Analysis of Hydrologic Regime Changes Caused by Small Hydropower Plants in Lowland Rivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Results of IHA Analysis
3.1.1. Magnitude of Monthly Flow Regime
3.1.2. Magnitude and Duration of Annual Extreme Flow Conditions
3.1.3. Timing of Annual Extreme Flows
3.1.4. Frequency and Duration of High and Low Pulses
3.1.5. Rate and Frequency of Hydrologic Changes
3.1.6. Overall Parameter Group Changes
3.2. Results of IHA Analysis
3.3. Influence of Hydropower Plants and Reservoir Characteristics on Hydrologic Changes in Rivers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameters | River-WGS * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | |
Group #1 of IHA Parameters | |||||||||||
January | −8.6 | 9.1 | 1.4 | −27.3 | −5.8 | −11.3 | 0.7 | −19.4 | −1.2 | −2.9 | −8.4 |
February | −7.3 | −18.8 | 23.4 | −22.8 | −5.7 | 17.3 | 45.5 | −1.6 | −2.8 | −31.0 | 20.4 |
March | −28.6 | −3.5 | 7.1 | −35.2 | −7.8 | −10.3 | −11.5 | −11.0 | −8.5 | −25.1 | −14.4 |
April | −51.6 | 14.9 | −31.9 | −35.5 | −33.3 | −19.6 | −34.6 | −24.0 | −33.0 | −4.0 | −16.6 |
May | −23.5 | −12.6 | −19.5 | −39.7 | −36.1 | 14.7 | −43.4 | −9.3 | −31.0 | −15.5 | −1.9 |
June | −39.6 | −31.2 | −14.3 | −51.9 | −49.9 | −1.2 | −60.0 | −5.4 | −58.1 | −40.9 | 2.5 |
July | 5.5 | 21.3 | −2.6 | 132.3 | −51.8 | 3.5 | 17.0 | 2.2 | 10.7 | 2.1 | 15.7 |
August | 5.5 | 89.6 | 19.4 | 51.4 | 14.4 | −8.6 | 16.4 | 6.0 | −17.9 | 54.6 | 17.4 |
September | 6.1 | 8.2 | 1.6 | 29.7 | −30.8 | −3.6 | 48.8 | 4.1 | −43.0 | 5.3 | −1.4 |
October | −37.7 | −0.2 | −6.7 | 96.5 | 7.6 | 12.5 | 34.3 | −9.9 | −0.1 | 10.7 | 2.3 |
November | −22.9 | 16.8 | 28.1 | 15.7 | −6.2 | 18.0 | 36.6 | 1.0 | −6.4 | −1.1 | 3.7 |
December | −12.5 | 65.0 | 13.9 | −7.0 | −2.6 | 15.0 | 11.4 | 3.9 | −3.3 | 27.7 | −10.7 |
Group #2 of IHA Parameters | |||||||||||
1-day minimum | −42.5 | −37.6 | −1.3 | −10.4 | −32.9 | −24.6 | −17.8 | 8.7 | −31.8 | −21.4 | 12.5 |
3-day minimum | −37.1 | −35.1 | 0.1 | −7.9 | −28.1 | −16.2 | −16.4 | 12.3 | −28.7 | −17.3 | 9.8 |
7-day minimum | −32.2 | −30.2 | 2.4 | −2.5 | −22.8 | −8.0 | −12.5 | 13.6 | −27.4 | −14.9 | 8.2 |
30-day minimum | −26.3 | −19.7 | −2.4 | 0.7 | −20.8 | −1.7 | −15.8 | 11.3 | −28.0 | −10.8 | 8.2 |
90-day minimum | −12.4 | 3.2 | 9.1 | 37.1 | −26.8 | 10.8 | −10.2 | 9.3 | −30.4 | 2.3 | 13.0 |
1-day maximum | −33.2 | −16.1 | −21.2 | −9.3 | −17.0 | −24.3 | −28.0 | −16.5 | −29.3 | −27.8 | −25.8 |
3-day maximum | −30.5 | −15.3 | −19.3 | −16.4 | −17.8 | −22.5 | −24.3 | −16.3 | −27.9 | −27.6 | −27.1 |
7-day maximum | −28.6 | −11.6 | −19.8 | −26.0 | −18.0 | −21.0 | −20.8 | −16.4 | −22.4 | −23.3 | −25.1 |
30-day maximum | −22.6 | −11.1 | −19.4 | −29.2 | −19.9 | −16.8 | −17.6 | −18.7 | −16.8 | −20.4 | −16.8 |
90-day maximum | −16.7 | −6.1 | −10.5 | −26.7 | −16.5 | −5.0 | −7.6 | −14.4 | −13.2 | −19.8 | −5.6 |
Base flow index | −10.0 | −35.6 | 7.5 | 3.1 | −2.4 | −5.7 | −2.7 | 26.9 | −15.2 | −9.0 | 9.3 |
Group #3 of IHA Parameters | |||||||||||
Date of minimum | 3.1 | 13.9 | 8.5 | 7.6 | 5.5 | 8.3 | 23.6 | 11.7 | 9.3 | 4.0 | 2.9 |
Date of maximum | 13.3 | 2.5 | 5.6 | 6.3 | 8.6 | 12.9 | 36.4 | 11.9 | 3.6 | 2.5 | 7.0 |
Group #4 of IHA Parameters | |||||||||||
Low pulse count | 175.5 | 113.9 | 132.6 | −12.7 | 279.6 | 277.8 | 495.3 | −75.0 | −1.3 | 72.2 | - |
Low pulse duration | −65.6 | −50.2 | −59.5 | 15.7 | −58.3 | −78.4 | −56.4 | −77.8 | 57.8 | −31.6 | - |
High pulse count | −28.2 | 1.1 | −4.1 | −2.2 | −11.4 | 0.0 | −24.1 | −20.3 | −24.2 | 16.7 | −13.3 |
High pulse duration | −11.6 | 7.8 | −20.2 | −29.3 | −9.2 | 4.2 | 23.5 | −18.0 | 5.5 | −19.9 | −0.8 |
Group #5 of IHA Parameters | |||||||||||
Rise rate | −39.7 | −26.1 | −33.4 | −13.8 | −28.5 | −5.0 | 5.4 | −33.5 | −36.6 | −30.0 | −26.3 |
Fall rate | −25.2 | −10.8 | −23.7 | −17.3 | −18.2 | −5.8 | 15.3 | −26.6 | −28.4 | −15.9 | −31.9 |
Number of reversals | 65.1 | 45.0 | 79.4 | 25.1 | 72.5 | 50.0 | 45.4 | 43.6 | 15.2 | 38.2 | −6.5 |
References
- Arcadis. Hydropower Generation in the Context of the EU WFD; EC DG Environment: Brussels, Belgium, 2011; p. 168. [Google Scholar]
- Moran, E.F.; Lopez, M.C.; Moore, N.; Müller, N.; Hyndman, D.W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Hydrologic Alteration at the Upper and Middle Part of the Yangtze River, China: Towards Sustainable Water Resource Management Under Increasing Water Exploitation. Sustainability 2019, 11, 5176. [Google Scholar] [CrossRef] [Green Version]
- Simonov, E.A.; Nikitina, O.I.; Egidarev, E.G. Freshwater Ecosystems versus Hydropower Development: Environmental Assessments and Conservation Measures in the Transboundary Amur River Basin. Water 2019, 11, 1570. [Google Scholar] [CrossRef] [Green Version]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestgaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime: A paradigm for river conservation and restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Zeiringer, B.; Seliger, C.; Greimel, F.; Schmutz, S. River Hydrology, Flow Alteration, and Environmental Flow. In Riverine Ecosystem Management; Schmutz, S., Sendzimir, J., Eds.; Aquatic Ecology Series; Springer: Cham, Germany, 2018; Volume 8, pp. 67–89. [Google Scholar] [CrossRef]
- Olden, J.; Poff, N. Redundancy and the Choice of Hydrologic Indices for Characterizing Stream Flow Regimes. River Res. Appl. 2003, 19, 101–121. [Google Scholar] [CrossRef]
- Poff, N.; Zimmerman, J. Ecological Responses to Altered Flow Regimes: A Literature Review to Inform the Science and Management of Environmental Flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- The International Hydropower Association. Hydropower Status Report; IHA: London, UK, 2020; p. 54. [Google Scholar]
- Kasiulis, E.; Punys, P.; Kvaraciejus, A.; Dumbrauskas, A.; Jurevičius, L. Small Hydropower in the Baltic States-Current Status and Potential for Future Development. Energies 2020, 13, 6731. [Google Scholar] [CrossRef]
- Zdankus, N.; Vaikasas, S.; Sabas, G. Impact of a hydropower plant on the downstream reach of a river. J. Environ. Eng. Landsc. Manag. 2008, 16, 128–134. [Google Scholar] [CrossRef]
- Punys, P.; Dumbrauskas, A.; Kasiulis, E.; Vyčienė, G.; Šilinis, L. Flow Regime Changes: From Impounding a Temperate Lowland River to Small Hydropower Operations. Energies 2015, 8, 7478–7501. [Google Scholar] [CrossRef] [Green Version]
- Gailiušis, B.; Adzgauskas, G.; Tomkevičienė, A.; Meilutyte-Lukauskiene, D. Assessment of the ecological flow of the Lithuanian rivers. Power Eng. 2018, 64, 196–205. (In Lithuanian) [Google Scholar] [CrossRef]
- Vaikasas, S.; Palaima, K.; Pliūraitė, V. Influence of hydropower dams on the state of macroinvertebrates assemblages in the Virvyte river, Lithuania. J. Environ. Eng. Landsc. Manag. 2013, 21, 305–315. [Google Scholar] [CrossRef]
- Vaikasas, S.; Bastiene, N.; Pliuraite, V. Impact of small hydropower plants on physicochemical and biotic environments in flatland riverbeds of Lithuania. J. Water Secur. 2015, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Virbickas, T.; Vezza, P.; Kriaučiūnienė, J.; Akstinas, V.; Šarauskienė, D.; Steponėnas, A. Impacts of low-head hydropower plants on cyprinid-dominated fish assemblages in Lithuanian rivers. Sci. Rep. 2020, 10, 21687. [Google Scholar] [CrossRef] [PubMed]
- Richter, B.D.; Baumgartner, J.F.; Powell, J.; Braun, D. A method for assessing hydrologic alteration with ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Magilligan, F.J.; Nislow, K.H. Changes in Hydrologic Regime by Dams. Geomorphology 2005, 71, 61–78. [Google Scholar] [CrossRef]
- Costigan, K.H.; Daniels, M.D. Damming the prairie: Human alteration of Great Plains river regimes. J. Hydrol. 2012, 444, 90–99. [Google Scholar] [CrossRef]
- Mathews, R.; Richter, B.D. Application of the indicators of hydrologic alteration software in environmental flow setting. J. Am. Water Resour. Assoc. 2007, 43, 1400–1413. [Google Scholar] [CrossRef]
- Richter, B.D.; Thomas, G.A. Restoring environmental flows by modifying dam operations. Ecol. Soc. 2007, 12, 12. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, H.; Yang, C.; Zhang, L.; Sun, C. Quantitative Assessment of Hydrological Alteration Caused by Irrigation Projects in the Tarim River basin, China. Sci. Rep. 2017, 7, 4291. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Zhuang, Y.; Wang, X.; Li, E.; Zhang, Y.Z.; Lu, X.; Yang, J.; Liu, X. Analysis of Hydrologic Regime Changes Caused by Dams in China. J. Hydrol. Eng. 2020, 25, 05020003. [Google Scholar] [CrossRef]
- Li, F.F.; Qiu, J. Incorporating ecological adaptation in a multi-objective optimization for the Three Gorges Reservoir. J. Hydroinform. 2016, 18, 564–578. [Google Scholar] [CrossRef]
- Timpe, K.; Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 2017, 3, e1700611. [Google Scholar] [CrossRef] [Green Version]
- Souza-Cruz-Buenaga, F.V.A.; Espig, S.A.; Castro, T.; Santos, M.A. Environmental impacts of a reduced flow stretch on hydropower plants. Braz. J. Biol. 2019, 79, 470–487. [Google Scholar] [CrossRef]
- Ely, P.; Fantin-Cruz, I.; Tritico, H.M.; Girard, P.; Kaplan, D. Dam-Induced Hydrologic Alterations in the Rivers Feeding the Pantanal. Front. Environ. Sci. 2020, 8, 579031. [Google Scholar] [CrossRef]
- Alrajoula, M.T.; Zayed, I.S.A.; Elagib, N.A.; Hamdi, M.R. Hydrological, socio-economic and reservoir alterations of Er Roseires Dam in Sudan. Sci. Total Environ. 2016, 566, 938–948. [Google Scholar] [CrossRef]
- Palmate, S.S.; Pandey, A.; Jadhao, V.G.; Chandrakar, A. Assessment of historical hydrologic alteration due to dam construction in upper Godavari River basin. Geophys. Res. Abstr. 2019, 21, EGU2019-1614-2. [Google Scholar]
- Babel, M.S.; Dinh, C.N.; Mullick, M.R.A.; Nanduri, U. Operation of a hydropower system considering environmental flow requirements: A case study in La Nga River basin, Vietnam. J. Hydro-Environ. Res. 2012, 6, 63–73. [Google Scholar] [CrossRef]
- Bizzi, S.; Pianosi, F.; Soncini-Sessa, R. Valuing hydrological alteration in multi-objective water resources management. J. Hydrol. 2012, 472, 277–286. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Barca, E.; Pappagallo, G.; Porto, A.L. Simulating ecologically relevant hydrological indicators in a temporary river system. Agric. Water Manag. 2017, 180, 194–204. [Google Scholar] [CrossRef]
- Stefanidis, K.; Panagopoulos, Y.; Psomas, A.; Mimikou, M. Assessment of the natural flow regime in a Mediterranean river impacted from irrigated agriculture. Sci. Total Environ. 2016, 573, 1492–1502. [Google Scholar] [CrossRef] [PubMed]
- Halleraker, J.H.; Sundt, H.; Alfredsen, K.T.; Dangelmaier, G. Application of multiscale environmental flow methodologies as tools for optimized management of a Norwegian regulated national salmon watercourse. River Res. Appl. 2007, 510, 493–510. [Google Scholar] [CrossRef]
- Gierszewski, P.J.; Habel, M.; Szmańda, J.; Luc, M. Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Sci. Total Environ. 2020, 710, 136202. [Google Scholar] [CrossRef] [PubMed]
- Kiesel, J.; Gericke, A.; Rathjens, H.; Wetzig, A.; Kakouei, K.; Jähnig, S.C.; Fohrer, N. Climate change impacts on ecologically relevant hydrological indicators in three catchments in three European ecoregions. Ecol. Eng. 2019, 127, 404–416. [Google Scholar] [CrossRef]
- Schneider, C.; Laize, C.L.R.; Acreman, M.C.; Florke, M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci. 2013, 17, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Galvonaitė, A.; Valiukas, D.; Kilpys, J.; Kitrienė, Z.; Misiūnienė, M. Climate Atlas of Lithuania; Lithuanian Hydrometeorological Service: Vilnius, Lithuania, 2013; p. 176. (In Lithuanian) [Google Scholar]
- The Nature Conservancy. Indicators of Hydrologic Alteration Version 7.1 User’s Manual; rPurview LLC: Arlington, VA, USA, 2009; p. 81. [Google Scholar]
- Lithuanian Hydrometeorological Service. Hydrologic Yearbooks; Lithuanian Hydrometeorological Service: Vilnius, Lithuania, 2018. [Google Scholar]
- Richter, B.D.; Baumgartner, J.V.; Wigington, R.; Braun, D.P. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Baumgartner, J.V.; Braun, D.P.; Powell, J. A spatial assessment of hydrologic alteration within a river network. Regul. Rivers 1998, 14, 329–340. [Google Scholar] [CrossRef]
- Bujang, M.A.; Baharum, N. Sample Size Guideline for Correlation Analysis. World J. Soc. Sci. Res. 2016, 3, 37–46. [Google Scholar] [CrossRef]
- Anderson, D.; Moggridge, H.; Warren, P.; Shucksmith, J. The impacts of ‘run-of-river’ hydropower on the physical and ecological condition of rivers. Water Environ. J. 2015, 29, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Schmutz, S.; Moog, O. Dams: Ecological Impacts and Management. In Riverine Ecosystem Management; Schmutz, S., Sendzimir, J., Eds.; Aquatic Ecology Series; Springer: Cham, Germany, 2018; Volume 8, pp. 111–127. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Huang, Y.; Huang, J. Hydrologic Alteration Associated with Dam Construction in a Medium-Sized Coastal Watershed of Southeast China. Water 2016, 8, 317. [Google Scholar] [CrossRef] [Green Version]
- Kriaučiūnienė, J.; Virbickas, T.; Šarauskienė, D.; Jakimavičius, D.; Kažys, J.; Bukantis, A.; Kesminas, V.; Povilaitis, A.; Dainys, J.; Akstinas, V.; et al. Fish assemblages under climate change in Lithuanian rivers. Sci. Total Environ. 2019, 661, 563–574. [Google Scholar] [CrossRef]
- Česonienė, L.; Dapkienė, M.; Punys, P. Assessment of the impact of small hydropower plants on the ecological status indicators of water bodies: A case study in Lithuania. Water 2021, 13, 433. [Google Scholar] [CrossRef]
- Zuo, Q.; Liang, S. Effects of dams on river flow regime based on IHA/RVA. Proc. IAHS 2015, 368, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, T.; Abbasi, S.A. Small hydro and the environmental implications of its extensive utilization. Renew. Sustain. Energy Rev. 2011, 15, 2134–2143. [Google Scholar] [CrossRef]
- Premalatha, M.; Abbasi, T.; Abbasi, S.A. A critical view on the eco-friendliness of small hydroelectric installations. Sci. Total Environ. 2014, 481, 638–643. [Google Scholar] [CrossRef] [PubMed]
No. | River | HPP | Construction Year | Installed Power, kW | Head *, m | Qinst/Qma ** | Reservoir Surface Area, ha | Reservoir Volume, Mm3 | Water Retention Coefficient *** |
---|---|---|---|---|---|---|---|---|---|
1. | Bartuva | Skuodas | 2000 | 220 | 8 | 0.80 | 85.9 | 2.34 | 42.0 |
2. | Jūra | Balskai | 2005 | 2900 | 13 | 1.83 | 280 | 14.8 | 29.2 |
3. | Lėvuo | Akmeniai | 1999 | 35 | 2.1 | 0.63 | 9.4 | 0.159 | 834 |
4. | Mituva | Girdžiai | 2003 | 200 | 6.6 | 1.53 | 57.5 | 1.09 | 82.9 |
5. | Mūša | Dvariukai | 2002 | 500 | 5 | 1.16 | 136.4 | 3.05 | 86.1 |
6. | Širvinta | Širvintai | 2002 | 180 | 4 | 1.24 | 51.9 | 0.882 | 769 |
7. | Šušvė | Angiriai | 2000 | 1250 | 15.8 | 1.87 | 248.3 | 15.5 | 12.2 |
8. | Šventoji | Kavarskas | 2002 | 1500 | 5.1 | 1.39 | 78.3 | 1.42 | 697 |
9. | Venta | Rudikiai | 2002 | 70 | 2.5 | 0.39 | 7.7 | 0.102 | 3052 |
10. | Venta | Kuodžiai | 2005 | 600 | 4.5 | 0.57 | 1 | 0.484 | 1935 |
11. | Verkne | Aukštadvaris | 2000 | 180 | 15.5 | 1.51 | 293.5 | 19.3 | 1.7 |
No. | River | WGS | Investigation Period | Discharge, m3s−1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre- | Post- | Qavg * | Qavg ** | Qmin * | Qmin ** | Qmax * | Qmax ** | |||
1. | Bartuva | Skuodas | 1981–1999 | 2000–2018 | 8.79 | 6.91 | 0.728 | 0.419 | 83.7 | 55.9 |
2. | Jūra | Tauragė | 1991–2004 | 2005–2018 | 21.3 | 23.2 | 3.64 | 2.27 | 237 | 199 |
3. | Lėvuo | Bernatoniai | 1979–1998 | 1999–2018 | 3.87 | 3.77 | 0.465 | 0.459 | 31.2 | 24.6 |
4. | Mituva | Žindaičiai | 1987–2002 | 2003–2018 | 3.12 | 2.55 | 0.075 | 0.068 | 37.7 | 34.2 |
5. | Mūša | Ustukiai | 1985–2001 | 2002–2018 | 12.1 | 10.1 | 1.19 | 0.796 | 106 | 88.3 |
6. | Širvinta | Liukonys | 1985–2001 | 2002–2018 | 6.56 | 6.46 | 1.27 | 0.959 | 49.5 | 37.5 |
7. | Šušvė | Josvainiai | 1981–1999 | 2000–2018 | 6.13 | 5.87 | 0.387 | 0.318 | 69.3 | 49.9 |
8. | Šventoji | Ukmergė | 1985–2001 | 2002–2018 | 44.8 | 40.9 | 13.8 | 15.0 | 179 | 150 |
9. | Venta | Papilė | 1985–2001 | 2002–2018 | 11.0 | 9.42 | 1.45 | 0.987 | 86.8 | 61.4 |
10. | Venta | Leckava | 1991–2004 | 2005–2018 | 30.3 | 27.8 | 3.64 | 2.86 | 217 | 157 |
11. | Verknė | Verbyliškės | 1981–1999 | 2000–2018 | 5.34 | 5.20 | 1.67 | 1.87 | 31.5 | 23.4 |
IHA Parameter Groups | Hydrologic Parameters | Ecological Role |
---|---|---|
1. Magnitude of monthly water conditions | Mean value for each calendar month | Habitat availability for aquatic organisms Soil moisture availability for plants Availability of water for terrestrial animals Availability of food/cover for furbearing mammals Reliability of water supplies for terrestrial animals Access by predators to nesting sites Influences on water temperature, oxygen levels, photosynthesis in water column |
2. Magnitude and duration of annual extreme water conditions | Annual minima, 1-day mean Annual minima, 3-day means Annual minima, 7-day means Annual minima, 30-day means Annual minima, 90-day means Annual maxima, 1-day mean Annual maxima, 3-day means Annual maxima, 7-day means Annual maxima, 30-day means Annual maxima, 90-day means Base flow index: 7-day minimum flow/mean flow for year | Balance of competitive, ruderal, and stress-tolerant organisms Creation of sites for plant colonization Structuring of aquatic ecosystems by abiotic vs. biotic factors Structuring of river channel morphology and physical habitat conditions Soil moisture stress in plants Dehydration in animals Anaerobic stress in plants Volume of nutrient exchanges between rivers and floodplains Duration of stressful conditions, such as low oxygen and concentrated chemicals, in aquatic environments Distribution of plant communities in lakes, ponds, floodplains Duration of high flows for waste disposal and aeration of spawning beds in channel sediments |
3. Timing of annual extreme water conditions | Julian date of each annual 1-day maximum and 1-day minimum | Compatibility with life cycles of organisms Predictability/avoidability of stress for organisms Access to special habitats during reproduction or to avoid predation Spawning cues for migratory fish Evolution of life history strategies, behavioral mechanisms |
4. Frequency and duration of high and low pulses | Number of low pulses within each water year Mean duration of low pulses (days) Number of high pulses within each water year Mean duration of high pulses (days) | Frequency and magnitude of soil moisture stress for plants Frequency and duration of anaerobic stress for plants Availability of floodplain habitats for aquatic organisms Nutrient and organic matter exchanges between river and floodplain Soil mineral availability Access for water birds to feeding, resting, reproduction sites Influences on bed load transport, channel sediment textures, and duration of substrate disturbance (high pulses) |
5. Rate and frequency of water condition changes | Rise rates: Mean of all positive differences between consecutive daily values Fall rates: Mean of all negative differences between consecutive daily values Number of hydrologic reversals | Drought stress on plants (falling levels) Entrapment of organisms on islands, floodplains (rising levels) Desiccation stress on low-mobility stream edge (varial zone) organisms |
Parameters | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean decrease 1 | −10.6 | −12.9 | −15.6 | −28.4 | −23.2 | −35.2 | −27.2 | −13.2 | −19.7 | −10.9 | −9.14 | −7.24 |
Mean increase 2 | 3.73 | 26.7 | 7.09 | 14.9 | 14.7 | 2.52 | 23.4 | 30.5 | 14.82 | 27.3 | 17.1 | 22.8 |
Mean (IHA) 3 | 8.75 | 17.9 | 14.8 | 27.2 | 22.5 | 32.3 | 24.1 | 27.4 | 16.6 | 19.9 | 14.2 | 15.7 |
Parameters | 1-Day Min | 3-Day Min | 7-Day Min | 30-Day Min | 90-Day Min | 1-Day Max | 3-Day Max | 7-Day Max | 30-Day Max | 90-Day Max | Base Flow Index |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean decrease | −24.5 | −23.3 | −18.8 | −15.7 | −20.0 | −22.6 | −22.3 | −21.2 | −19.0 | −12.9 | −11.5 |
Mean increase | 10.6 | 7.40 | 8.07 | 6.74 | 12.1 | n/a * | n/a | n/a | n/a | n/a | 11.7 |
Mean (IHA) | 22.0 | 19.0 | 15.9 | 13.2 | 15.0 | 22.6 | 22.3 | 21.2 | 19.0 | 12.9 | 11.6 |
Parameters | Group 3 | Group 4 | Group 5 | ||||||
---|---|---|---|---|---|---|---|---|---|
Date of Minimum | Date of Maximum | Low Pulse Count | Low Pulse Duration | High Pulse Count | High Pulse Duration | Rise Rate | Fall Rate | Number of Reversals | |
Mean decrease | −13.9 | −21.2 | −29.7 | −59.7 | −16.00 | −15.6 | −27.3 | −20.4 | 42.5 |
Mean increase | 19.4 | 11.0 | 221.0 | 36.7 | 8.89 | 10.3 | 5.43 | 15.3 | 47.5 |
Mean (IHA) | 16.4 | 18.4 | 163.6 | 55.1 | 13.2 | 13.6 | 25.3 | 19.9 | 44.2 |
Reservoir Volume, Mm3, (X1) | Reservoir Surface Area, ha (X2) | Qinst/Qma (X3) | |
---|---|---|---|
Hydrologic alteration (%) of 7-day max flow (Y) | 0.75 | 0.73 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šarauskienė, D.; Adžgauskas, G.; Kriaučiūnienė, J.; Jakimavičius, D. Analysis of Hydrologic Regime Changes Caused by Small Hydropower Plants in Lowland Rivers. Water 2021, 13, 1961. https://doi.org/10.3390/w13141961
Šarauskienė D, Adžgauskas G, Kriaučiūnienė J, Jakimavičius D. Analysis of Hydrologic Regime Changes Caused by Small Hydropower Plants in Lowland Rivers. Water. 2021; 13(14):1961. https://doi.org/10.3390/w13141961
Chicago/Turabian StyleŠarauskienė, Diana, Gintaras Adžgauskas, Jūratė Kriaučiūnienė, and Darius Jakimavičius. 2021. "Analysis of Hydrologic Regime Changes Caused by Small Hydropower Plants in Lowland Rivers" Water 13, no. 14: 1961. https://doi.org/10.3390/w13141961
APA StyleŠarauskienė, D., Adžgauskas, G., Kriaučiūnienė, J., & Jakimavičius, D. (2021). Analysis of Hydrologic Regime Changes Caused by Small Hydropower Plants in Lowland Rivers. Water, 13(14), 1961. https://doi.org/10.3390/w13141961