Element Content in Volcano Ash, Soil and River Sediments of the Watershed in the Volcanic Area of South Iceland and Assessment of Their Mobility Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subsection
2.2. Sampling Sites
2.3. Determination of Element Concentrations and Quality Control
- Step 1
- (Fraction soluble in acid—metals exchangeable or associated with carbonates): About 1 g of each sample was added to 40 mL of a 0.11 mol L−1 acetic acid solution, with agitation for 16 h at 22 °C. The extract was separated from the solid phase by centrifugation at 3000 rpm for 20 min, and the supernatant was stored for later analysis.
- Step 2
- (Reducible fraction—metals associated with oxides of Fe and Mn): Residue from Stage 1 was added to 40 mL of a 0.5 mol L−1 acid hydroxyl ammonium chloride solution (pH 1.5). The suspension was then agitated for 16 h at 22 °C. The extract was separated from the solid phase by centrifugation, as described in Stage 1.
- Step 3
- (Oxidizable fraction—metals associated with organic matter and sulphides): Residue from Stage 2 was added to 10 mL of 8.8 mol L−1 H2O2 solution (pH 2–3), and the mixture was left at room temperature for 1 h. It was then heated to 85 °C for 1 h in a water bath, until the volume was reduced to 2–3 mL. Another 10 mL portion of 8.8 mol L−1 H2O2 solution was added, and the mixture was heated to dryness at 85 °C for 1 h. After cooling, 50 mL of a 1.0 mol L−1 solution of ammonium acetate (pH 2) was added to the residue, followed by agitation for 16 h at 22 °C. The extract was separated from the solid phase by centrifugation, as above.
- Step 4
- (Residual fraction—metals strongly associated with the crystalline structure of minerals): The Stage 3 residue was digested using a mixture of the acids (8 mL aqua regia, 3:1, v/v, HCl to HNO3) on water bath for 1 h at 85 °C, until the volume was reduced to 2–3 mL. Another 8 mL portion of aqua regia was added, and the mixture was heated to dryness at 85 °C for 1 h. The final residue was dissolved in 1M HNO3 and diluted to 50 mL and stored in a polyethylene bottle at 4 °C until metal analysis. Digestion of the residual material is not specified in the BCR protocol.
2.4. Statistical Analyses
3. Results and Discussion
3.1. Total Contents of Elements in River Sediments and in Soil Samples
3.2. Statistical Analyses
3.2.1. Significant Correlations among Elements in the River Sediments and Soil
3.2.2. Principal Component Analyses of Heavy Metals and Trace Elements in River Sediments and Soil
3.2.3. Cluster Analyses in Q Mode of Heavy Metals and Trace Elements in River Sediments and Soil
3.3. Fractionation of Elements in River Sediments Soils and Volcano Ash
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnalds, O. Volcanic soils of Iceland. Catena 2004, 56, 3–20. [Google Scholar] [CrossRef]
- Arnalds, O.; Gretarsson, E. Soil Map of Iceland, 2nd ed.; Agricultural Research Institute: Reykjavik, Iceland, 2011; Available online: www.rala.is/desert (accessed on 4 March 2021).
- Arnalds, O.; Gisladottir, F.O.; Orradottir, B. Determination of Aeolian transport rates of volcanic soil in Iceland. Geomorphology 2012, 167–168, 4–12. [Google Scholar] [CrossRef]
- Óskarsson, B.V.; Riishuus, M.S.; Arnalds, Ó. Climate-dependent chemical weathering of volcanic soils in Iceland. Geoderma 2012, 189–190, 635–651. [Google Scholar] [CrossRef]
- Bosnic, I.; Cascalho, J.; Taborda, R.; Drago, T.; Hermínio, J.; Rosa, M.; Dias, J.; Garel, E. Nearshore sediment transport: Coupling sand tracer dynamics with oceanographic forcing. Mar. Geol. 2017, 385, 293–303. [Google Scholar] [CrossRef]
- Viparelli, E.J.; Lauer, W.; Belmont, P.; Parker, G. A numerical model to develop long-term sediment budgets using isotopic sediment fingerprints. Comput. Geosci. 2013, 53, 114–122. [Google Scholar] [CrossRef]
- Shen, X.; Lampert, D.; Ogle, S.; Reible, D. A software tool for simulating contaminant transport and remedial effectiveness in sediment environments. Environ. Model. Softw. 2018, 109, 104–113. [Google Scholar] [CrossRef]
- Abril, J.M.; San Miguel, E.G.; Ruiz-Canovas, C.; Casas-Ruiz, M.; Bolívar, J.P. From floodplain to aquatic sediments: Radiogeochronological fingerprints in a sediment core from the mining impacted Sancho Reservoir (SW Spain). Sci. Total Environ. 2018, 631–632, 866–878. [Google Scholar] [CrossRef]
- Zang, Z.; Xue, Z.G.; Bao, S.; Chen, Q.; Walker, N.D.; Haag, A.S.; Ge, Q.; Yao, Z. Numerical study of sediment dynamics during hurricane Gustav. Ocean. Model. 2018, 126, 29–42. [Google Scholar] [CrossRef]
- Buendia, C.; Vericat, D.; Batalla, R.J.; Gibbins, C.N. Temporal Dynamics of Sediment Transport and Transient In-channel Storage in a Highly Erodible Catchment. Land Degrad. Dev. 2016, 27, 1045–1063. [Google Scholar] [CrossRef]
- Lang, K.A.; Ehlers, T.A.; Kamp, P.J.J.; Ring, U. Sediment storage in the Southern Alps of New Zealand: New observations from tracer thermochronology. Earth Planet. Sci. Lett. 2018, 493, 140–149. [Google Scholar] [CrossRef]
- Zhang, X.C.; Nearing, M.A.; Garbrecht, J.D. Gaining insights into interrill erosion processes using rare earth element tracers. Geoderma 2017, 299, 63–72. [Google Scholar] [CrossRef]
- Michaelides, K.; Lister, D.; Wainwright, J.; Parsons, A.J. Linking runoff and erosion dynamics to nutrient fluxes in a degrading dryland landscape. J. Geophys. 2012, 117, G00N15. [Google Scholar] [CrossRef]
- Shruti, V.C.; Jonathan, M.P.; Rodríguez-Espinosa, P.F.; Nagarajan, R.; Escobedo-Urias, D.C.; Morales-García, S.S.; Martínez-Tavera, E. Geochemical characteristics of stream sediments from an urban-volcanic zone, Central Mexico: Natural and man-made inputs. Chem. Erde Geochem. 2017, 77, 303–321. [Google Scholar] [CrossRef]
- Silva, Y.J.A.B.; Cantalice, J.R.B.; Nascimento, C.W.A.; Singh, V.P.; Silva, Y.J.A.B.; Silva, C.M.C.A.C.; Silva, M.O.; Guerra, S.M.S. Bedload as an indicator of heavy metal contamination in a Brazilian anthropized watershed. Catena 2017, 153, 106–113. [Google Scholar] [CrossRef]
- Zapata, F. The use of environmental radionuclides as tracers in soil erosion and sedimentation investigations: Recent advances and future developments. Soil Till Res. 2003, 69, 3–13. [Google Scholar] [CrossRef]
- Liu, P.; Tian, J.; Zhou, P.; Yang, M.; Shi, H. Stable rare earth element tracers to evaluate soil erosion. Soil Till Res. 2004, 76, 147–155. [Google Scholar] [CrossRef]
- Matisoff, G. 210Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment. J. Environ. Radioact 2014, 138, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Mabit, L.; Benmansour, M.; Abril, J.M.; Walling, D.E.; Meusburger, K.; Iurian, A.R.; Bernard, C.; Tarján, S.; Owens, P.N.; Blake, W.H.; et al. Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: A review. Earth-Sci. Rev. 2014, 138, 335–351. [Google Scholar] [CrossRef]
- Ventura, E.; Nearing, M.A.; Norton, L.D. Developing a magnetic tracer to study soil erosion. Catena 2001, 43, 277–291. [Google Scholar] [CrossRef]
- Ventura, E.; Nearing, M.A.; Amore, E.; Norton, L.D. The study of detachment and deposition on a hillslope using a magnetic tracer. Catena 2002, 48, 149–161. [Google Scholar] [CrossRef]
- Guzmán, G.; Barrón, V.; Gómez, J.A. Evaluation of magnetic iron oxides as sediment tracers in water erosion experiments. Catena 2010, 82, 126–133. [Google Scholar] [CrossRef]
- Guzmán, G.; Vanderlindenb, K.; Giráldezc, J.; Gómezd, J. Assessment of spatial variability in water erosion rates in an olive orchard at plot scale using a magnetic iron oxide tracer. Soil Sci. Soc. Am. J. 2013, 77, 350–361. [Google Scholar] [CrossRef]
- Armstrong, A.; Quinton, J.N.; Maher, B.A. Thermal enhancement of natural magnetism as a tool for tracing eroded soil. Earth Surf. Process. Landf. 2012, 37, 1567–1572. [Google Scholar] [CrossRef]
- Liu, L.; Huang, M.; Zhang, K.; Zhang, Z.; Yu, Y. Preliminary experiments to assess the effectiveness of magnetite powder as an erosion tracer on the Loess Plateau. Geoderma 2018, 310, 240–256. [Google Scholar] [CrossRef]
- Pulley, S.; Foster, I.; Collins, A.L. The impact of catchment source group classification on the accuracy of sediment fingerprinting outputs. J. Environ. Manag. 2017, 194, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Jónsdóttir, V.; Smaradottir, B. Pollution in Water and Soil from the Eruption in Holuhraun, Iceland, Metal Concentration Analysis. Master’s Thesis, Department of Civil and Environmental Enfineering, Chalmers University of Technology, Göteborg, Sweden, 2015. [Google Scholar]
- Arnalds, O.; Orradottir, B. Carbon accumulation in Icelandic desert Andosols during early stages of restoration. Geomorphology 2013, 193–194, 172–179. [Google Scholar] [CrossRef]
- Arnalds, O.; Dagsson-Waldhauserova, P.; Olafsson, H. The Icelandic volcanic aeolian environment: Processes and impacts—A Review. Aeolian Res. 2016, 20, 176–195. [Google Scholar] [CrossRef] [Green Version]
- Thorarinsson, S. The application of tephrochronology in Iceland. In Tephra Studies; Self, S., Sparks, R.S.J., Eds.; Reidel: London, UK, 1981; pp. 109–134. [Google Scholar]
- Thordarson, T.; Höskuldsson, Á. Postglacial volcanism in Iceland. Jökull 2008, 58, 197–228. [Google Scholar]
- Crofts, R. Healing the land, the story of land reclamation and soil conservation in Iceland. In Restructured, Substantially Revised and Extended from an Original Icelandic Text Sáðmenn sandanna saga landgráðslu á Íslandi 1907–2007 by Friðric G. Olegersson; Soil Conservation Service of Iceland: Hella, Iceland, 2011; ISBN 978-9979-9295-5-0. [Google Scholar]
- Peng, J.F.; Song, Y.H.; Yuan, P.; Cui, X.Y.; Qiu, G.L. The remediation of heavy metals contaminated sediment. J. Hazard. Mater. 2009, 161, 633–640. [Google Scholar] [CrossRef]
- de Andrade Passos, E.; Alves, J.C.; dos Santos, I.S.; Alves, J.P.H.; Garcia, C.A.B.; Costa, C.S. Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis. Microchem. J. 2010, 96, 50–57. [Google Scholar] [CrossRef]
- Sutherland, R.A. BCR-701: A review of 10-years of sequential extraction analyses. Anal. Chim. Acta 2010, 680, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Sakan, S.; Popović, A.; Anđelković, I.; Đorđević, D. Aquatic sediments pollution estimate using the metal fractionation, secondary phase enrichment factor calculation, and used statistical methods. Environ. Geochem. Health 2016, 38, 855–867. [Google Scholar] [CrossRef]
- Sakan, S.; Gržetić, I.; Ðorđević, D. Distribution and fractionation of heavy metals in the Tisza (Tisza) river sediments. Environ. Sci. Pollut. Res. 2007, 14, 229–236. [Google Scholar] [CrossRef]
- Boissier, J.M.; Fontvieille, D. Biololgical characteristics of forest soils and seepage waters during simulated rainfalls of high intensity. Soil Biol. Biochem. 1995, 27, 139–145. [Google Scholar] [CrossRef]
- Óskarsson, H.; Arnalds, Ó.; Gudmundsson, J.; Gudbergsson, G. Organic carbon in Icelandic Andosols: Geographical variation and impact of erosion. Catena 2004, 56, 225–238. [Google Scholar] [CrossRef]
- Kandler, K.; Benker, N.; Bundke, U.; Cuevas, E.; Ebert, M.; Knippertz, P.; Rodríguez, S.; Schütz, L.; Weinbruch, S. Chemical composition and complex refractive index of Saharan Mineral Dust at Izaña, Tenerife (Spain) derived by electronic microscopy. Atmosp. Environ. 2007, 41, 8058–8074. [Google Scholar] [CrossRef]
- Scheuvens, D.; Schütz, L.; Kandler, K.; Ebert, M.; Weinbruch, S. Review Bulk composition of northern African dust and its source sediments—A compilation. Earth Sci. Rev. 2013, 116, 170–194. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Gustafsson, J.P.; Tin, N.T. Arsenic and selenium in some Vietnamese acid sulphate soils. Sci. Total Environ. 1994, 151, 153–158. [Google Scholar] [CrossRef]
River | No. of Sample | Sample Location |
---|---|---|
River Sediments | ||
Ytri Rangá | 1 | Source—sample 1 |
2 | Source—sample 2 | |
3 | Source—sample 3 | |
4 | Middle1—sample 1 | |
5 | Middle1—sample 2 | |
6 | Middle2—sample 1 | |
7 | Middle2—sample2 | |
8 | Before the mouth of the Þvera | |
9 | Mouth—sample 1 | |
10 | Mouth—sample 2 | |
11 | Mouth—sample 3 | |
Hungurfit | 12 | A tributary to the Eystri Rangá—sample 1 |
13 | A tributary to the Eystri Rangá—sample 2 | |
Eystri Rangá | 14 | Before the Hungurfit |
15 | Middle—sample 1 | |
16 | Middle—sample 2 | |
17 | Middle—sample 3 (the bridge) | |
Hroarslækur | 18 | Source—sample 1 |
19 | Source—sample 2 | |
20 | Before the mouth of the Ytri Rangá—sample 1 | |
21 | Before the mouth of the Ytri Rangá—sample 2 | |
Þvera | 22 | Middle |
Holsa | 23 | Near to the mouth in the Atlantic |
Soil | ||
Ytri Rangá | 1 | Source |
2 | Middle | |
3 | Before the mouth of the Þvera | |
4 | Mouth | |
Eystri Rangá | 5 | Middle |
6 | Middle—before the Hungurfit | |
Hroarslækur | 7 | Source |
8 | Before the mouth of the Ytri Rangá | |
Holsa | 9 | Near to the mouth in the Atlantic |
Volcano ash | ||
Eyjafjallajökul | l | Primary volcano ash |
Mean * | G Mean | H Mean | Median | Min | Max | 10th P | 25th P | 75th P | 90th P | SD | |
---|---|---|---|---|---|---|---|---|---|---|---|
Al # | 28,923 | 28,267 | 27,655 | 28,289 | 18,642 | 47,271 | 22,244 | 24,281 | 31,887 | 38,557 | 6559 |
B | 9.68 | 8.94 | 8.31 | 8.86 | 4.05 | 22.6 | 5.82 | 7.06 | 10.54 | 16.52 | 4.30 |
Ba | 39.6 | 38.6 | 37.4 | 41.6 | 22.3 | 52.7 | 23.1 | 35.3 | 45.9 | 48.4 | 8.3 |
Be | 0.85 | 0.84 | 0.83 | 0.88 | 0.55 | 1.07 | 0.70 | 0.76 | 0.91 | 1.01 | 0.13 |
Bi | 1.77 | 1.75 | 1.73 | 1.70 | 1.31 | 2.48 | 1.53 | 1.57 | 1.91 | 2.20 | 0.28 |
Ca | 23,404 | 22,779 | 22,229 | 21,942 | 16,702 | 40,676 | 18,085 | 18,534 | 27,516 | 30,246 | 5889 |
Cd | 0.26 | 0.26 | 0.26 | 0.26 | 0.20 | 0.35 | 0.21 | 0.23 | 0.28 | 0.32 | 0.04 |
Co | 25.2 | 24.8 | 24.4 | 25.9 | 16.2 | 34.2 | 17.5 | 22.8 | 27.2 | 32.2 | 4.6 |
Cr | 15.5 | 13.8 | 12.4 | 13.7 | 6.3 | 42.4 | 6.8 | 10.6 | 18.2 | 25.5 | 8.2 |
Cu | 58.4 | 56.8 | 55.1 | 56.8 | 34.0 | 88.1 | 36.0 | 50.8 | 66.9 | 79.6 | 13.8 |
Fe | 51,361 | 50,993 | 50,627 | 50,825 | 39,012 | 66,387 | 44,099 | 47,206 | 56,265 | 58,685 | 6315 |
K | 1226 | 1185 | 1144 | 1168 | 651 | 1943 | 814 | 1035 | 1334 | 1636 | 322 |
Li | 2.9 | 2.8 | 2.8 | 2.9 | 1.9 | 3.4 | 2.3 | 2.56 | 3.2 | 3.31 | 0.4 |
Mg | 14,111 | 13,798 | 13,500 | 13,692 | 9938 | 21,562 | 10,730 | 11,069 | 15,967 | 18,204 | 3116 |
Mn | 708 | 698 | 688 | 715 | 498 | 954 | 526 | 614 | 799 | 835 | 116 |
Na | 4810 | 4659 | 4523 | 4378 | 3319 | 8035 | 3486 | 3714 | 5744 | 6587 | 1296 |
Ni | 22.4 | 21.3 | 20.2 | 21.8 | 11.1 | 41.4 | 13.1 | 17.85 | 27.1 | 31.44 | 7.3 |
P | 1019 | 999 | 976 | 1057 | 607 | 1430 | 696 | 869 | 1112 | 1196 | 199 |
Pb | 7.3 | 7.1 | 6.9 | 7.1 | 4.6 | 10.3 | 5.1 | 6.22 | 8.1 | 9.37 | 1.5 |
S | 223 | 204 | 186 | 216 | 99.0 | 426 | 117 | 146 | 299 | 344 | 95.0 |
Si | 7738 | 7581 | 7412 | 7865 | 4363 | 10,724 | 5965 | 6770 | 8407 | 10,161 | 1545 |
Sr | 77.9 | 75.4 | 72.7 | 76.8 | 41.6 | 109.0 | 49.3 | 67.9 | 94.9 | 104 | 19.0 |
V | 139 | 135 | 131 | 137 | 72.0 | 206 | 92.0 | 124 | 154 | 174 | 32.4 |
Zn | 50.4 | 50.0 | 49.6 | 48.8 | 40.5 | 64.9 | 43.6 | 46.4 | 56.0 | 60.7 | 6.7 |
Al & | 34,282 | 33,898 | 33,523 | 33,650 | 26,256 | 44,384 | 26,256 | 30,713 | 37,434 | 44,384 | 5500 |
B | 13.1 | 12.3 | 11.7 | 12.0 | 7.5 | 23.9 | 7.5 | 9.82 | 13.0 | 23.9 | 5.2 |
Ba | 52.20 | 51.08 | 49.83 | 50.61 | 31.33 | 66.6 | 31.33 | 46.2 | 58.25 | 66.6 | 10.87 |
Be | 1.99 | 0.98 | 0.96 | 1.00 | 0.68 | 1.27 | 0.68 | 0.93 | 1.06 | 1.27 | 0.17 |
Bi | 1.91 | 1.87 | 1.84 | 1.96 | 1.38 | 2.45 | 1.38 | 1.64 | 2.26 | 2.45 | 0.38 |
Ca | 24,184 | 23,837 | 23,524 | 22,396 | 19,965 | 32,740 | 19,965 | 20,770 | 25,211 | 32,740 | 4550 |
Cd | 0.30 | 0.29 | 0.28 | 0.27 | 0.21 | 0.60 | 0.21 | 0.24 | 0.30 | 0.60 | 0.12 |
Co | 28.1 | 27.7 | 27.3 | 29.1 | 19.4 | 36.4 | 19.4 | 26.41 | 30.3 | 36.44 | 4.9 |
Cr | 13.5 | 12.6 | 11.7 | 12.2 | 6.9 | 20.5 | 6.9 | 9.28 | 18.7 | 20.51 | 5.3 |
Cu | 57.6 | 55.9 | 54.6 | 51.5 | 45.0 | 95.1 | 45.0 | 46.8 | 58.6 | 95.1 | 16.2 |
Fe | 55,140 | 54,612 | 54,078 | 56,928 | 42,803 | 67,564 | 42,803 | 48,181 | 60,303 | 67,564 | 8037 |
K | 1406 | 1351 | 1292 | 1394 | 734 | 2031 | 734 | 1127 | 1746 | 2031 | 401 |
Li | 2.7 | 2.7 | 2.7 | 2.6 | 2.2 | 3.4 | 2.2 | 2.48 | 2.8 | 3.43 | 0.4 |
Mg | 13,482 | 13,217 | 12,978 | 12,824 | 10,085 | 19,449 | 10,085 | 11,450 | 14,825 | 19,449 | 2968 |
Mn | 699 | 689 | 679 | 719 | 523 | 852 | 523 | 594 | 792 | 852 | 123 |
Na | 5145 | 5042 | 4944 | 5494 | 3837 | 7144 | 3837 | 4112 | 5569 | 7144 | 1105 |
Ni | 20.3 | 19.3 | 18.5 | 17.3 | 13.7 | 37.2 | 13.7 | 15.5 | 24.7 | 37.1 | 7.5 |
P | 1115 | 1102 | 1089 | 1147 | 869 | 1436 | 869 | 953 | 1204 | 1436 | 180 |
Pb | 8.8 | 8.7 | 8.6 | 8.8 | 6.0 | 11.4 | 6.0 | 8.17 | 9.5 | 11.4 | 1.5 |
S | 219 | 211 | 203 | 220 | 128 | 301 | 128 | 200 | 256 | 301 | 58.8 |
Si | 7793 | 7708 | 7628 | 7670 | 6326 | 10,352 | 6326 | 6795 | 8343 | 10,352 | 1252 |
Sr | 86.4 | 84.4 | 82.3 | 84.2 | 52.2 | 120 | 52.2 | 76.9 | 96.2 | 120 | 18.9 |
V | 140 | 138 | 136 | 149 | 89.0 | 163 | 89.0 | 134 | 157 | 163 | 23.4 |
Zn | 54.7 | 54.3 | 53.9 | 56.4 | 43.3 | 64.1 | 43.3 | 48.9 | 59.2 | 64.1 | 6.9 |
PC1 | % of σ2 (Ev) | PC2 | % of σ2 (Ev) | PC3 | % of σ2 (Ev) | ||
---|---|---|---|---|---|---|---|
Major | River sediments | Al, Ca, Fe, Mg, Na, Si | 80.0 (4.80) | ||||
Soil | Al, Ca, Fe, Mg, Na, Si | 75.9 (4.56) | |||||
Macro | River sediments | V, S, Mn, K | 48.64 (2.57) | P, K | 22.81 (1.00) | ||
Soil | V, S, P, Mn, K | 59.44 (2.97) | |||||
Minor | River sediments | Ba, Co, Cr, Cu, Ni, Pb | 58.28 (4.74) | B, Zn | 21.82 (1.67) | ||
Soil | Ba, Co, Pb, Zn | 42.60 (4.20) | B, Cu, Cr, Ni | 38.86 (2.32) | |||
Trace | River sediments | Be, Bi, Cd | 37.04 (2.62) | Li, Sb | 24.98 (1.24) | As, Li | 21.12 (1.13) |
Soil | There are fewer than two cases, at least one of the variables has zero variance, there is only one variable in the analysis, or correlation coefficients could not be computed for all pairs of variables. No further statistics computed. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đorđević, D.; Sakan, S.; Trifunović, S.; Škrivanj, S.; Finger, D.C. Element Content in Volcano Ash, Soil and River Sediments of the Watershed in the Volcanic Area of South Iceland and Assessment of Their Mobility Potential. Water 2021, 13, 1928. https://doi.org/10.3390/w13141928
Đorđević D, Sakan S, Trifunović S, Škrivanj S, Finger DC. Element Content in Volcano Ash, Soil and River Sediments of the Watershed in the Volcanic Area of South Iceland and Assessment of Their Mobility Potential. Water. 2021; 13(14):1928. https://doi.org/10.3390/w13141928
Chicago/Turabian StyleĐorđević, Dragana, Sanja Sakan, Snežana Trifunović, Sandra Škrivanj, and David Christian Finger. 2021. "Element Content in Volcano Ash, Soil and River Sediments of the Watershed in the Volcanic Area of South Iceland and Assessment of Their Mobility Potential" Water 13, no. 14: 1928. https://doi.org/10.3390/w13141928
APA StyleĐorđević, D., Sakan, S., Trifunović, S., Škrivanj, S., & Finger, D. C. (2021). Element Content in Volcano Ash, Soil and River Sediments of the Watershed in the Volcanic Area of South Iceland and Assessment of Their Mobility Potential. Water, 13(14), 1928. https://doi.org/10.3390/w13141928