Review of Historical Dam-Break Events and Laboratory Tests on Real Topography for the Validation of Numerical Models
Abstract
:1. Introduction
2. Well-Documented Dam-Break Test Cases
3. Dam-Break Test Cases Open to Further Study
(1) N. | (2) Dam Name | (3) Country | (4) Type 1 | (5) Cause 2 | (6) Year | (7) References | Available Information 3 | (23) Sim. Flood 4 | ||||||||||||||
(8) Dam Char. | (9) Reserv. Char. | (10) Reserv. Level | (11) Phot. Docum. | (12) Breach Char. | (13) Dam Mater. | (14) Breach Devel. | (15) DTM | (16) Storm | (17) Peak Flow | (18) Breach Outfl. | (19) Water Marks | (20) Hydrogr. | (21) Flood Timing | (22) Flooded Areas | ||||||||
1 | Apishapa | Col. (USA) | EF | PI | 1923 | [13,123,124,125,126,127] | • | • | • | • | • | • | ||||||||||
2 | Black Hills | S.Dak. (USA) | EF | OT | 1972 | [128,129,130,131] | ◦ | ◦ | • | ◦ | • | • | ◦ | • | ||||||||
3 | Centennial Narrows | Ariz. (USA) | EF | PI | 1997 | [132,133,134,135] | ◦ | ◦ | ◦ | • | • | • | ||||||||||
4 | Edenville + Sanford | Mich. (USA) | EF | ER-OT | 2020 | [136,137,138,139,140,141,142,143] | ◦ | ◦ | ◦ | • | ◦ | • | ◦ | ◦ | ◦ | ◦ | • | 2D | ||||
5 | Fujinuma | Japan | EF | SL-OT | 2011 | [144,145] | • | • | • | ◦ | ◦ | ◦ | ◦ | |||||||||
6 | Hatchtown | Utah (USA) | EF | QP | 1914 | [146,147] | ◦ | • | ◦ | ◦ | ◦ | ◦ | ||||||||||
7 | Ivanovo | Bulgaria | EF | PM | 2012 | [148,149] | ◦ | • | • | ◦ | • | |||||||||||
8 | Ivex | Ohio (USA) | EF | PI | 1994 | [150] | • | • | • | • | • | • | • | • | ||||||||
9 | Lake Lee | Mass. (USA) | EF | ER | 1968 | [151,152] | • | • | • | • | ◦ | • | • | • | ||||||||
10 | Little Deer Creek | Utah (USA) | EF | QP | 1963 | [153,154] | • | • | • | ◦ | • | • | • | ◦ | ◦ | |||||||
11 | Nahal Oz | Israel | EF | QP | 2001 | [155] | • | • | • | • | • | ◦ | • | • * | ||||||||
12 | Niedow | Poland | EF | OT | 2010 | [156,157] | • | • | • | • | • | • | • | • | • | 1D-FD | ||||||
13 | Opuha | New Zealand | EF | PM | 1997 | [158] | • | • | • | • | • | ◦ | ◦ | • | ||||||||
14 | Otto Run | Penn. (USA) | EF | OT | 1977 | [48,73,102,159] | • | • | • | • | • | |||||||||||
15 | Panshet | India | EF | OT | 1961 | [160] | • | • | • | 1D-FD | ||||||||||||
16 | Zhugou | China | EF | OT | 1975 | [161] | • | • | • | • | • | |||||||||||
17 | Banquiao | China | CF | OT | 1975 | [161,162,163,164,165] | • | ◦ | ◦ | ◦ | ◦ | • | • | • | ◦ | |||||||
18 | Belci | Romania | CF | OT | 1991 | [33,166,167,168] | • | ◦ | • | ◦ | ◦ | ◦ | ◦ | • | ◦ | ◦ | ||||||
19 | Big Bay Lake | Mississippi | CF | PI | 2004 | [73,169,170] | • | ◦ | ◦ | ◦ | ◦ | ◦ | • | ◦ | • | 1D-FD | ||||||
20 | Bila Desna | Czech. Rep. | CF | ER | 1916 | [171] | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | |||||||||
21 | Dale Dike | England | CF | ER | 1864 | [172,173,174,175,176] | ◦ | ◦ | ◦ | ◦ | ◦ | |||||||||||
22 | Lake Delhi | Iowa (USA) | CF | OT-ER | 2010 | [177,178,179,180,181] | • | ◦ | • | • | • | ◦ | • | ◦ | ||||||||
23 | Overholser | Okla.(USA) | CO | OT | 1923 | [182] | • | • | • | • | 1D-FD | |||||||||||
24 | Vega de Tera | Spain | CO | QP | 1959 | [183] | • | • | • | • | 1D-FD | |||||||||||
25 | Aznalcollar | Spain | RF | LI | 1998 | [184,185,186,187] | • | • | • | • | • | ◦ | ◦ | ◦ | ◦ | |||||||
26 | Castlewood | Col. (USA) | RF | OT | 1933 | [122,188,189,190,191] | • | • | • | • | • | • | ◦ | • | ◦ | ◦ | ||||||
27 | Gouhou Dam | China | RF | ER | 1993 | [163,192,193,194,195] | • | • | • | ◦ | • | • | • | ◦ | ||||||||
28 | Hell Hole | Cal. (USA) | RF | PM | 1964 | [196] | • | • | • | • | ◦ | ◦ | • | • | • | ◦ * | • | |||||
29 | Brumadinho | Brazil | TA m | LI | 2019 | [197,198,199,200,201,202] | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | • | ◦ | • | 2D-FV | ||||||
30 | El Cobre Old | Chile | TA m | EQ | 1965 | [203,204,205] | • | • | • | |||||||||||||
31 | Fundão | Brazil | TA m | LI | 2015 | [206,207] | ◦ | ◦ | • | ◦ | ◦ | • | ||||||||||
32 | Merriespruit | S. Africa | TA m | SL-OT | 1994 | [208,209,210,211] | • | • | • | • | ◦ | • | ||||||||||
33 | Buffalo Creek | W.Virg. (USA) | CW | ER | 1972 | [212,213,214,215,216] | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | |||||||
34 | Pantano de Puentes | Spain | GR | QP | 1802 | [217,218] | • | • | • | |||||||||||||
35 | Austin | Tex. (USA) | MA | UE | 1900 | [36,219,220] | • | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | |||||||||
36 | Tangiwai | New Zealand | TE | LA | 1953 | [221,222,223] | • | • | • | • | • | |||||||||||
37 | Huohua Lake Natural Dam | China | NA | EQ | 2017 | [118] | • | ◦ | • | • | • | • | • | ◦ * | ◦ | 2D-FD |
4. Dam-Break Test Cases Based on Physical Modelling
(1) N. | (2) Dam Name | (3) Country | (4) Type 1 | (5) Scale | (6) Year 2 | (7) References | Available Information 3 | (22) Sim. Flood 4 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(8) Dam Char. | (9) Reserv. Char. | (10) Reserv. Level | (11) Phot. Docum. | (12) Breach Char. | (13) Breach Develop. | (14) Peak Flow | (15) DTM | (16) Rough. | (17) Waterm./ Gauge | (18) Arrival Times | (19) Hydrogr. | (20) Flooded Areas | (21) Breach Outfl. | ||||||||
1 | Cancano I | Italy | CO | 1:500 | 1943 | [233,234,235] | • | ◦ | • | • | • | • | • | ◦ | • | • | • | • | • | 1D-FV; 2D-FD, FV | |
2 | Malpasset | France | CO | 1:400 | 1964 | [86,87,88,231,232,233] | • | • | • | • | • | • | • | • | • | 2D-FD, FE, FV, LB; 3D | |||||
3 | Toce River * | Italy | - | 1:100 | 1999 | [237,238,239,240,241,242] | • | • | • | • | • | • | • | 2D-FV | |||||||
4 | Ürkmez | Turkey | EF | 1:150 h–1:30 v | 2013 | [243,244] | • | • | • | • | • | • | • | ◦ | ◦ | • | • | • | ◦ | • | 2D-FD |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ICOLD. Dams’ Safety. Available online: https://www.icold-cigb.org/GB/dams/dams_safety.asp (accessed on 24 April 2021).
- Douglas, K.; Spannagle, M.; Fell, R. Analysis of Concrete and Masonry Dam Incidents. Int. J. Hydropower Dams 1999, 6, 108–115. [Google Scholar]
- Foster, M.; Fell, R.; Spannagle, M. The Statistics of Embankment Dam Failures and Accidents. Can. Geotech. J. 2000, 37, 1000–1024. [Google Scholar] [CrossRef]
- ICOLD. Dam Failures—Statistical Analysis; Bulletin 188; ICOLD: Paris, France, 2021. [Google Scholar]
- Perera, D.; Smakhtin, V.; Williams, S.; North, T.; Curry, A. Water Storage Infrastructure: An Emerging Global Risk; UNU-INWEH Report Series, Issue 11; United Nations University Institute for Water, Environment and Health: Hamilton, ON, Canada, 2021; Available online: https://inweh.unu.edu/wp-content/uploads/2021/01/Ageing-Water-Storage-Infrastructure-An-Emerging-Global-Risk_web-version.pdf (accessed on 7 July 2021).
- Bocchiola, D.; Rosso, R. Safety of Italian Dams in the Face of Flood Hazard. Adv. Water Resour. 2014, 71, 23–31. [Google Scholar] [CrossRef]
- ICOLD. Global Climate Change, Dams, Reservoirs and Related Water Resources; Bulletin 169; ICOLD: Paris, France, 2018. [Google Scholar]
- ICOLD. Dam Break Flood Analysis—Review and Recommendations; Bulletin 111; ICOLD: Paris, France, 1998. [Google Scholar]
- ICOLD. Lessons from Dam Incidents; ICOLD: Paris, France, 1973. [Google Scholar]
- Charles, J.A.; Tedd, P.; Warren, A. Lessons from Historical Dam Incidents; Environment Agency: Bristol, UK, 2011. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/290812/scho0811buba-e-e.pdf (accessed on 7 July 2021).
- ICOLD. Dam Failures—Statistical Analysis; Bulletin 99; ICOLD: Paris, France, 1995. [Google Scholar]
- U.S. Department of the Interior, Bureau of Reclamation. RCEM–Dam Failure and Flood Event Case History Compilation; U.S. Department of the Interior, Bureau of Reclamation, 2015. Available online: https://www.usbr.gov/ssle/damsafety/documents/RCEM-CaseHistories2015.pdf (accessed on 7 July 2021).
- Wahl, T.L. Prediction of Embankment Dam Breach Parameters—A Literature Review and Needs Assessment; DSO-98-004, Dam Safety Research Report; U.S. Department of the Interior, Bureau of Reclamation, Dam Safety Office: Denver, CO, USA, 1998.
- Wahl, T.L. Evaluation of Erodibility-Based Embankment Dam Breach Equations; Hydraulic Laboratory Report HL-2014-02; U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center: Denver, CO, USA, 2014.
- Froehlich, D.C. Embankment Dam Breach Parameters and Their Uncertainties. J. Hydraul. Eng. 2008, 134, 1708–1721. [Google Scholar] [CrossRef]
- Rong, G.; Wang, X.; Xu, H.; Xiao, B. Multifactor Regression Analysis for Predicting Embankment Dam Breaching Parameters. J. Hydraul. Eng. 2020, 146, 04019051. [Google Scholar] [CrossRef]
- USCOLD. Lessons from Dam Incidents; American Society of Civil Engineers: New York, NY, USA, 1975. [Google Scholar]
- Adamo, N.; Al-Ansari, N.; Ali, S.H.; Laue, J.; Knutsson, S. Special Issue–Dam Safety Review: General Principles and Procedures-Part 1. J. Earth Sci. Geotech. Eng. 2020, 10, 1–348. [Google Scholar]
- Adamo, N.; Al-Ansari, N.; Ali, S.H.; Laue, J.; Knutsson, S. Special Issue-Dam Safety Review: General Principles and Procedures-Part 2. J. Earth Sci. Geotech. Eng. 2021, 11, 1–438. [Google Scholar]
- FEMA. Summary for Policymakers. In Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- FEMA. Federal Guidelines for Inundation Mapping of Flood Risks Associated with Dam Incidents and Failures; FEMA P-946; 2013. Available online: https://www.fema.gov/sites/default/files/2020-08/fema_dam-safety_inundation-mapping-flood-risks.pdf (accessed on 7 July 2021).
- European Council Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks. 2007, pp. 27–34. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32007L0060 (accessed on 7 July 2021).
- ICOLD European Club. Working Group on Dam Legislation. Dam Legislation. Final Report. 2018. Available online: https://britishdams.org/assets/documents/News%20Item%20Docs/2018/ICOLD%20EurClub%20-Dam%20Legislation%20Report%20-%20Dec%202017.pdf (accessed on 7 July 2021).
- Almeida, A.B.; Franco, A.B. Modeling of Dam-Break Flow. In Computer Modeling of Free-Surface and Pressurized Flows; NATO ASI Series (Series E: Applied, Sciences); Chaudhry, M.H., Mays, L.W., Eds.; Springer: Dordrecht, The Netherlands, 1994; Volume 274, pp. 343–373. [Google Scholar]
- Toro, E.F.; Garcia-Navarro, P. Godunov-type Methods for Free-Surface Shallow Flows: A Review. J. Hydraul. Res. 2007, 45, 736–751. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood Inundation Modelling: A Review of Methods, Recent Advances and Uncertainty Analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Stoker, J.J. Water Waves; John Wiley & Sons: Hoboken, NJ, USA, 1992. [Google Scholar]
- Morris, M. CADAM: Concerted Action on Dambreak Modeling-Final Report; Rep. No. SR 571; HR Wallingford: Wallingford, UK, 2000; Available online: http://www.ib-nujic.de/Dammbruch/CADAM_final.pdf (accessed on 7 July 2021).
- Morris, M.; Hassan, M. IMPACT: Investigation of Extreme Flood Processes and Uncertainty—A European Research Project. In Proceedings of the Defra Flood and Coastal Management Conference, York, UK, 5–7 July 2005; Available online: https://eprints.hrwallingford.com/555/1/HRPP346_IMPACT_Investigation_of_extreme_flood_processes_and_uncertainty_-_a_European_research_project.pdf (accessed on 7 July 2021).
- Zech, Y.; Soares-Frazão, S. Dam-Break Flow Experiments and Real-case Data. A Database from the European IMPACT Research. J. Hydraul. Res. 2007, 45, 5–7. [Google Scholar] [CrossRef]
- Saxena, K.R.; Sharma, V.M. Dams: Incidents and Accidents; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Singh, V.P.; Scarlatos, P.D. Analysis of Gradual Earth–Dam Failure. J. Hydraul. Eng. 1988, 114, 21–42. [Google Scholar] [CrossRef]
- Singh, V. Dam Breach Modeling Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1996; Volume 17. [Google Scholar]
- De Wrachien, D.; Mambretti, S. Dam-Break Problems, Solutions and Case Studies; de Wrachien, D., Mambretti, S., Eds.; WIT Press: Boston, MA, USA, 2009. [Google Scholar]
- Zhang, L.M.; Xu, Y.; Jia, J.S. Analysis of Earth Dam Failures: A Database Approach. Georisk 2009, 3, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, C.L. Failure of Concrete Dams. In Proceedings of the 6th Association of State Dam Safety Officials Annual Conference, Albuquerque, NM, USA, 1–5 October 1989; pp. 428–445. Available online: https://damfailures.org/wp-content/uploads/2015/07/Failure-of-Concrete-Dams.pdf (accessed on 7 July 2021).
- You, L.; Li, C.; Min, X.; Xiaolei, T. Review of Dam-Break Research of Earth-rock Dam Combining with Dam Safety Management. Procedia Eng. 2012, 28, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Peng, M.; Chang, D.; Xu, Y. Dam Failure Mechanisms and Risk Assessment; John Wiley & Sons Singapore Pte. Ltd.: Singapore, 2016. [Google Scholar]
- Chanson, H. Environmental Hydraulics for Open Channel Flows; Elsevier Butterworth-Heinemann: Oxford, UK, 2004. [Google Scholar]
- ICOLD. World Declaration on Dam Safety. 2019. Available online: https://www.ussdams.org/wp-content/uploads/2020/01/World-Declaration-on-Dam-Safety_final.pdf (accessed on 7 July 2021).
- Hood, K.; Perez, R.A.; Cieplinski, H.E.; Hromadka, T.V.; Moglen, G.E.; McInvale, H.D. Development of an Earthen Dam Break Database. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liu, W.; Zhang, J.; Chen, Y.; Wu, C.; Peng, Y.; Wu, Z.; Liu, X.; Yang, S. Enhancement of Semi-Theoretical Models for Predicting Peak Discharges in Breached Embankment Dams. Environ. Fluid Mech. 2020, 20, 885–904. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.; Wu, C.; Peng, Y.; Song, J.; Liu, W.; Liu, X. Empirical and Semi-Analytical Models for Predicting Peak Outflows Caused by Embankment Dam Failures. J. Hydrol. 2018, 562, 692–702. [Google Scholar] [CrossRef]
- Ashraf, M.; Soliman, A.H.; El-Ghorab, E.; El Zawahry, A. Assessment of Embankment Dams Breaching using Large Scale Physical Modeling and Statistical Methods. Water Sci. 2018, 3, 362–379. [Google Scholar] [CrossRef] [Green Version]
- Sattar, A.M.A. Gene Expression Models for Prediction of Dam Breach Parameters. J. Hydroinform. 2014, 16, 550–571. [Google Scholar] [CrossRef]
- Zhong, Q.; Chen, S.; Fu, Z.; Shan, Y. New Empirical Model for Breaching of Earth-Rock Dams. Nat. Hazards Rev. 2020, 21, 06020002. [Google Scholar] [CrossRef]
- Gallegos, H.A.; Schubert, J.E.; Sanders, B.F. Two-dimensional, High-resolution Modeling of Urban Dam-Break Flooding: A Case Study of Baldwin Hills, California. Adv. Water Resour. 2009, 32, 1323–1335. [Google Scholar] [CrossRef]
- MacDonald, T.C.; Langridge–Monopolis, J. Breaching Characteristics of Dam Failures. J. Hydraul. Eng. 1984, 110, 567–586. [Google Scholar] [CrossRef]
- Leonards, G.A. Baldwin Hills Reservoir Failure. In Proceedings of the International Conference on Case Histories in Geotechnical Engineering, Arlington, VA, USA, 6–11 May 1984; Missouri University of Science and Technology, Ed.; University of Missouri-Rolla: St. Rolla, MO, USA, 1984; pp. 1581–1588. [Google Scholar]
- Scott, R.F. Baldwin Hills Reservoir Failure in Review. Eng. Geol. 1987, 24, 103–125. [Google Scholar] [CrossRef]
- Costa, J.E. Floods from Dam Failures; U.S. Department of the Interior Geological Survey; Open-File Report 85-560; U.S. Department of the Interior: Washington, DC, USA, 1985.
- Hamilton, D.H.; Meehan, R.L. Ground Rupture in the Baldwin Hills. Science 1971, 172, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Latrubesse, E.M.; Park, E.; Sieh, K.; Dang, T.; Lin, Y.N.; Yun, S.-H. Dam Failure and a Catastrophic Flood in the Mekong Basin (Bolaven Plateau), Southern Laos, 2018. Geomorphology 2020, 362, 107221. [Google Scholar] [CrossRef]
- Chikamori, H. Rainfall-Runoff Analysis of Flooding Caused by Typhoon RUSA in 2002 in the Gangneung Namdae River Basin, Korea. J. Nat. Disaster Sci. 2004, 26, 95–100. [Google Scholar]
- Kim, B.; Sanders, B.F. Dam-Break Flood Model Uncertainty Assessment: Case Study of Extreme Flooding with Multiple Dam Failures in Gangneung, South Korea. J. Hydraul. Eng. 2016, 142, 05016002. [Google Scholar] [CrossRef]
- Crisp, R.L.; Fox, W.E.; Robison, R.C.; Sauer, V.B.; Geological Survey Federal Investigative Board. The 1977 Toccoa Flood, Report of Failure of Kelly Barnes Dam Flood and Findings; USGS: Washington, DC, USA, 1977.
- Sowers, G.F. Reconnaissance Report on the Failure of Kelly Barnes Lake Dam, Toccoa Falls, Georgia; Committee on Natural Disaster, Commission on Sociotechnical Systems, National Research Council; National Academies Press: Washington, DC, USA, 1978. [Google Scholar]
- Land, L.F. Mathematical Simulations of the Toccoa Falls, Georgia, Dam-Break Flood. J. Am. Water Resour. Assoc. 1980, 16, 1041–1048. [Google Scholar] [CrossRef]
- Reed, S.; Halgren, J. Validation of a New GIS Tool to Rapidly Develop Simplified Dam Break Models. In Proceedings of the Association of State Dam Safety Officials Annual Conference 2011, Washington, DC, USA, 25–29 September 2011; Volume 2, pp. 1860–1877. [Google Scholar]
- Capart, H.; Spinewine, B.; Young, D.L.; Zech, Y.; Brooks, G.R.; Leclerc, M.; Secretan, Y. The 1996 Lake Ha! Ha! Breakout Flood, Québec: Test Data for Geomorphic Flood Routing Methods. J. Hydraul. Res. 2007, 45, 97–109. [Google Scholar] [CrossRef]
- Brooks, G.R.; Lawrence, D.E. The Drainage of the Lake Ha! Ha! Reservoir and Downstream Geomorphic Impacts along Ha! Ha! River, Saguenay Area, Quebec, Canada. Geomorphology 1999, 28, 141–167. [Google Scholar] [CrossRef]
- Lin, C.A. A Coupled Atmospheric-Hydrological Modeling Study of the 1996 Ha! Ha! River Basin Flash Flood in Québec, Canada. Geophys. Res. Lett. 2002, 29, 1026. [Google Scholar] [CrossRef]
- Lapointe, M.F.; Secretan, Y.; Driscoll, S.N.; Bergeron, N.; Leclerc, M. Response of the Ha! Ha! River to the Flood of July 1996 in the Saguenay Region of Quebec: Large-scale Avulsion in a Glaciated Valley. Water Resour. Res. 1998, 34, 2383–2392. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.M.L.; Leal, J.G.B.; Cardoso, A.H. Mathematical Modeling of the Morphodynamic Aspects of the 1996 Flood in the Ha! HA! River. In Proceedings of the 31st IAHR World Congress 2005, Seoul, Korea, 11–16 September 2005; pp. 3434–3445. [Google Scholar]
- Tremblay, M.; Guillaud, C. The 1996 Saguenay Flood Event and its Impacts. Nat. Hazards 2019, 98, 79–89. [Google Scholar] [CrossRef]
- AlQasimi, E.; Mahdi, T.-F. Flooding of the Saguenay Region in 1996: Part 1—Modeling River Ha! Ha! Flooding. Nat. Hazards 2019, 96, 1–15. [Google Scholar] [CrossRef]
- AlQasimi, E.; Pelletier, P.; Mahdi, T.-F. Flooding of the Saguenay Region in 1996. Part 2: Aux Sables River Flood Mitigation and Environmental Impact Assessment. Nat. Hazards 2019, 96, 17–32. [Google Scholar] [CrossRef]
- Yu, W.; Lin, C.A.; Benoit, R. High Resolution Simulation of the Severe Precipitation Event over the Saguenay, Quebec Region in July 1996. Geophys. Res. Lett. 1997, 24, 1951–1954. [Google Scholar] [CrossRef] [Green Version]
- Jarrett, R.D.; Costa, J.E. Hydrology, Geomorphology, and Dam-Break Modeling of the 15 July 1982 Lawn Lake Dam and Cascade Lake Dam failures, Larimer County, Colorado (USA); U.S. Geological Survey Professional Paper 1369; Department of the Interior, U.S. Geological Survey: Washington, DC, USA, 1986.
- Paquier, A. New Methods for Modelling Dam-Break Wave. In Proceedings of the Specialty Conference on Modelling of Flood Propagation Over Initially Dry Areas, Milan, Italy, 29 June–1 July 1994; pp. 229–240. [Google Scholar]
- Paquier, A.; Robin, O. CASTOR: Simplified Dam-Break Wave Model. J. Hydraul. Eng. 1997, 123, 724–727. [Google Scholar] [CrossRef]
- Baker, M.E.; McCormick, B. 30th Anniversary of the Lawn Lake Dam Failure: A Look Back at the State and Federal Response. In Proceedings of the Association of State Dam Safety Officials Annual Conference, Denver, CO, USA, 16–20 September 2012; Volume 2, pp. 1495–1525. Available online: https://damfailures.org/wp-content/uploads/2017/11/Baker_30thAnniver.pdf (accessed on 7 July 2021).
- Pierce, M.W.; Thornton, C.I.; Abt, S.R. Predicting Peak Outflow from Breached Embankment Dams. J. Hydrol. Eng. 2010, 15, 338–349. [Google Scholar] [CrossRef] [Green Version]
- Trieste, D.J. Evaluation of Supercritical/Subcritical Flows in High–Gradient Channel. J. Hydraul. Eng. 1992, 118, 1107–1118. [Google Scholar] [CrossRef]
- Singh, A.K.; Kothyari, U.C.; Ranga Raju, K.G. Rapidly Varying Transient Flows in Alluvial Rivers. J. Hydraul. Res. 2004, 42, 473–486. [Google Scholar] [CrossRef]
- Muhunthan, B.; Pillai, S. Teton dam, USA: Uncovering the Crucial Aspect of its Failure. Proc. Inst. Civ. Eng. Civ. Eng. 2008, 161, 35–40. [Google Scholar] [CrossRef]
- Solava, S.; Delatte, N. Lessons from the Failure of the Teton Dam. In Proceedings of the 3rd Forensic Engineering Congress, San Diego, CA, USA, 19–21 October 2003; pp. 178–189. [Google Scholar]
- Chen, T.-Y.K.; Capart, H. Kinematic Wave Solutions for Dam-Break Floods in Non-Uniform Valleys. J. Hydrol. 2020, 582, 124381. [Google Scholar] [CrossRef] [Green Version]
- Lai, W.; Khan, A.A. Discontinuous Galerkin Method for 1D Shallow Water Flows in Natural Rivers. Eng. Appl. Comput. Fluid Mech. 2012, 6, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Land, L.F. Evaluation of Selected Dam-Break Flood-Wave Models by Using Field Data; Water-Resources Investigations 80-44; Department of the Interior, U.S. Geological Survey: Washington, DC, USA, 1980.
- Balloffet, A.; Scheffler, M.L. Numerical analysis of the Teton Dam failure flood. J. Hydraul. Res. 1982, 20, 317–328. [Google Scholar] [CrossRef]
- Azeez, O.; Elfeki, A.; Kamis, A.S.; Chaabani, A. Dam Break Analysis and Flood Disaster Simulation in Arid Urban Environment: The Um Al-Khair Dam Case Study, Jeddah, Saudi Arabia. Nat. Hazards 2020, 100, 995–1011. [Google Scholar] [CrossRef]
- Irvem, A.; Ozbuldu, M. Evaluation of Flood Simulation for Zeyzoun Dam-Break in Syria using HEC-RAS Model. Fresenius Environ. Bull. 2020, 29, 1250–1255. [Google Scholar]
- Saleh, H.; Allaert, G. Mitigating Urban Flood Disasters in Syria: A Case Study of the Massive Zeyzoun Dam Collapse. In Proceedings of the World Water Week 2009, Stockholm, Sweden, 16–22 August 2009; Ghent University, Stockholm International Water Institute: Stockholm, Sweden, 2009; pp. 192–193. [Google Scholar]
- Pilotti, M.; Maranzoni, A.; Tomirotti, M.; Valerio, G. 1923 Gleno Dam Break: Case Study and Numerical Modeling. J. Hydraul. Eng. 2011, 137, 480–492. [Google Scholar] [CrossRef] [Green Version]
- Hervouet, J.-M.; Petitjean, A. Malpasset Dam-Break Revisited with Two-Dimensional Computations. J. Hydraul. Res. 1999, 37, 777–788. [Google Scholar] [CrossRef]
- Goutal, N. The Malpasset Dam Failure. An Overview and Test Case Definition. In Proceedings of the 4th CADAM Meeting, Zaragoza, Spain, 18–19 November 1999. [Google Scholar]
- Valiani, A.; Caleffi, V.; Zanni, A. Case Study: Malpasset Dam—Break Simulation using a Two-Dimensional Finite Volume Method. J. Hydraul. Eng. 2002, 128, 460–472. [Google Scholar] [CrossRef]
- Bruschin, J.; Bauer, S.; Delley, P.; Trucco, G. The Overtopping of the Palagnedra Dam. Int. Water Power Dam Constr. 1982, 34, 13–19. [Google Scholar]
- Petaccia, G.; Natale, L. 1935 Sella Zerbino Dam-Break Case Revisited: A New Hydrologic and Hydraulic Analysis. J. Hydraul. Eng. 2020, 146, 05020005. [Google Scholar] [CrossRef]
- Waltham, T. St Francis: The World’s Worst Dam Site. Geol. Today 2018, 34, 100–108. [Google Scholar] [CrossRef]
- Begnudelli, L.; Sanders, B.F. Simulation of the St. Francis Dam-Break Flood. J. Eng. Mech. 2007, 133, 1200–1212. [Google Scholar] [CrossRef]
- Witcher, T.R. From Fame to Failure: The St. Francis Dam (Part 2). Civ. Eng. Mag. Arch. 2019, 89, 42–45. [Google Scholar]
- Rogers, J.D.; Watkins, C.M.; Chung, J.W. The 2005 Upper Taum Sauk Dam failure: A case history. Environ. Eng. Geosci. 2010, 16, 257–289. [Google Scholar] [CrossRef] [Green Version]
- Luna, R.; Wronkiewicz, D.; Rydlund, P.; Krizanich, G.; Shaver, D. Damage Evaluation of the Taum Sauk Reservoir Failure Using LiDAR. In Proceedings of the Geo-Denver 2007, Denver, CO, USA, 18–21 February 2007. [Google Scholar]
- Watkins, C.M.; David Rogers, J. Overview of the Taum Sauk Pumped Storage Power Plant Upper Reservoir Failure, Reynolds County, MO. In Proceedings of the Association of State Dam Safety Officials Annual Conference 2010, Seattle, WA, USA, 19–23 September 2010; Volume 2, pp. 1859–1879. [Google Scholar]
- Gehring, Q.; Luna, R. Evaluation of the Taum Sauk Upper Reservoir Failure. In Proceedings of the 6th International Conference on Case Histories in Geotechnical Engineering, Arlington, VA, USA, 11–16 August 2008; Missouri University of Science and Technology: St. Rolla, MO, USA, 2008. [Google Scholar]
- Rydlund, P.H. Peak Discharge, Flood Profile, Flood Inundation, and Debris Movement Accompanying the Failure of the Upper Reservoir at the Taum Sauk Pump Storage Facility near Lesterville, Missouri; Scientific Investigations Report 2006-5284; U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA, 2006. Available online: https://pubs.usgs.gov/sir/2006/5284/pdf/SIR06-5284_508.pdf (accessed on 7 July 2021).
- Alcrudo, F.; Mulet, J. Description of the Tous Dam Break Case Study (Spain). J. Hydraul. Res. 2007, 45, 45–57. [Google Scholar] [CrossRef]
- Serra-Llobet, A.; Tàbara, J.D.; Sauri, D. The Tous Dam Disaster of 1982 and the Origins of Integrated Flood Risk Management in Spain. Nat. Hazards 2013, 65, 1981–1998. [Google Scholar] [CrossRef]
- Bellos, V.; Tsakiris, G. 2D Flood Modelling: The Case of Tous Dam Break. In Proceedings of the 36th IAHR World Congress, The Hague, The Netherlands, 28 June–3 July 2015. [Google Scholar]
- Coleman, N.M.; Kaktins, U.; Wojno, S. Dam-Breach Hydrology of the Johnstown Flood of 1889—Challenging the Findings of the 1891 Investigation Report. Heliyon 2016, 2, e00120. [Google Scholar] [CrossRef] [Green Version]
- Kaktins, U.; Todd, C.D.; Wojno, S.; Coleman, N. Revisiting the Timing and Events Leading to and Causing the Johnstown Flood of 1889. Pa. Hist. 2013, 80, 335–363. [Google Scholar] [CrossRef]
- Ward, S.N. The 1889 Johnstown, Pennsylvania Flood: A Physics-Based Simulation. In The Tsunami Threat—Research and Technology; IntechOpen: London, UK, 2011; Available online: https://www.intechopen.com/books/the-tsunami-threat-research-and-technology/the-1889-johnstown-pennsylvania-flood-a-physics-based-simulation (accessed on 7 July 2021).
- Brua, S.A. Floods of 19–20 July 1977 in the Johnstown Area, Western Pennsylvania; Open-File Report 78-963; U.S. Department of the Interior, U.S. Geological Survey: Harrisburg, PA, USA, 1978. Available online: https://pubs.er.usgs.gov/publication/ofr78963 (accessed on 7 July 2021).
- United Nations, Department of Humanitarian Affairs. Landslide La Josefina on the Paute River, Cuenca, Ecuador: Report on Disaster Management; Open-File Report 78-963; Department of Humanitarian Affairs: Geneva, Switzerland, 1993; Available online: https://digitallibrary.un.org/record/229691?ln=en (accessed on 7 July 2021).
- Cadier, E.; Zevallos, O.; Basabe, P. Le Glissement de Terrain et les Inondations Catastrophiques de La Josefina en Équateur. Bull. Inst. Fr. Études Andines 1996, 25, 421–441. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers14-12/010011840.pdf (accessed on 7 July 2021).
- Luino, F.; De Graff, J.V. The Stava Mudflow of 19 July 1985 (Northern Italy): A Disaster that Effective Regulation Hight Have Prevented. Nat. Hazards Earth Syst. Sci. 2012, 12, 1029–1044. [Google Scholar] [CrossRef] [Green Version]
- Pirulli, M.; Barbero, M.; Marchelli, M.; Scavia, C. The Failure of the Stava Valley Tailings Dams (Northern Italy): Numerical Analysis of the Flow Dynamics and Rheological Properties. Geoenviron. Disasters 2017, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Schippa, L.; Pavan, S. Numerical Modelling of Catastrophic Events Produced by Mud or Debris Flows. Int. J. Saf. Secur. Eng. 2011, 1, 403–422. [Google Scholar] [CrossRef]
- Chandler, R.J.; Tosatti, G. The Stava Tailings Dams Failure, Italy, July 1985. Proc. Inst. Civ. Eng. Geotech. Eng. 1995, 113, 67–79. [Google Scholar] [CrossRef]
- Musa, Z.N.; Popescu, I.; Mynett, A. A Review of Applications of Satellite SAR, Optical, Altimetry and DEM Data for Surface Water Modelling, Mapping and Parameter Estimation. Hydrol. Earth Syst. Sci. 2015, 19, 3755–3769. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Di Baldassarre, G.; Solomatine, D.P.; Schumann, G.J.P. A Review of Low-Cost Space-Borne Data for Flood Modelling: Topography, Flood Extent and Water Level. Hydrol. Process. 2015, 29, 3368–3387. [Google Scholar] [CrossRef]
- Japan Aerospace Exploration Agency, E.O.R.C. ALOS Global Digital Surface Model “ALOS World 3D-30m (AW3D30)”—Product Description. Available online: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/ (accessed on 7 July 2021).
- McClean, F.; Dawson, R.; Kilsby, C. Implications of Using Global Digital Elevation Models for Flood Risk Analysis in Cities. Water Resour. Res. 2020, 56, e2020WR028241. [Google Scholar] [CrossRef]
- Azizian, A.; Brocca, L. Determining the Best Remotely Sensed DEM for Flood Inundation Mapping in Data Sparse Regions. Int. J. Remote Sens. 2020, 41, 1884–1906. [Google Scholar] [CrossRef]
- CORINE Land Cover—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 7 July 2021).
- Wang, D.; Zhou, Y.; Pei, X.; Ouyang, C.; Du, J.; Scaringi, G. Dam-Break Dynamics at Huohua Lake Following the 2017 Mw 6.5 Jiuzhaigou Earthquake in Sichuan, China. Eng. Geol. 2021, 289, 106145. [Google Scholar] [CrossRef]
- Petley, D. Edenville Dam failure: The Astonishing Video of the Collapse Sequence; The Landslide Blog, AGU Blogosphere. Available online: https://blogs.agu.org/landslideblog/2020/05/21/edenville-dam-failure-2/ (accessed on 7 July 2021).
- Wilkinson, M. Before and after Satellite Photos Show Damage Wrought by Mid-Michigan Floods. Bridge Michigan Website. Available online: https://www.bridgemi.com/michigan-environment-watch/and-after-satellite-photos-show-damage-wrought-mid-michigan-floods (accessed on 7 July 2021).
- US National Weather Service Glasgow Montana. April 1952 Frenchman Dam Failure. Available online: https://www.facebook.com/media/set/?set=a.1001592366586578.1073741845.108063722606118&type=3 (accessed on 7 July 2021).
- Froehlich, D.C. Peak Outflow from Breached Embankment Dam. J. Water Resour. Plan. Manag. 1995, 121, 90–97. [Google Scholar] [CrossRef]
- Hakimzadeh, H.; Nourani, V.; Amini, A.B. Genetic Programming Simulation of Dam Breach Hydrograph and Peak Outflow Discharge. J. Hydrol. Eng. 2014, 19, 757–768. [Google Scholar] [CrossRef]
- Wu, W. Simplified Physically Based Model of Earthen Embankment Breaching. J. Hydraul. Eng. 2013, 139, 837–851. [Google Scholar] [CrossRef]
- Rozov, A.L. Modeling of Washout of Dams. J. Hydraul. Res. 2003, 41, 565–577. [Google Scholar] [CrossRef]
- Zhong, Q.; Wu, W.; Chen, S.; Wang, M. Comparison of Simplified Physically Based Dam Breach Models. Nat. Hazards 2016, 84, 1385–1418. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.M. Breaching Parameters for Earth and Rockfill Dams. J. Geotech. Geoenviron. Eng. 2009, 135, 1957–1970. [Google Scholar] [CrossRef]
- Schwarz, F.K.; Huges, L.A.; Marshall Hansen, E. The Black Hills—Rapid City Flood of June 9–10, 1972: A Description of the Storm and Flood; Geological Survey Professional Paper 877; U.S. Geological Survey and National Oceanic and Atmospheric Administration: Washington, DC, USA, 1975. Available online: https://pubs.usgs.gov/pp/0877/report.pdf (accessed on 7 July 2021).
- Graham, W.J.; Major, U.S. Dam Failures: Their Cause, Resultant Losses, and Impact on Dam Safety Programs and Engineering Practice. In Proceedings of the Great Rivers History Symposium at World Environmental and Water Resources Congress 2009, Kansas City, MO, USA, 17–21 May 2009; American Society of Civil Engineers: Reston, VA, USA, 2009; pp. 52–60. [Google Scholar]
- Carter, J.M.; Williamson, J.E.; Teller, R.W. The 1972 Black Hills-Rapid City Flood Revisited; USGS Fact Sheet FS-037–02; U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA, 2002. Available online: https://pubs.usgs.gov/fs/fs-037-02/pdf/fs-037.pdf (accessed on 7 July 2021).
- Larimer, O.J. Flood of June 9–10, 1972, at Rapid City, South Dakota; Hydrologic Investigations Atlas HA-511; U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA, 1973. Available online: https://pubs.usgs.gov/ha/511/plate-1.pdf (accessed on 7 July 2021).
- Lukman, S.; Otun, J.A.; Adie, D.B.; Ismail, A.; Oke, I.A. A Brief Assessment of a Dam and Its Failure Prevention. J. Fail. Anal. Prev. 2011, 11, 97–109. [Google Scholar] [CrossRef]
- Waters, S.D. Storm Report—Tropical Storm Nora—September 1997. Flood Control District of Maricopa County. Available online: http://alert.fcd.maricopa.gov/alert/nora/nora_rpt.html (accessed on 7 July 2021).
- Newhouse, S. Averted Piping Failure—Earth Dam on Permeable Foundation. In Proceedings of the 6th International Conference on Case Histories in Geotechnical Engineering, Arlington, VA, USA, 11–16 August 2008; Missouri University of Science and Technology: St. Rolla, MO, USA, 2008. [Google Scholar]
- Benoist, J.M.; Cox, G.D. Failure of Centennial Narrows Dam. In Proceedings of the Association of State Dam Safety Officials Annual Conference, Las Vegas, NV, USA, 11–14 October 1998. [Google Scholar]
- Ayres Associates. Probable Maximum Flood Determination—Tittabawasse River Hydroelectric Projects; Ayres: Eau Claire, WI, USA, 2020; Available online: https://www.four-lakes-taskforce-mi.com/uploads/1/2/3/1/123199575/ttbw_pmf_final_report-may2020.pdf (accessed on 7 July 2021).
- Petley, D. Edenville Dam Breach: Interpreting the Failure; The Landslide Blog, AGU Blogosphere. Available online: https://blogs.agu.org/landslideblog/2020/05/22/edenville-dam-breach/ (accessed on 7 July 2021).
- Petley, D. Edenville Dam: A Major Dam Collapse in Michigan; The Landslide Blog, AGU Blogosphere. Available online: https://blogs.agu.org/landslideblog/2020/05/20/edenville-dam-1/ (accessed on 7 July 2021).
- Yuan, Y.; Bazzett, D.; Padnani, R.; Wang, R. Unlocking Data from the Online Footage of the Edenville Dam Failure. Submitted to Geo-Extreme 2021. Available online: https://www.researchgate.net/publication/342639092_Unlocking_data_from_the_online_footage_of_the_Edenville_Dam_Failure (accessed on 7 July 2021).
- NASA Science. Michigan Floods and Dam Failures May 2020. NASA Applied Science. Available online: https://appliedsciences.nasa.gov/what-we-do/disasters/disasters-activations/michigan-floods-and-dam-failures-may-2020 (accessed on 7 July 2021).
- USGS, Earth Resources Observation and Science Center. Dam Breaks in Michigan. Available online: https://www.usgs.gov/centers/eros/dam-breaks-michigan?utm_source=twitter&utm_medium=social&utm_term=22f79331-0ea7-4adb-bbc3-7596b1432776&utm_content=&utm_campaign=usgs_eros&qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 7 July 2021).
- USGS, National Water Information System. Current Conditions for USGS 04156000 Tittabawassee River at Midland, MI. Available online: https://nwis.waterdata.usgs.gov/usa/nwis/uv/?cb_00060=on&cb_00065=on&cb_70969=on&cb_70969=on&format=gif_stats&site_no=04156000&period=&begin_date=2020-05-14&end_date=2020-05-21 (accessed on 7 July 2021).
- Hergott, M. Modeling Flooding from the Dam Failures in Michigan. AIR Worldwide. Available online: https://www.air-worldwide.com/blog/posts/2020/6/modeling-flooding-from-the-dam-failures-in-michigan/ (accessed on 7 July 2021).
- Harder, L.F.; Kelson, K.I.; Kishida, T.; Kayen, R. Preliminary Observations of the Fujinuma Dam Failure Following the March 11, 2011 Tohoku Offshore Earthquake, Japan; Geotechnical Extreme Events Reconnaissance (GEER); Preliminary Association Report No. GEER-25e; Folsom, CA, USA, 2011; Available online: http://learningfromearthquakes.org/2011-03-11-tohoku-japan/images/2011_03_11_tohoku_japan/pdfs/QR5_Preliminary-Observations-of-Fujinuma-Dam-Failure_06-06-11.pdf (accessed on 7 July 2021).
- Pradel, D.; Wartman, J.; Tiwari, B. Failure of the Fujinuma Dams during the 2011 Tohoku Earthquake. In Proceedings of the Geo-Congress 2013: Stability and Performance of Slopes and Embankments III, San Diego, CA, USA, 3–7 March 2013; pp. 1559–1573. [Google Scholar]
- Clay, R.A. 100th Anniversary of Hatchtown Dam. In Proceedings of the Association of State Dam Safety Officials Annual Conference, San Diego, CA, USA, 21–25 September 2014. [Google Scholar]
- Timmins, W.M. The Failure of the Hatchtown Dam, 1914. Utah Hist. Q. 1968, 36, 263–273. [Google Scholar]
- German Aerospace Center. Bulgaria: Biser Flood as of February 10, 2012—Disaster Extent Map. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/map_1736.pdf (accessed on 7 July 2021).
- Bocheva, L.; Pophristov, V. Seasonal Analysis of Large-Scale Heavy Precipitation Events in Bulgaria. AIP Conf. Proc. 2019, 2075, 200017. [Google Scholar]
- Evans, J.E.; Mackey, S.D.; Gottgens, J.F.; Gill, W.M. Lessons from a Dam Failure. Ohio J. Sci. 2000, 100, 121–131. [Google Scholar]
- Environmental Business Council of New England. Dam Management Webinar Series: Liability & Insurance Considerations for Dam Owners and Engineers—Part 1: Historical Dam Failures in New England. 2020. Available online: https://ebcne.org/wp-content/uploads/2020/10/Presentations-Dam-Management-Webinar-Series-Part-One.pdf (accessed on 7 July 2021).
- Wooten, L. The Grande Old Dam of Foster’s Pond Turns 162: An Engineer’s Take. GEI Consultants, 2020. Available online: https://www.fosterspond.org/Lee_Wooten_presentation_%202020_Annual_Meeting.pdf (accessed on 7 July 2021).
- Lindon, M.C. Forensics of a Dam Failure Fatality; Water and Whatever Blog. Available online: http://waterandwhatever.blogspot.com/2013/05/forensics-of-fatality.html (accessed on 7 July 2021).
- Collins, W.E. Report on the Cause of Failure of Little Deer Creek Dam, Provo River Project, Utah; U.S. Department of the Interior, Bureau of Reclamation: Washington, DC, USA, 1964.
- Bergman, N.; Sholker, O.; Roskin, J.; Greenbaum, N. The Nahal Oz Reservoir Dam-Break Flood: Geomorphic Impact on a Small Ephemeral Loess-Channel in the Semi-Arid Negev Desert, Israel. Geomorphology 2014, 210, 83–97. [Google Scholar] [CrossRef]
- Kostecki, S.; Rędowicz, W. The Washout Mechanism of the Niedów Dam and its Impact on the Parameters of the Flood Wave. Procedia Eng. 2014, 91, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Kosierb, R. Process of Wave Transformation in the Riverbed on the Example of a Flood on the Nysa Łużycka River. WasserWirtschaft 2014, 104, 18–23. [Google Scholar] [CrossRef]
- Lees, P.; Thomson, D. Emergency Management, Opuha Dam Collapse, Waitangi Day 1997. In Proceedings of the NZ Society on Large Dams (NZSOLD) 2003 Symposium ‘‘Dams–Consents and Current Practice’’, IPENZ, Wellington, New Zealand, 26 August 2003; pp. 84–89. Available online: https://www.epa.govt.nz/assets/FileAPI/proposal/NSP000028/Hearings-Week-06/dd571f3ec6/29-Colin-Riden-Emergency-management-Opuha-Dam-collapse-Waitangi-Day-1997.pdf (accessed on 7 July 2021).
- Azimi, R.; Vatankhah, A.R.; Kouchakzadeh, S. Predicting Peak Discharge from Breached Embankment Dams. In Proceedings of the 36th IAHR World Congress, The Hague, The Netherlands, 28 June–3 July 2015. [Google Scholar]
- Jansen, R.B. Dams and Public Safety; U.S. Department of the Interior, Bureau of Reclamation: Denver, CO, USA, 1983. Available online: https://www.usbr.gov/tsc/techreferences/mands/mands-pdfs/AZ1130.pdf (accessed on 7 July 2021).
- Xu, Y.; Zhang, L.; Jia, J. Lessons from Catastrophic Dam Failures in August 1975 in Zhumadian, China. In Proceedings of the GeoCongress 2008, New Orleans, LA, USA, 9–12 March 2008; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 162–169. [Google Scholar]
- Froehlich, D.C. Predicting Peak Discharge from Gradually Breached Embankment Dam. J. Hydrol. Eng. 2016, 21, 1–15. [Google Scholar] [CrossRef]
- Zhong, Q.; Chen, S.; Deng, Z. A Simplified Physically-Based Breach Model for a High Concrete-Faced Rockfill Dam: A Case Study. Water Sci. Eng. 2018, 11, 46–52. [Google Scholar] [CrossRef]
- Zhong, Q.; Chen, S.; Deng, Z. A Simplified Physically-Based Model for Core Dam Overtopping Breach. Eng. Fail. Anal. 2018, 90, 141–155. [Google Scholar] [CrossRef]
- Graham, W.J. The Banqiao and Shimantan Dam Failures: Factors Affecting the Warning and Evacuation Success. In Proceedings of the Association of State Dam Safety Officials Annual Conference, Seattle, WA, USA, 19–23 September 2010; Volume 2, pp. 1055–1069. [Google Scholar]
- Diacon, A.; Stematiu, D.; Mircea, N. An Analysis of the Belci Dam Failure. Int. Water Power Dam Constr. 1992, 44, 67–72. [Google Scholar]
- Asman, I.; Bratianu, G. Project for Rehabilitation of Belci Dam after the 1991 Failure. In Proceedings of the 9th ICOLD European Club Symposium 2013, Venice, Italy, 10–12 April 2013; Available online: https://www.academia.edu/21861832/An_analysis_of_the_Belci_Dam_failure (accessed on 7 July 2021).
- Sharma, R.P.; Kumar, A. Case Histories of Earthen Dam Failures. In Proceedings of the 7th International Conference on Case Histories in Geotechnical Engineering, Chicago, IL, USA, 29 April–4 May 2013. [Google Scholar]
- Yochum, S.E.; Goertz, L.A.; Jones, P.H. Case Study of the Big Bay Dam Failure: Accuracy and Comparison of Breach Predictions. J. Hydraul. Eng. 2008, 134, 1285–1293. [Google Scholar] [CrossRef]
- Ferguson, K.A.; Anderson, S.; Sossenkina, E. Reexamination of the 2004 Failure of Big Bay Dam, Mississippi. In Proceedings of the 34th Annual United States Society on Dams Conference, San Francisco, CA, USA, 7–11 April 2014; Available online: https://damfailures.org/wp-content/uploads/2017/12/62Ferguson_BigBayDam.pdf (accessed on 7 July 2021).
- Raška, P.; Emmer, A. The 1916 Catastrophic Flood Following the Bílá Desná Dam Failure: The Role of Historical Data Sources in the Reconstruction of its Geomorphologic and Landscape Effects. Geomorphology 2014, 226, 135–147. [Google Scholar] [CrossRef]
- Sheffield Local Studies Library. Sources for the Study of the Sheffield Flood 1864; Sheffield Libraries Archives and Information; Sheffield City Council: Sheffield, UK, 2015; Available online: https://nanopdf.com/download/flood-study-guide-v1-6-sheffield-city-council_pdf (accessed on 7 July 2021).
- Burns, W. The Sheffield Flood: A Critical Study of Charles Reade’s Fiction. PMLA 1948, 63, 686–695. Available online: www.jstor.org/stable/459435 (accessed on 7 July 2021). [CrossRef]
- Binnie, G.M. The Collapse of the Dale Dyke Dam in Retrospect. Q. J. Eng. Geol. Hydrogeol. 1978, 11, 305–324. [Google Scholar] [CrossRef]
- Binnie, G.M. Erratum to “The collapse of Dale Dyke Dam in Retrospect”, Quarterly Journal of Engineering Geology and Hydrogeology, 11, 305–324 (1978). Q. J. Eng. Geol. Hydrogeol. 1979, 12, 61. [Google Scholar] [CrossRef]
- Binnie, G.M. Postscript to ‘The Collapse of the Dale Dyke dam in Retrospect’ . Q. J. Eng. Geol. Hydrogeol. 1983, 16, 357–358. [Google Scholar] [CrossRef]
- McDaniel, L.; Garton, J.; Fiedler, W.; King, W.; Schwanz, N. Lake Delhi Dam Breach—Two perspectives. In Proceedings of the Association of State Dam Safety Officials Annual Conference, Washington, DC, USA, 25–29 September 2011; p. 21. [Google Scholar]
- Fiedler, B.W.; King, W.; Schwanz, N.; Garton, J.; McDaniel, L. Dam Safety: What Happened to Lake Delhi Dam? Available online: https://www.hydroreview.com/world-regions/dam-safety-what-happened-to-lake-delhi-dam/ (accessed on 7 July 2021).
- Garton, J.; Welty, C. How Dams Fail and Proper Dam Maintenance. Iowa Department of Natural Resources, 2020. Available online: https://www.iowadnr.gov/Portals/idnr/uploads/water/dams/dams_damsfailures_powerpoint.pdf (accessed on 7 July 2021).
- Stanley Consultants. Lake Delhi Dam—Design Alternatives Report–App. B: Hydrologic and Hydraulic Studies Report. 2011. Available online: https://www.scribd.com/document/311562178/2011DelhiStudy-Appendix-B-Hydrologic-and-Hydraulic-Studies-Report (accessed on 7 July 2021).
- Eash, D.A. Floods of July 23–26, 2010, in the Little Maquoketa River and Maquoketa River Basins, Northeast Iowa; Open-File Report 2011-1301; U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA, 2012; p. 45.
- Shivers, M. Dam Breach Study and Inundation Mapping of Eleven Dams Owned by Oklahoma City, Oklahoma. Master’s Thesis, Oklahoma State University, Oklahoma City, OK, USA, 2016. [Google Scholar]
- Calderón, J.L.P. Reconstrucción Histórica, Estructural, Hidrológica, Hidráulica y Socioeconómica de la Catástrofe de Ribadelago (Rotura de la Presa de Vega de Tera). Master’s Thesis, University of Vigo, Vigo, Spain, 2014. [Google Scholar]
- Martí, J.; Riera, F.; Martínez, F. Interpretation of the Failure of the Aznalcóllar (Spain) Tailings Dam. Mine Water Environ. 2021, 40, 189–208. [Google Scholar] [CrossRef]
- Gallart, F.; Benito, G.; Martín-Vide, J.P.; Benito, A.; Prió, J.M.; Regüés, D. Fluvial Geomorphology and Hydrology in the Dispersal and Fate of Pyrite Mud Particles Released by the Aznalcóllar Mine Tailings Spill. Sci. Total Environ. 1999, 242, 13–26. [Google Scholar] [CrossRef]
- Lyu, Z.; Chai, J.; Xu, Z.; Qin, Y.; Cao, J. A Comprehensive Review on Reasons for Tailings Dam Failures Based on Case History. Adv. Civ. Eng. 2019, 2019, 4159306. [Google Scholar] [CrossRef]
- McDermott, R.K.; Sibley, J.M. The Aznalcóllar tailings dam accident—A case study. Miner. Resour. Eng. 2000, 9, 101–118. [Google Scholar] [CrossRef]
- Dollman, D.S. Colorado’s Deadliest Floods; Arcadia Publishing: Charleston, SC, USA, 2017. [Google Scholar]
- Groom, K.M.; Allen, C.D. Denver’s Forgotten Flood: The Geomorphologic Impacts of the 1933 Castlewood Dam Failure. J. West. 2014, 53, 54–65. [Google Scholar]
- Mauney, L. 80th Anniversary of the Castlewood Dam Failure. Decade Dam Failure Series—ASDSO. Available online: https://damfailures.org/wp-content/uploads/2018/09/ASDSO-Castlewood_Mauney.pdf (accessed on 7 July 2021).
- Rudolph, K. August 3, 1933: Castlewood Dam Breaks, Floods Denver. Denver Public Library. Available online: https://history.denverlibrary.org/news/august-3-1933-castlewood-dam-breaks-floods-denver (accessed on 7 July 2021).
- Zhang, L.M.; Chen, Q. Seepage Failure Mechanism of the Gouhou Rockfill Dam during Reservoir Water Infiltration. Soils Found. 2006, 46, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhang, L.M. Three-dimensional Analysis of Water Infiltration into the Gouhou Rockfill Dam Using Saturated-unsaturated Seepage Theory. Can. Geotech. J. 2006, 43, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Lu, Y.; Zhang, S.; Xiang, Y.; Sheng, J.; Fu, J.; Fu, S.; Liu, M. Risk Dynamics Modeling of Reservoir Dam Break for Safety Control in the Emergency Response Process. Water Supply 2021, 21, 1356–1371. [Google Scholar] [CrossRef]
- Zhong, Q.; Chen, S.; Fu, Z. Failure of Concrete-Face Sand-Gravel Dam Due to Water Flow Overtops. J. Perform. Constr. Facil. 2019, 33, 04019007. [Google Scholar] [CrossRef]
- Scott, K.M.; Gravlee, G.C., Jr. Flood Surge on the Rubicon River, California—Hydrology, Hydraulics, and Boulder Transport; Geological Survey Professional Paper 422-M; USGS: Washington, DC, USA, 1968.
- Palmer, J. Anatomy of a Tailings Dam Failure and a Caution for the Future. Engineering 2019, 5, 605–606. [Google Scholar] [CrossRef]
- Pereira, L.F.; Cruz, G.d.B.; Guimarães, R.M.F. Impactos do Rompimento da Barragem de Rejeitos de Brumadinho, Brasil: Uma Análise Baseada nas Mudanças de Cobertura da Terra. J. Environ. Anal. Prog. 2019, 4, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Raman, A.; Liu, F. An Investigation of the Brumadinho Dam Break with HEC RAS Simulation. arXiv 2019, arXiv:1911.05219. [Google Scholar]
- Silva Rotta, L.H.; Alcântara, E.; Park, E.; Negri, R.G.; Lin, Y.N.; Bernardo, N.; Mendes, T.S.G.; Souza Filho, C.R. The 2019 Brumadinho Tailings Dam Collapse: Possible Cause and Impacts of the Worst Human and Environmental Disaster in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102119. [Google Scholar] [CrossRef]
- de Lima, R.E.; de Lima Picanço, J.; da Silva, A.F.; Acordes, F.A. An Anthropogenic Flow Type Gravitational Mass Movement: The Córrego do Feijão Tailings Dam Disaster, Brumadinho, Brazil. Landslides 2020, 17, 2895–2906. [Google Scholar] [CrossRef]
- Lumbroso, D.; Davison, M.; Body, R.; Petkovšek, G. Modelling the Brumadinho Tailings Dam Failure, the Subsequent Loss of Life and How It Could Have Been Reduced. Nat. Hazards Earth Syst. Sci. 2021, 21, 21–37. [Google Scholar] [CrossRef]
- Rico, M.; Benito, G.; Díez-Herrero, A. Floods from Tailings Dam Failures. J. Hazard. Mater. 2008, 154, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Rico, M.; Benito, G.; Salgueiro, A.R.; Díez-Herrero, A.; Pereira, H.G. Reported Tailings Dam Failures. J. Hazard. Mater. 2008, 152, 846–852. [Google Scholar] [CrossRef] [Green Version]
- Quelopana, H. Released Volume Estimation for Dam Break Analysis. In Proceedings of the 6th International Seminar on Tailings Management, Santiago, Chile, 10–12 July 2019. [Google Scholar]
- do Carmo, F.F.; Kamino, L.H.Y.; Junior, R.T.; de Campos, I.C.; do Carmo, F.F.; Silvino, G.; do Castro, K.J.D.S.X.D.; Mauro, M.L.; Rodrigues, N.U.A.; de Souza Miranda, M.P.; et al. Fundão Tailings Dam Failures: The Environment Tragedy of the Largest Technological Disaster of Brazilian Mining in Global Context. Perspect. Ecol. Conserv. 2017, 15, 145–151. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Goulart, F.F.; Ranieri, B.D.; Coelho, M.S.; Dales, K.; Boesche, N.; Bustamante, M.; Carvalho, F.A.; Carvalho, D.C.; Dirzo, R.; et al. Deep into the Mud: Ecological and Socio-economic Impacts of the Dam Breach in Mariana, Brazil. Nat. Conserv. 2016, 14, 35–45. [Google Scholar] [CrossRef]
- Van Niekerk, H.J.; Viljoen, M.J. Causes and Consequences of the Merriespruit and other Tailings-dam Failures. Land Degrad. Dev. 2005, 16, 201–212. [Google Scholar] [CrossRef]
- Wagener, F.V.; Craig, H.J.; Blight, G.; McPhail, G.; Williams, A.A.B.; Strydom, J.H. The Merriespruit Tailings Dam Failure—A Review. In Proceedings of the 5th International Conference on Tailings and Mine Waste, Fort Collins, CO, USA, 26–28 January 1998; pp. 925–952. [Google Scholar]
- Petkovšek, G.; Hassan, M.A.A.M.; Lumbroso, D.; Roca Collell, M. A Two-Fluid Simulation of Tailings Dam Breaching. Mine Water Environ. 2021, 40, 151–165. [Google Scholar] [CrossRef]
- Visser, J.K. Safety Practices and Procedures Used When Three Major Accidents Occurred in South Africa. In Proceedings of the European Safety and Reliability Conference, ESREL 2005: Advances in Safety and Reliability, Tri City (Gdynia-Sopot-Gdansk), Poland, 27–30 June 2005; Kolowrocki, K., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 2001–2008. [Google Scholar]
- Davies, E.W.; Bailey, F.J.; Kelly, D.B. West Virginia’s Buffalo Creek Flood: A Study of the Hydrology and Engineering Geology; Geological Survey Circular 667; U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA, 1972; p. 32. Available online: https://pubs.usgs.gov/circ/1972/0667/report.pdf (accessed on 7 July 2021).
- Kelley, J.H.; Kealy, D.; Hylton, C.D.; Hallana, E.V.; Ashcraft, J.; Murrin, J.F.; Davies, W.E.; Erwin, R.B.; Latimer, I.S. The Buffalo Creek Flood and Disaster: Official Report from the Governor’s Ad Hoc Commission of Inquiry. West Virginia Department of Arts, Culture and History, 1973. Available online: http://www.wvculture.org/history/disasters/buffcreekgovreport.html (accessed on 7 July 2021).
- Gee, N. Case Study: Buffalo Creek Dam (West Virginia, 1972). Association of State Dam Safety Officials Lessons Learned from Dam Incidents and Failures. Available online: https://damfailures.org/case-study/buffalo-creek-dam-west-virginia-1972/ (accessed on 7 July 2021).
- Waler, W.A. Associates. Analysis of Coal Refuse Dam Failure Middle Fork Buffalo Creek, Saunders, West Virginia; OFR 10-73; U.S. Department of the Interior, Bureau of Mines: Washington, DC, USA, 1973; Volume I, p. 217.
- Waler, W.A. Associates. Analysis of Coal Refuse Dam Failure Middle Fork Buffalo Creek, Saunders, West Virginia; OFR 10-73; U.S. Department of the Interior, Bureau of Mines: Washington, DC, USA, 1973; Volume II, p. 178.
- Chabal, J.P.; Bordes, J.L. Puentes, 1802: La Rupture du Plus Grand Barrage du Monde, ou le Double Echec d’Antonio de Robles. Le rapport Betancourt. Quad. d’Història l’Enginyeria 2009, X, 151–167. [Google Scholar]
- Úbeda Romero, E. La rotura del pantano de Puentes—Región de Murcia Digital. Revista Murgetana 1963, 21, 5–33. [Google Scholar]
- Burnett, J. Flash Floods in Texas; Texas A&M University Press: College Station, TX, USA, 2008. [Google Scholar]
- David Rogers, J. The Failure of the Lower Colorado River Dam at Austin, Texas. In Proceedings of the World Environmental and Water Resources Congress, Austin, TX, USA, 17–21 May 2015; Karvaz, K., Webster, V.L., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2015; pp. 147–160. [Google Scholar]
- Neall, V.E. Lahars as Major Geological Hazards. Bull. Int. Assoc. Eng. Geol. 1976, 13, 233–240. [Google Scholar] [CrossRef]
- Manville, V.; Hodgson, K.A.; Nairn, I.A. A Review of Break-out Floods from Volcanogenic Lakes in New Zealand. N. Z. J. Geol. Geophys. 2007, 50, 131–150. [Google Scholar] [CrossRef]
- New Zealand Railways Board of Inquiry into Derailment of Wellington-Auckland Express at Whangaehu River Bridge between Tangiwai and Karioi Railway Stations on 24 December 1953. Tangiwai Railway Disaster/Report of Board of Inquiry; Govt. Printer: Wellington, New Zealand, 1954.
- Soares-Frazão, S. Experiments of Dam-break Wave over a Triangular Bottom Sill. J. Hydraul. Res. 2007, 45, 19–26. [Google Scholar] [CrossRef]
- Soares-Frazão, S.; Zech, Y. Experimental Study of Dam-break Flow against an Isolated Obstacle. J. Hydraul. Res. 2007, 45, 27–36. [Google Scholar] [CrossRef]
- Soares-Frazão, S.; Zech, Y. Dam-break Flow through an Idealised City. J. Hydraul. Res. 2008, 46, 648–658. [Google Scholar] [CrossRef] [Green Version]
- Aureli, F.; Dazzi, S.; Maranzoni, A.; Mignosa, P.; Vacondio, R. Experimental and Numerical Evaluation of the Force Due to the Impact of a Dam-break Wave on a Structure. Adv. Water Resour. 2015, 76, 29–42. [Google Scholar] [CrossRef]
- Elkholy, M.; LaRocque, L.A.; Chaudhry, M.H.; Imran, J. Experimental Investigations of Partial-Breach Dam-Break Flows. J. Hydraul. Eng. 2016, 142, 04016042. [Google Scholar] [CrossRef]
- Spinewine, B.; Zech, Y. Small-scale Laboratory Dam-break Waves on Movable Beds. J. Hydraul. Res. 2007, 45, 73–86. [Google Scholar] [CrossRef]
- LaRocque, L.A.; Elkholy, M.; Hanif Chaudhry, M.; Imran, J. Experiments on Urban Flooding Caused by a Levee Breach. J. Hydraul. Eng. 2013, 139, 960–973. [Google Scholar] [CrossRef]
- Biscarini, C.; Di Francesco, S.; Ridolfi, E.; Manciola, P. On the Simulation of Floods in a Narrow Bending Valley: The Malpasset Dam Break Case Study. Water 2016, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Venturi, S.; Di Francesco, S.; Geier, M.; Manciola, P. Modelling Flood Events with a Cumulant CO Lattice Boltzmann Shallow Water Model. Nat. Hazards 2021, 105, 1815–1834. [Google Scholar] [CrossRef]
- Liang, D.; Lin, B.; Falconer, R.A. A Boundary-fitted Numerical Model for Flood Routing with Shock-capturing Capability. J. Hydrol. 2007, 332, 477–486. [Google Scholar] [CrossRef]
- De Marchi, G. Sull’Onda di Piena che Seguirebbe al Crollo della Diga di Cancano. [On the Dam-break Wave Resulting from the Collapse of the Cancano Dam]. L’Energia Elettr. 1945, 22, 319–340. [Google Scholar]
- Pilotti, M.; Milanesi, L.; Bacchi, V.; Tomirotti, M.; Maranzoni, A. Dam-Break Wave Propagation in Alpine Valley with HEC-RAS 2D: Experimental Cancano Test Case. J. Hydraul. Eng. 2020, 146, 05020003. [Google Scholar] [CrossRef]
- Pilotti, M.; Maranzoni, A.; Milanesi, L.; Tomirotti, M.; Valerio, G. Dam-break Modeling in Alpine Valleys. J. Mt. Sci. 2014, 11, 1429–1441. [Google Scholar] [CrossRef]
- Testa, G.; Zuccalà, D.; Alcrudo, F.; Mulet, J.; Soares-Frazão, S. Flash Flood Flow Experiment in a Simplified Urban District. J. Hydraul. Res. 2007, 45, 37–44. [Google Scholar] [CrossRef]
- Soares-Frazão, S.; Lhomme, J.; Guinot, V.; Zech, Y. Two-dimensional Shallow-water Model with Porosity for Urban Flood Modelling. J. Hydraul. Res. 2008, 46, 45–64. [Google Scholar] [CrossRef]
- El Kadi Abderrezzak, K.; Paquier, A.; Mignot, E. Modelling Flash Flood Propagation in Urban Areas Using a Two-dimensional Numerical Model. Nat. Hazards 2009, 50, 433–460. [Google Scholar] [CrossRef]
- Guinot, V. Multiple Porosity Shallow Water Models for Macroscopic Modelling of Urban Floods. Adv. Water Resour. 2012, 37, 40–72. [Google Scholar] [CrossRef]
- An, H.; Yu, S. Well-balanced Shallow Water Flow Simulation on Quadtree Cut Cell Grids. Adv. Water Resour. 2012, 39, 60–70. [Google Scholar] [CrossRef]
- Miliani, S.; Montessori, A.; La Rocca, M.; Prestininzi, P. Dam-Break Modeling: LBM as the Way towards Fully 3D, Large-Scale Applications. J. Hydraul. Eng. 2021, 147, 04021017. [Google Scholar] [CrossRef]
- Güney, M.S.; Tayfur, G.; Bombar, G.; Elci, S. Distorted Physical Model to Study Sudden Partial Dam Break Flows in an Urban Area. J. Hydraul. Eng. 2014, 140, 05014006. [Google Scholar] [CrossRef] [Green Version]
- Haltas, I.; Tayfur, G.; Elci, S. Two-dimensional Numerical Modeling of Flood Wave Propagation in an Urban Area due to Ürkmez Dam-break, İzmir, Turkey. Nat. Hazards 2016, 81, 2103–2119. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.W.; Hassan, M.A.A.M.; Vaskinn, K.A. Breach Formation: Field Test and Laboratory Experiments. J. Hydraul. Res. 2007, 45, 9–17. [Google Scholar] [CrossRef]
- Morris, M. Modelling Breach Initiation and Growth; Report Number T06-08-02; FLOODsite project Integrated Flood Risk Analysis and Management Methodologies; European Community’s Sixth Framework Programme. 2008. Available online: http://www.floodsite.net/html/partner_area/project_docs/t06_08_01_breach__execsumm_v3_5_p01.pdf (accessed on 7 July 2021).
- Shuibo, P.; Mingsen, Q.; Lianxiang, W.; Guoyi, X.; Yongqiang, S.; Longda, X.; Cuiyu, M.; Loukola, E.; Pyyny, J.; Reiter, P.; et al. Chinese-Finnish Cooperative Research Work on Dam Break Hydrodynamics; Shuibo, P., Loukola, E., Eds.; National Board of Waters and the Environment: Helsinki, Finland, 1993; pp. 1–92. Available online: https://helda.helsinki.fi/bitstream/handle/10138/29795/VYHA%20julkaisujaVYHA%20julkaisuja%20A%20167.pdf?sequence=1&isAllowed=y (accessed on 7 July 2021).
(1) N. | (2) Dam Name | (3) Country | (4) Type 1 | (5) Cause 2 | (6) Year | (7) References | Available Information 3 | (23) Sim. Flood 4 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(8) Dam Char. | (9) Reserv. Char. | (10) Reserv. Level | (11) Phot. Docum. | (12) Breach Char. | (13) Dam Mater. | (14) Breach Devel. | (15) DTM | (16) Storm | (17) Peak Flow | (18) Breach Outfl. | (19) Water Marks | (20) Hydrogr. | (21) Flood Timing | (22) Flooded Areas | ||||||||
1 | Baldwin Hills | Calif. (USA) | EF | PI | 1963 | [47,48,49,50,51,52] | • | • | • | • | • | • | • | • | • | ◦ | • | • | • | 2D-FV | ||
2 | Xe Pian – Xe Namnoy | Laos | EF | ER | 2018 | [53] | ◦ | • | • | • | • | • | • | • | ◦ | • | 1D-FD; 2D-FV | |||||
3 | Gangneung | South Korea | EF | OT | 2002 | [54,55] | • | • | • | • | • | • | • | • | ◦ | • | 2D-FV | |||||
4 | Kelly Barnes | Geo. (USA) | EF | PI | 1977 | [56,57,58,59] | • | • | • | • | • | • | ◦ | • | • | • | • | |||||
5 | Lake Ha! Ha! | Canada | EF (DK) | OT | 1996 | [60,61,62,63,64,65,66,67,68] | • | • | • | • | • | • | • | • | • | • | • * | 1D-FD; 2D-FV | ||||
6 | Lawn Lake & Cascade Lake | Col. (USA) | EF | PI | 1982 | [69,70,71,72] | • | • | • | • | • | • | • | ◦ | • | • | • | ◦ | 1D-FV | |||
7 | Quail Creek | Utah (USA) | EF | PI | 1989 | [73,74,75] | • | • | • | • | • | ◦ | • | • | • | 1D-FD | ||||||
8 | Teton | Idaho (USA) | EF | PI | 1976 | [76,77,78,79,80,81] | • | • | • | • | • | • | • | ◦ | • | • | • | • | 1D-FD | |||
9 | Um Al-Khair | S. Arabia | EF | PI | 2011 | [82] | • | • | • | • | • | • | • | • | • | • | 1D-FD | |||||
10 | Zeyzoun | Syria | EF | PM | 2002 | [83,84] | • | • | • | • | • | • | • | 1D-FD | ||||||||
11 | Gleno | Italy | CO | QP | 1923 | [85] | • | • | • | • | • | • | • | ◦ | ◦ | • | 1D-FV | |||||
12 | Malpasset | France | CO | QP | 1959 | [86,87,88] | • | • | • | • | • | • | • | • | • | ◦ | 2D-FD, FV; 3D | |||||
13 | Palagnedra | Switzerland | CO | OT | 1978 | [89] | • | • | • | • | • | • | • | • | • | • | 2D-FD | |||||
14 | Sella Zerbino | Italy | CO | OT | 1935 | [90] | • | • | • | • | • | • | • | • | • | 2D-FV | ||||||
15 | St. Francis | Calif. (USA) | CO | PI | 1928 | [91,92,93] | • | • | • | • | • | • | • | 2D-FV; 3D | ||||||||
16 | Taum Sauk Up. | Miss. (USA) | RF | QP | 2005 | [94,95,96,97,98] | • | • | • | • | • | • | • | • | 1D-FD | |||||||
17 | Tous | Spain | RF | OT | 1982 | [99,100,101] | • | • | • | • | • | • | • | • | • | • | 2D-FV | |||||
18 | South Fork | Penns. (USA) | CF | OT | 1889 | [73,102,103,104,105] | • | • | • | • | • | • | • | • | • | • | ||||||
19 | La Josephina | Ecuador | LD | ER | 1993 | [106,107] | • | • | • | • | • | • | ◦ | • | ◦ | • | 1D-FD | |||||
20 | Stava | Italy | TA m | PM-QP | 1985 | [108,109,110,111] | • | • | • | ◦ | • | • | 1D-FV; 2D-FV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aureli, F.; Maranzoni, A.; Petaccia, G. Review of Historical Dam-Break Events and Laboratory Tests on Real Topography for the Validation of Numerical Models. Water 2021, 13, 1968. https://doi.org/10.3390/w13141968
Aureli F, Maranzoni A, Petaccia G. Review of Historical Dam-Break Events and Laboratory Tests on Real Topography for the Validation of Numerical Models. Water. 2021; 13(14):1968. https://doi.org/10.3390/w13141968
Chicago/Turabian StyleAureli, Francesca, Andrea Maranzoni, and Gabriella Petaccia. 2021. "Review of Historical Dam-Break Events and Laboratory Tests on Real Topography for the Validation of Numerical Models" Water 13, no. 14: 1968. https://doi.org/10.3390/w13141968
APA StyleAureli, F., Maranzoni, A., & Petaccia, G. (2021). Review of Historical Dam-Break Events and Laboratory Tests on Real Topography for the Validation of Numerical Models. Water, 13(14), 1968. https://doi.org/10.3390/w13141968