Google Scholar] [CrossRef]
- Read, J.; Fletcher, T.D.; Wevill, P.; Deletic, A. Plant Traits that Enhance Pollutant Removal from Stormwater in Biofiltration Systems. Int. J. Phytoremed. 2010, 12, 34–53. [Google Scholar] [CrossRef]
- Collins, K.A.; Lawrence, T.J.; Stander, E.K.; Jontos, R.J.; Kaushal, S.S.; Newcomer, T.A.; Grimm, N.B.; Ekberg, M.L.C. Opportunities and Challenges for Managing Nitrogen in Urban Stormwater: A Review and Synthesis. Ecol. Eng. 2010, 36, 1507–1519. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Davis, A.P. Evaluation and Optimization of Bioretention Media for Treatment of Urban Storm Water Runoff. J. Environ. Eng. 2005, 131, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Yang, L.; Wang, X.; Wang, X.; Zhou, Y. Research on Distribution Characteristics, Influencing Factors, and Maintenance Effects of Heavy Metal Accumulation in Bioretention Systems: Critical Review. J. Sustain. Water Built Environ. 2021, 7, 03120001. [Google Scholar] [CrossRef]
- Muthanna, T.M.; Viklander, M.; Blecken, G.-T.; Thorolfsson, S.T. Snowmelt pollutant removal in bioretention areas. Water Res. 2007, 41, 4061–4072. [Google Scholar] [CrossRef] [PubMed]
- Hatt, B.E.; Fletcher, T.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- Brix, H. Functions of Macrophytes in Constructed Wetlands. Water Sci. Technol. 1994, 29, 71–78. [Google Scholar] [CrossRef]
- Landsman, M.R.; Davis, A.P. Evaluation of Nutrients and Suspended Solids Removal by Stormwater Control Measures Using High-Flow Media. J. Environ. Eng. 2018, 144, 04018106. [Google Scholar] [CrossRef]
- Gold, A.C.; Thompson, S.P.; Piehler, M.F. Nitrogen Cycling Processes within Stormwater Control Measures: A Review and Call for Research. Water Res. 2019, 149, 578–587. [Google Scholar] [CrossRef]
- Xu, B.; Wang, X.; Liu, J.; Wu, J.; Zhao, Y.; Cao, W. Improving Urban Stormwater Runoff Quality by Nutrient Removal through Floating Treatment Wetlands and Vegetation Harvest. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Davis, A.P. Water Quality Improvement through Reductions of Pollutant Loads Using Bioretention. J. Environ. Eng. 2009, 135, 567–576. [Google Scholar] [CrossRef]
- Chen, X.C.; Huang, L.; Ong, B.L. The Phytoremediation Potential of a Singapore Forest Tree for Bioretention Systems. J. Mater. Sci. Eng. A 2014, 4, 220–227. [Google Scholar]
- Gadi, V.K.; Tang, Y.R.; Das, A.; Monga, C.; Garg, A.; Berretta, C.; Sahoo, L. Spatial and Temporal Variation of Hydraulic Conductivity and Vegetation Growth in Green Infrastructures Using Infiltrometer and Visual Technique. Catena 2017, 155, 20–29. [Google Scholar] [CrossRef]
- Archer, N.A.L.; Quinton, J.N.; Hess, T. Below-ground relationships of soil texture, roots and hydraulic conductivity in two-phase mosaic vegetation in South-East Spain. J. Arid Environ. 2002, 52, 535–553. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhang, Q.; Werner, A.D.; Li, Y.; Jiang, S.; Tan, Z. Root-induced changes of soil hydraulic properties—A review. J. Hydrol. 2020, 589, 125203. [Google Scholar] [CrossRef]
- Le Coustumer, S.; Fletcher, T.; Deletic, A.; Barraud, S.; Lewis, J.F. Hydraulic performance of biofilter systems for stormwater management: Influences of design and operation. J. Hydrol. 2009, 376, 16–23. [Google Scholar] [CrossRef]
- Le Coustumer, S.; Fletcher, T.; Deletic, A.; Barraud, S.; Poelsma, P. The influence of design parameters on clogging of stormwater biofilters: A large-scale column study. Water Res. 2012, 46, 6743–6752. [Google Scholar] [CrossRef]
- Langergraber, G.; Haberl, R.; Laber, J.; Pressl, A. Evaluation of Substrate Clogging Processes in Vertical Flow Constructed Wetlands. Water Sci. Technol. 2003, 48, 25–34. [Google Scholar] [CrossRef]
- Siriwardene, N.R.; Deletic, A.; Fletcher, T.D. Clogging of Stormwater Gravel Infiltration Systems and Filters: Insights from a Laboratory Study. Water Res. 2007, 41, 1433–1440. [Google Scholar] [CrossRef]
- PUB. ABC Waters Design Guidelines; PUB: Singapore, 2018. [Google Scholar]
- Hsieh, C.-H.; Davis, A.P.; Needelman, B.A. Bioretention Column Studies of Phosphorus Removal from Urban Stormwater Runoff. Water Environ. Res. 2007, 79, 177–184. [Google Scholar] [CrossRef]
- Yan, Q.; James, B.R.; Davis, A.P. Lab-Scale Column Studies for Enhanced Phosphorus Sorption from Synthetic Ur-ban Stormwater Using Modified Bioretention Media. J. Environ. Eng. 2017, 143, 04016073. [Google Scholar] [CrossRef]
- Davis, A.P. Field Performance of Bioretention: Water Quality. Environ. Eng. Sci. 2007, 24, 1048–1064. [Google Scholar] [CrossRef]
- Zhou, N.; Bi, C.-J.; Chen, Z.-L.; Yu, Z.-J.; Wang, J.; Han, J.-C. Phosphorus loads from different urban storm runoff sources in southern China: A case study in Wenzhou City. Environ. Sci. Pollut. Res. 2013, 20, 8227–8236. [Google Scholar] [CrossRef]
- Liu, J.; Davis, A.P. Phosphorus Speciation and Treatment Using Enhanced Phosphorus Removal Bioretention. Environ. Sci. Technol. 2014, 48, 607–614. [Google Scholar] [CrossRef]
- Qiu, F.; Zhao, S.; Zhao, D.; Wang, J.; Fu, K. Enhanced nutrient removal in bioretention systems modified with water treatment residuals and internal water storage zone. Environ. Sci. Water Res. Technol. 2019, 5, 993–1003. [Google Scholar] [CrossRef]
- Ong, G.S.; Kalyanaraman, G.; Wong, K.L.; Wong, T.H.F. Monitoring Singapore’s First Bioretention System: Rain Garden at Balam Estate. In WSUD 2012: Water Sensitve Urban Design, Proceedings of the Building the Water Sensitve Community, Seventh International Conference on Water Sensitive Urban Design, Melbourne, Australia, 21–23 February 2012; ACT: Barton, Australia, 2012; pp. 601–608. [Google Scholar]
- Wang, M.; Zhang, D.; Li, Y.; Hou, Q.; Yu, Y.; Qi, J.; Fu, W.; Dong, J.; Cheng, Y. Effect of a Submerged Zone and Carbon Source on Nutrient and Metal Removal for Stormwater by Bioretention Cells. Water 2018, 10, 1629. [Google Scholar] [CrossRef] [Green Version]
- Barrett, M.E. Comparison of BMP Performance Using the International BMP Database. J. Irrig. Drain. Eng. 2008, 134, 556–561. [Google Scholar] [CrossRef]
- McNett, J.K.; Hunt, W.F.; Davis, A.P. Influent Pollutant Concentrations as Predictors of Effluent Pollutant Concentrations for Mid-Atlantic Bioretention. J. Environ. Eng. 2011, 137, 790–799. [Google Scholar] [CrossRef]
- Duncan, H.P. Urban Stormwater Quality: A Statistical Overview; CRC for Catchment Hydrology: Victoria, Australia, 1999; 134p. [Google Scholar]
- Song, H.; Qin, T.; Wang, J.; Wong, T.H.F. Characteristics of Stormwater Quality in Singapore Catchments in 9 Different Types of Land Use. Water 2019, 11, 1089. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Simin, L.; Fengbing, T. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases. Sci. World J. 2013, 2013, 964737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermawan, A.A.; Jung, D.Y.; Talei, A. Removal Process of Nutrients and Heavy Metals in Tropical Biofilters. E3S Web Conf. 2018, 65, 05026. [Google Scholar] [CrossRef] [Green Version]
- Jani, J.; Yang, Y.Y.; Lusk, M.G.; Toor, G.S. Composition of Nitrogen in Urban Residential Stormwater Runoff: Concentrations, Loads, and Source Characterization of Nitrate and Organic Nitrogen. PLoS ONE 2020, 15, e0229715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguntanna, N.P.; Liu, A.; Egodawatta, P.; Goonetilleke, A. Characterising nutrients wash-off for effective urban stormwater treatment design. J. Environ. Manag. 2013, 120, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Clark, S.E.; Pitt, R. Targeting treatment technologies to address specific stormwater pollutants and numeric discharge limits. Water Res. 2012, 46, 6715–6730. [Google Scholar] [CrossRef]
- Chui, T.F.M.; Trinh, D.H. Modelling infiltration enhancement in a tropical urban catchment for improved stormwater management. Hydrol. Process. 2016, 30, 4405–4419. [Google Scholar] [CrossRef]
- Mangangka, I.; Liu, A.; Egodawatta, P.; Goonetilleke, A. Performance characterisation of a stormwater treatment bioretention basin. J. Environ. Manag. 2015, 150, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.-H.; Davis, A.P.; Needelman, B.A. Nitrogen Removal from Urban Stormwater Runoff Through Layered Bioretention Columns. Water Environ. Res. 2007, 79, 2404–2411. [Google Scholar] [CrossRef]
Pollutant | Phase 1 | Phase 2 |
---|---|---|
TSS (mg/L) | 100 ± 0.54 | 121.8 ± 43.8 |
TP (mg/L) | 1.80 ± 0.32 | 2.20 ± 0.57 |
TN (mg/L) | 2.5 ± 0.12 | 3.45 ± 1.21 |
NO3− (mg/L) | 0.4 ± 0.30 | 0.50 ± 0.25 |
NH3 (mg/L) | 0.6 ± 0.20 | 0.33 ± 0.21 |
Zinc, Zn (µg/L) | 1127 ± 4.20 | 1034.35 ± 367.99 |
Cadmium, Cd (µg/L) | 4.57 ± 1.30 | 3.74 ± 2.53 |
Copper, Cu (µg/L) | 1127 ± 2.30 | 232.28 ± 145.02 |
Lead, Pb (µg/L) | 90.25 ± 3.30 | 100.26 ± 65.05 |
Flow rate (L/hr) | 77 (Dry), 95 (Wet) | |
Volume of synthetic runoff dosed (L) | 95 (Dry), 131 (Wet) | |
Frequency of dosing | Twice weekly (Dry), Thrice weekly (Wet) |
Climate Condition | System | Scale of Study | Average Effluent (mg/L) | Average EMC Removal Efficiency (%) | |||||
---|---|---|---|---|---|---|---|---|---|
TSS | TP | TN | TSS | TP | TN | ||||
This Study | Tropical | MBT with engineered media (Phase 1—TT1) | Pilot study | 3.8 | 0.11 | 1.93 | 92 | 89 | 61 |
(Phase 2—TT1) | Pilot study | 5.8 | 0.18 | 1.62 | 95 | 91 | 52 | ||
(Phase 3—Field study) | Field study | 4.8 | 0.04 | 0.27 | 44 | 32 | 46 | ||
[18] | Temperate | BRS without submerged zone, planted with (A)—Red Maple; (B)—Loblolly Pine; (C)—Pin Oak | Pilot study | 5 ± 1 (A) 3 ± 1 (B) 2 ± 1 (C) | 5 ± 1 (A) 3 ± 1 (B) 2 ± 1 (C) | 0.06 ± 0 (A) 0.06 ± 0 (B) 0.06 ± 0 (C) | - | - | - |
[21] | Temperate | EcosolTM Tree Pit | Field study | - | - | - | 95 | 65 1 | 50 1 |
[22] | Temperate | Stormwater tree pit | - | - | - | 85 | 74 | 68 | |
[23] | Temperate | StormTree | Field study | - | - | - | >90 | >63 | >48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, F.Y.; Neo, T.H.; Guo, H.; Goh, S.Z.; Ong, S.L.; Hu, J.; Lee, B.C.Y.; Ong, G.S.; Liou, C.X. Pilot and Field Studies of Modular Bioretention Tree System with Talipariti tiliaceum and Engineered Soil Filter Media in the Tropics. Water 2021, 13, 1817. https://doi.org/10.3390/w13131817
Lim FY, Neo TH, Guo H, Goh SZ, Ong SL, Hu J, Lee BCY, Ong GS, Liou CX. Pilot and Field Studies of Modular Bioretention Tree System with Talipariti tiliaceum and Engineered Soil Filter Media in the Tropics. Water. 2021; 13(13):1817. https://doi.org/10.3390/w13131817
Chicago/Turabian StyleLim, Fang Yee, Teck Heng Neo, Huiling Guo, Sin Zhi Goh, Say Leong Ong, Jiangyong Hu, Brandon Chuan Yee Lee, Geok Suat Ong, and Cui Xian Liou. 2021. "Pilot and Field Studies of Modular Bioretention Tree System with Talipariti tiliaceum and Engineered Soil Filter Media in the Tropics" Water 13, no. 13: 1817. https://doi.org/10.3390/w13131817
APA StyleLim, F. Y., Neo, T. H., Guo, H., Goh, S. Z., Ong, S. L., Hu, J., Lee, B. C. Y., Ong, G. S., & Liou, C. X. (2021). Pilot and Field Studies of Modular Bioretention Tree System with Talipariti tiliaceum and Engineered Soil Filter Media in the Tropics. Water, 13(13), 1817. https://doi.org/10.3390/w13131817