A Microcosm Treatability Study for Evaluating Wood Mulch-Based Amendments as Electron Donors for Trichloroethene (TCE) Reductive Dechlorination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microcosm Setup, Monitoring Protocols, and Analytical Procedures
2.2. Quantification of D. mccartyi and Rdha Genes
3. Results
3.1. Time Course of RD
3.2. Impact of Iron Filings on the Kinetics of Dechlorination and Methanogenesis
3.3. Biomolecular Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aulenta, F.; Di Tomassi, C.; Cupo, C.; Papini, M.P.; Majone, M. Influence of hydrogen on the reductive dechlorination of tetrachloroethene (PCE) to ethene in a methanogenic biofilm reactor: Role of mass transport phenomena. J. Chem. Technol. Biotechnol. 2006, 81, 1520–1529. [Google Scholar] [CrossRef]
- Aulenta, F.; Fuoco, M.; Canosa, A.; Papini, M.P.; Majone, M. Use of poly-β-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE. Water Sci. Technol. 2008, 57, 921–925. [Google Scholar] [CrossRef]
- Aulenta, F.; Majone, M.; Tandoi, V. Enhanced anaerobic bioremediation of chlorinated solvents: Environmental factors influencing microbial activity and their relevance under field conditions. J. Chem. Technol. Biotechnol. 2006, 81, 1463–1474. [Google Scholar] [CrossRef]
- Aulenta, F.; Pera, A.; Rossetti, S.; Petrangeli Papini, M.; Majone, M. Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Res. 2007, 41, 27–38. [Google Scholar] [CrossRef]
- Aulenta, F.; Potalivo, M.; Majone, M.; Papini, M.P.; Tandoi, V. Anaerobic Bioremediation of Groundwater Containing a Mixture of 1,1,2,2-Tetrachloroethane and Chloroethenes. Biodegradation 2006, 17, 193–206. [Google Scholar] [CrossRef]
- Borden, R.C.; Rodriguez, B.X. Evaluation of Slow Release Substrates for Anaerobic Bioremediation. Bioremediat. J. 2006, 10, 59–69. [Google Scholar] [CrossRef]
- Chang, H.L.; Alvarez-Cohen, L. Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Appl. Environ. Microbiol. 1996, 62, 3371–3377. [Google Scholar] [CrossRef] [Green Version]
- Evangelista de Duffard, A.M.; Duffard, R. Behavioral toxicology, risk assessment, and chlorinated hydrocarbons. Environ. Health Perspect. 1996, 104, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Hug, L.A.; Maphosa, F.; Leys, D.; Löffler, F.E.; Smidt, H.; Edwards, E.A.; Adrian, L. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jugder, B.-E.; Ertan, H.; Bohl, S.; Lee, M.; Marquis, C.P.; Manefield, M. Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation. Front. Microbiol. 2016, 7, 249. [Google Scholar] [CrossRef]
- Kennedy, L.G.; Everett, J.W. Field application of biogeochemical reductive dechlorination by permeable reactive barrier. Int. J. Environ. Waste Manag. 2014, 14, 323. [Google Scholar] [CrossRef]
- Lee, W.; Batchelor, B. Abiotic Reductive Dechlorination of Chlorinated Ethylenes by Iron-Bearing Soil Minerals. 2. Green Rust. Environ. Sci. Technol. 2002, 36, 5348–5354. [Google Scholar] [CrossRef]
- Lee, W.; Batchelor, B. Abiotic Reductive Dechlorination of Chlorinated Ethylenes by Iron-Bearing Soil Minerals. 1. Pyrite and Magnetite. Environ. Sci. Technol. 2002, 36, 5147–5154. [Google Scholar] [CrossRef] [PubMed]
- Löffler, F.E.; Yan, J.; Ritalahti, K.M.; Adrian, L.; Edwards, E.A.; Konstantinidis, K.T.; Müller, J.A.; Fullerton, H.; Zinder, S.H.; Spormann, A.M. Bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 2013, 63, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Magnuson, J.K.; Romine, M.F.; Burris, D.R.; Kingsley, M.T. Trichloroethene Reductive Dehalogenase from Dehalococcoides ethenogenes: Sequence of tceA and Substrate Range Characterization. Appl. Environ. Microbiol. 2000, 66, 5141–5147. [Google Scholar] [CrossRef] [Green Version]
- Majone, M.; Verdini, R.; Aulenta, F.; Rossetti, S.; Tandoi, V.; Kalogerakis, N.; Agathos, S.; Puig, S.; Zanaroli, G.; Fava, F. In situ groundwater and sediment bioremediation: Barriers and perspectives at European contaminated sites. New Biotechnol. 2015, 32, 133–146. [Google Scholar] [CrossRef]
- McCarty, P.L. In situ bioremediation of chlorinated solvents. Curr. Opin. Biotechnol. 1993, 4, 323–330. [Google Scholar] [CrossRef]
- Molenda, O.; Puentes Jácome, L.A.; Cao, X.; Nesbø, C.L.; Tang, S.; Morson, N.; Patron, J.; Lomheim, L.; Wishart, D.S.; Edwards, E.A. Insights into origins and function of the unexplored majority of the reductive dehalogenase gene family as a result of genome assembly and ortholog group classification. Environ. Sci. Process. Impacts 2020, 22, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.A.; Rosner, B.M.; von Abendroth, G.; Meshulam-Simon, G.; McCarty, P.L.; Spormann, A.M. Molecular Identification of the Catabolic Vinyl Chloride Reductase from Dehalococcoides sp. Strain VS and Its Environmental Distribution. Appl. Environ. Microbiol. 2004, 70, 4880–4888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niño de Guzmán, G.T.; Hapeman, C.J.; Millner, P.D.; McConnell, L.L.; Jackson, D.; Kindig, D.; Torrents, A. Using a high-organic matter biowall to treat a trichloroethylene plume at the Beaver Dam Road landfill. Environ. Sci. Pollut. Res. 2018, 25, 8735–8746. [Google Scholar] [CrossRef]
- Pérez-de-Mora, A.; Lacourt, A.; McMaster, M.L.; Liang, X.; Dworatzek, S.M.; Edwards, E.A. Chlorinated Electron Acceptor Abundance Drives Selection of Dehalococcoides mccartyi (D. mccartyi) Strains in Dechlorinating Enrichment Cultures and Groundwater Environments. Front. Microbiol. 2018, 9, 812. [Google Scholar] [CrossRef] [Green Version]
- Smatlak, C.R.; Gossett, J.M.; Zinder, S.H. Comparative Kinetics of Hydrogen Utilization for Reductive Dechlorination of Tetrachloroethene and Methanogenesis in an Anaerobic Enrichment Culture. Environ. Sci. Technol. 1996, 30, 2850–2858. [Google Scholar] [CrossRef]
- Ritalahti, K.M.; Amos, B.K.; Sung, Y.; Wu, Q.; Koenigsberg, S.S.; Löffler, F.E. Quantitative PCR Targeting 16S rRNA and Reductive Dehalogenase Genes Simultaneously Monitors Multiple Dehalococcoides Strains. Appl. Environ. Microbiol. 2006, 72, 2765–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosner, D.; Markowitz, G. Persistent pollutants: A brief history of the discovery of the widespread toxicity of chlorinated hydrocarbons. Environ. Res. 2013, 120, 126–133. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Ho, P.; Berns, E.; Werth, C. Mechanisms for Abiotic Dechlorination of Trichloroethene by Ferrous Minerals under Oxic and Anoxic Conditions in Natural Sediments. Environ. Sci. Technol. 2018, 52, 13747–13755. [Google Scholar] [CrossRef] [PubMed]
- Seidel, K.; Kühnert, J.; Adrian, L. The Complexome of Dehalococcoides mccartyi Reveals Its Organohalide Respiration-Complex Is Modular. Front. Microbiol. 2018, 9, 1130. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Adair, C.; Wilson, J.T. Long-Term Capacity of Plant Mulch to Remediate Trichloroethylene in Groundwater. J. Environ. Eng. 2010, 136, 1054–1062. [Google Scholar] [CrossRef]
- Shen, H.; Wilson, J.T. Trichloroethylene Removal from Groundwater in Flow-Through Columns Simulating a Permeable Reactive Barrier Constructed with Plant Mulch. Environ. Sci. Technol. 2007, 41, 4077–4083. [Google Scholar] [CrossRef]
- Suarez, M.P.; Rifai, H.S. Biodegradation Rates for Fuel Hydrocarbons and Chlorinated Solvents in Groundwater. Bioremediat. J. 1999, 3, 337–362. [Google Scholar] [CrossRef]
- Tang, S.; Chan, W.W.M.; Fletcher, K.E.; Seifert, J.; Liang, X.; Löffler, F.E.; Edwards, E.A.; Adrian, L. Functional Characterization of Reductive Dehalogenases by Using Blue Native Polyacrylamide Gel Electrophoresis. Appl. Environ. Microbiol. 2013, 79, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Tobiszewski, M.; Namieśnik, J. Abiotic degradation of chlorinated ethanes and ethenes in water. Environ. Sci. Pollut. Res. 2012, 19, 1994–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, K.L.; McGuire, T.M.; Adamson, D.T.; Anderson, R.H. Long-Term Evaluation of Mulch Biowall Performance to Treat Chlorinated Solvents. Groundw. Monit. Remediat. 2020, 40, 35–46. [Google Scholar] [CrossRef]
- Wang, S.; Qiu, L.; Liu, X.; Xu, G.; Siegert, M.; Lu, Q.; Juneau, P.; Yu, L.; Liang, D.; He, Z.; et al. Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnol. Adv. 2018, 36, 1194–1206. [Google Scholar] [CrossRef]
- Matturro, B.; Heavner, G.L.; Richardson, R.E.; Rossetti, S. Quantitative estimation of Dehalococcoides mccartyi at laboratory and field scale: Comparative study between CARD-FISH and Real Time PCR. J. Microbiol. Methods 2013, 93, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Seo, Y. Trichloroethylene (TCE) adsorption using sustainable organic mulch. J. Hazard. Mater. 2010, 181, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Wang, J.; Villalobos Solis, M.I.; Jin, H.; Chourey, K.; Li, X.; Yang, Y.; Yin, Y.; Hettich, R.L.; Löffler, F.E. Respiratory Vinyl Chloride Reductive Dechlorination to Ethene in TceA-Expressing Dehalococcoides mccartyi. Environ. Sci. Technol. 2021, 55, 4831–4841. [Google Scholar] [CrossRef]
- Yan, J.; Yang, Y.; Li, X.; Löffler, F.E. Complete Genome Sequence of Dehalococcoides mccartyi Strain FL2, a Trichloroethene-Respiring Anaerobe Isolated from Pristine Freshwater Sediment. Microbiol. Resour. Announc. 2019, 8, e00558. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Semprini, L. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor. J. Hazard. Mater. 2009, 167, 97–104. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masut, E.; Battaglia, A.; Ferioli, L.; Legnani, A.; Cruz Viggi, C.; Tucci, M.; Resitano, M.; Milani, A.; de Laurentiis, C.; Matturro, B.; et al. A Microcosm Treatability Study for Evaluating Wood Mulch-Based Amendments as Electron Donors for Trichloroethene (TCE) Reductive Dechlorination. Water 2021, 13, 1949. https://doi.org/10.3390/w13141949
Masut E, Battaglia A, Ferioli L, Legnani A, Cruz Viggi C, Tucci M, Resitano M, Milani A, de Laurentiis C, Matturro B, et al. A Microcosm Treatability Study for Evaluating Wood Mulch-Based Amendments as Electron Donors for Trichloroethene (TCE) Reductive Dechlorination. Water. 2021; 13(14):1949. https://doi.org/10.3390/w13141949
Chicago/Turabian StyleMasut, Edoardo, Alessandro Battaglia, Luca Ferioli, Anna Legnani, Carolina Cruz Viggi, Matteo Tucci, Marco Resitano, Alessandro Milani, Camilla de Laurentiis, Bruna Matturro, and et al. 2021. "A Microcosm Treatability Study for Evaluating Wood Mulch-Based Amendments as Electron Donors for Trichloroethene (TCE) Reductive Dechlorination" Water 13, no. 14: 1949. https://doi.org/10.3390/w13141949
APA StyleMasut, E., Battaglia, A., Ferioli, L., Legnani, A., Cruz Viggi, C., Tucci, M., Resitano, M., Milani, A., de Laurentiis, C., Matturro, B., Di Franca, M. L., Rossetti, S., & Aulenta, F. (2021). A Microcosm Treatability Study for Evaluating Wood Mulch-Based Amendments as Electron Donors for Trichloroethene (TCE) Reductive Dechlorination. Water, 13(14), 1949. https://doi.org/10.3390/w13141949