Diagnostic Simulation of Water Age in Small Lake of Bosten Lake
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Hydrodynamic Model Description and Configuration
2.3. Transport Timescale Calculation
2.4. Scenario Definitions
3. Results
3.1. Spatial Variation of the Water Age
3.2. Influences of the Wet, Normal, and Dry Periods
3.3. Influences of Different Hydrological Connectivity Activities
3.4. Influences of Wind Directions
3.5. Influences of Point Farmland Drainages
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- Lucas, L.; Thompson, J.; Brown, L. Why are diverse relationships observed between phytoplankton biomass and transport time? Limnol. Oceanogr. 2009, 54, 381–390. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, R.; Wang, Y.; Liu, Y.; Zhao, L.; Zhu, X.; Guo, H. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes? J. Hydrol. 2016, 542, 281–291. [Google Scholar] [CrossRef]
- Bolin, B.; Rodhe, H. A note on the concepts of age distribution and transit time in natural reservoirs. Tellus 1973, 25, 58–62. [Google Scholar] [CrossRef]
- Takeoka, H. Fundamental concepts of exchange and transport time scales in a coastal sea. Cont. Shelf Res. 1984, 3, 322–326. [Google Scholar] [CrossRef]
- Deleersnijder, E.; Delhez, E.J.M. Timescale- and tracer-based methods for understanding the results of complex marine models (Editorial). Estuar. Coast. Shelf Sci. 2007, 74, 585–780. [Google Scholar] [CrossRef]
- Wan, Y.; Qiu, C.; Doering, P.; Ashton, M.; Sun, D.; Coley, T. Modeling residence time with a three-dimensional hydrodynamic model: Linkage with chlorophyll a in a subtropical estuary. Ecol. Model. 2013, 268, 93–102. [Google Scholar] [CrossRef]
- Gao, Q.; He, G.; Fang, H.; Bai, S.; Huang, L. Numerical simulation of water age and its potential effects on the water quality in Xiangxi Bay of Three Gorges Reservoir. J. Hydrol. 2018, 566, 484–499. [Google Scholar] [CrossRef]
- Schlosser, P.; Bullister, J.L.; Fine, R.A.; Jenkins, W.J.; Key, R.; Lupton, J.; Roether, W.; Smethie, W.M., Jr. Transformation and age of water masses. In Ocean Circulation and Climate: Observing and Modelling the Global Ocean; Siedler, G., Church, J., Gould, J., Eds.; Academic Press: New York, NY, USA, 2001; pp. 431–452. [Google Scholar]
- Shen, J.; Haas, L. Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuar. Coast. Shelf Sci. 2004, 61, 449–461. [Google Scholar] [CrossRef]
- Gustafsson, K.E.; Bendtsen, J. Elucidating the dynamics and mixing agents of a shallow fjord through age tracer modeling. Estuar. Coast. Shelf Sci. 2007, 74, 641–654. [Google Scholar] [CrossRef]
- Zimmerman, J. Mixing and flushing of tidal embayments in the western Dutch Wadden Sea part I: Distribution of salinity and calculation of mixing time scales. Neth. J. Sea Res. 1976, 10, 149–191. [Google Scholar] [CrossRef]
- Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, S.G. A comment on the use of flushing time, residence time, and age as transport time scales. Limnol. Oceanogr. 2002, 47, 1545–1553. [Google Scholar] [CrossRef] [Green Version]
- Okada, T.; Nakayama, K.; Takao, T.; Furukawa, K. Influence of freshwater input and bay reclamation on long-term changes in seawater residence times in Tokyo bay, Japan. Hydrobiol. Process. 2011, 25, 2694–2702. [Google Scholar] [CrossRef]
- Sheldon, J.E.; Alber, M. A comparison of residence time calculations using simple compartment models of the Altamaha River Estuary, Georgia. Estuaries Coasts 2002, 25, 1304–1317. [Google Scholar] [CrossRef]
- Delhez, E.J.M.; Heemink, A.W.; Deleersnijder, E. Residence time in a semi-enclosed domain from the solution of an adjoint problem. Estuar. Coast. Shelf Sci. 2004, 61, 691–702. [Google Scholar] [CrossRef]
- Pilotti, M.; Simoncelli, S.; Valerio, G. A simple approach to the evaluation of the actual water renewal time of natural stratified lakes. Water Resour. Res. 2014, 50, 2830–2849. [Google Scholar] [CrossRef]
- Viero, D.P.; Defina, A. Water age, exposure time, and local flushing time in semi-enclosed, tidal basins with negligible freshwater inflow. J. Mar. Syst. 2016, 156, 16–29. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X.; Chen, X.; Flannery, M.S. Estimating river flow effects on water ages by hydrodynamic modeling in little manatee river estuary, Florida, USA. Environ. Fluid Mech. 2010, 10, 197–211. [Google Scholar] [CrossRef]
- Deleersnijder, E.; Campin, J.M.; Delhez, E.J.M. The concept of age in marine modelling: I. theory and preliminary model results. J. Mar. Syst. 2001, 28, 229–267. [Google Scholar] [CrossRef] [Green Version]
- Delhez, E.J.M.; Campin, J.M.; Hirst, A.C.; Deleersnijder, E. Toward a general theory of the age in ocean modelling. Ocean Model. 1999, 1, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Wang, H.V. Determining the age of water and long-term transport timescale of the Chesapeake Bay. Estuar. Coast. Shelf Sci. 2007, 74, 585–598. [Google Scholar] [CrossRef]
- Gong, W.P.; Shen, J.; Hong, B. The influence of wind on the water age in the tidal Rappahannock River. Mar. Environ. Res. 2009, 68, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.C.; Chen, W.B.; Hsu, M.H. Using a three-dimensional particle-tracking model to estimate the residence time and age of water in a tidal estuary. Comput. Geosci. UK 2011, 37, 1148–1161. [Google Scholar] [CrossRef]
- Li, Y.; Tang, C.; Wang, C.; Tian, W.; Pan, B.; Hua, L.; Lau, J.; Yu, Z.B.; Achaya, K. Assessing and modeling impacts of different inter-basin water transfer routes on Lake Taihu and the Yangtze River, China. Ecol. Eng. 2013, 60, 399–413. [Google Scholar] [CrossRef]
- Li, X.; Shen, Y. Numerical simulation of the impacts of water level variation on water age in Dahuofang reservoir. Front. Earth Sci. 2015, 9, 209–224. [Google Scholar] [CrossRef]
- Pinilla, E.; Castillo, M.I.; Pérez-Santos, I.; Venegas, O.; Valle-Levinson, A. Water age variability in a patagonian fjord. J. Mar. Syst. 2020, 210, 103376. [Google Scholar] [CrossRef]
- Li, Y.; Acharya, K.; Yu, Z. Modeling impacts of Yangtze River water transfer on water ages in Lake Taihu, China. Ecol. Eng. 2011, 37, 325–334. [Google Scholar] [CrossRef]
- Liu, H.; Ding, Y.; Wang, H.; Zhang, J. Lattice Boltzmann method for the age concentration equation in shallow water. J. Comput. Phys. 2015, 299, 613–629. [Google Scholar] [CrossRef]
- Kazemi, Z.; Hashim, N.B.; Aslani, H.; Mohamad, K.A. Influence of Freshwater Inflow on Water Age in the Western Part of Johor Strait, Malaysia. In Proceedings of the SEPKA 2014 Civil Engineering Research Seminar UTM Skudai, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia, January 2014. [Google Scholar]
- Liu, S. Model and forecast on the outlet water quality mineral of Bosten Lake’s Xiaohu area. Oceanol. Et Limnol. Sin. 1996, 27, 451–454. [Google Scholar]
- Xia, J.; Zuo, Q.T.; Shao, M.C. Sustainable Management of Water Resources in Lake Bosten; Chinese Science Press: Beijing, China, 2003. [Google Scholar]
- Hu, R. Physical Geography of the Tianshan Mountaion in China; China Environment Science Press: Beijing, China, 2004. [Google Scholar]
- Li, Y.A.; Tan, Y.; Jiang, F.Q.; Wang, Y.J.; Hu, R.J. Study on hydrological features of the Kaidu River and the Bosten Lake in the second half of 20th century. J. Glaciol. Geocryol. 2003, 25, 215–218. [Google Scholar]
- Wang, Y.J.; Li, Y.A.; Wang, Y.G.; Tan, Y. Study on the change of inflow and salt content of the Bosten Lake, Xinjiang since the 1950s. Arid Zone Res. 2005, 22, 355–360. [Google Scholar]
- Yuan, X.; Yang, D.H. Study on the Aqueous Environment Problems of the Bosten Lake, Xinjiang. Arid Zone Res. 2008, 25, 735–740. [Google Scholar]
- Ran, X.J.; Shen, L.; Li, X.H. Analysis of Ecological Environment Effects in Bosten Lake. J. Water Resour. Water Eng. 2010, 21, 105–108. [Google Scholar]
- Wei, K.Y.; Lee, M.Y.; Wang, C.H.; Wang, Y.; Lee, T.Q.; Yao, P. Stable isotopic variations in oxygen and hydrogen of waters in Lake Bosten region, Southern Xinjiang, Western China. West. Pac. Earth Sci. 2002, 2, 67–82. [Google Scholar]
- Zhong, R.S.; Dong, X.G. Water-salt balance and water environment forecast of Lake Bosten in Xinjiang. J. Lake Sci. 2008, 20, 58–64. [Google Scholar]
- Study on the Influence of the Location of Bosten Lake East Pumping Station on Lake Water Circulation and Water Quality. Special Report in Environmental Impact Assessment of the Construction of Bosten Lake East Pumping Station; The Institute of Environmental Science, Xi’an University of Technology: Xi’an, China, 2002.
- Zuo, Q.T. Effect and Risk of Ecological Water Transportation from Bosten Lake to Tarim River. Sci. Geogr. Sin. 2006, 26, 564–568. [Google Scholar]
- Xu, H.L.; Guo, Y.P.; Li, W.H. Analysis on the water pollution in Bosten Lake, Xinjiang. Arid Zone Res. 2003, 20, 192–196. [Google Scholar]
- Zuo, Q.T.; Dou, M.; Chen, X.; Zhou, K.F. Physically-based model for studying the salinization of Bosten Lake in China. Hydrol. Sci. J. 2006, 51, 432–449. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Chen, F.; Fan, Y.; Yang, M. Dry late-glacial and early Holocene climate in arid central Asia indicated by lithological and palynological evidence from Bosten Lake, China. Quat. Int. 2009, 194, 19–27. [Google Scholar] [CrossRef]
- Xie, G.J.; Zhang, J.; Tang, X.M.; Cai, Y.; Gao, G. Spatio-temporal heterogeneity of water quality and succession patterns in Lake Bosten during the past 50 years. J. Lake Sci. 2011, 23, 988–998. [Google Scholar]
- Zuo, Q.T.; Chen, X. Water Planning and Management Meeting Sustainable Development; China Hydropower Press: Beijing, China, 2003. [Google Scholar]
- Wang, Y.; Li, X.; Li, H.; Ren, Y. Study on the changes of the small lake wetland in Bosten Lake and it’s protective countermeasures. Trans. Oceanol. Limnol. 2010, 2, 123–129. [Google Scholar]
- Zhang, J.P. Eco-environment Situation of Bosten Lake Basin and Its Countermeasures. Environ. Sci. Technol. 2010, 23, 76–79. [Google Scholar]
- Li, W.H.; Chen, Y.B.; Xu, H.L.; Guo, Y.P. A study on water environmental protection and sustainable utilization of Bosten Lake, Xinjiang. Geogr. Res. 2003, 22, 1–7. [Google Scholar]
- Hamrick, J.M. User’s Manual for the Environmental Fluid Dynamics Computer Code. Special Report No. 331 in Applied Marine Science and Ocean Engineering; Virginia Institute of Marine Science: Williamsburg, VA, USA, 1996. [Google Scholar]
- Craig, P.M. User’s Manual for EFDC_Explorer: A Pre/Post Processor tor the Environmental Fluid Dynamics Code; Dynamic Solutions-International, LLC: Edmonds, WA, USA, 2012. [Google Scholar]
- Hamrick, J.M. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects. Special Report No. 317 in Applied Marine Science and Ocean Engineering; Virginia Institute of Marine Science: Williamsburg, VA, USA, 1992. [Google Scholar]
- Hamrick, J.M. The Environmental Fluid Dynamics Code: Theory and Computation. In Hydrodynamics and Mass Transport; Tetra Tech Inc.: Fairfax, VA, USA, 2007; Volume 1. [Google Scholar]
- Park, K.; Kuo, A.; Shen, J.; Hamrick, J. A Three-Dimensional Hydrodynamic-Eutrophication Model (HEM-3D): Description of Water Quality and Sediment Process Submodels (EFDC Water Quality Model); Special Report No. 327 in Applied Marine Science and Ocean Engineering; Tetra Tech, Inc.: Fairfax, VA, USA, 2000. [Google Scholar]
- Hamrick, J.; Wu, T. Computational Design and Optimization of the EFDC/HEM3D Surface Water Hydrodynamic and Eeutrophication Models. In Next Generation Environmental Models and Computational Methods; Delice, G., Vheeler, M.F., Eds.; Society of Industrial and Applied Mathematics: Philadelphia, PA, USA, 1997; pp. 143–161. [Google Scholar]
- Ji, Z.G.; Morton, M.; Hamrick, J. Wetting and Drying Simulation of Estuarine Processes. Estuar. Coast. Shelf Sci. 2001, 53, 683–700. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Liao, W.; Gao, P.; Huang, X.; Wang, H.; Song, X.; Lei, X. 3-D hydro-environmental simulation of Miyun reservoir, Beijin. J. Hydro-Environ. Res. 2014, 8, 383–395. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Galperin, B.; Kantha, L.H.; Hassid, S.; Rosati, A. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 1988, 45, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Tetra Tech. The Environmental Fluid Dynamics Code Theory and Computation, Volume 3: Water Quality Module Technical Report to US EPA; Tetra Tech: Fairfax, VA, USA, 2007. [Google Scholar]
- Liu, Y.; Bao, A.M. Exploring the effects of hydraulic connectivity scenarios on the spatial-temporal salinity changes in Bosten Lake through a model. Water 2020, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- HydroQual Inc. A Primer for ECOMSED, Version 1.3, User’s Manual; HydroQual Inc.: Mahwah, NJ, USA, 2002. [Google Scholar]
- Smagorinsky, J. General circulation experiments with the primitive equations: The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Berntsen, J. Internal pressure errors in sigma-coordinate ocean models. J. Atmos. Ocean. Technol. 2002, 19, 1403–1414. [Google Scholar] [CrossRef]
- Hamrick, J.M. Application of the EFDC, Environmental Fluid Dynamics Computer Code to SFWMD. In Water Conservation Area 2A; South Florida Water Management District: West Palm Beach, FL, USA, 1994; pp. 1–126. [Google Scholar]
- Liu, S.; Ye, Q.; Wu, S.; Stive, M.J.F. Wind effects on the water age in a large shallow lake. Water 2020, 12, 1246. [Google Scholar] [CrossRef]
- Qi, H.; Lu, J.; Chen, X.; Sauvage, S.; Sanchez-P’erez, J.M. Water age prediction and its potential impacts on water quality using a hydrodynamic model for Poyang Lake, China. Environ. Sci. Pollut. Res. 2016, 23, 13327–13341. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Baptista, A.M. Diagnostic modeling of residence times in estuaries. Water Resour. Res. 1997, 33, 1935–1946. [Google Scholar] [CrossRef]
- Javaheri, A.; Babbar-Sebens, M.; Alexander, J.; Bartholomew, J.; Hallett, S. Global sensitivity analysis of water age and temperature for informing salmonid disease management. J. Hydrol. 2018, 561, 89–97. [Google Scholar] [CrossRef]
- Hong, B.; Shen, J. Linking dynamics of transport timescale and variations of hypoxia in the Chesapeake Bay. J. Geophys. Res. Oceans 2013, 118, 6017–6029. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; He, C.; Li, Y.; Acharya, K. Diverse responses of hydrodynamics, nutrients and algal biomass to water diversion in a eutrophic shallow lake. J. Hydrol. 2021, 593, 125933. [Google Scholar] [CrossRef]
- Bargu, S.; Justic, D.; White, J.R.; Lane, R.; Day, J.; Paerl, H.; Raynie, R. Mississippi River diversions and phytoplankton dynamics in deltaic Gulf of Mexico estuaries: A review. Estuar. Coast. Shelf Sci. 2019, 221, 39–52. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Blooms like it hot. Science 2008, 320, 57. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Groffman, P.M.; Mayer, P.M.; Striz, E.; Gold, A.J. Effects of stream restoration on denitrification in an urbanizing watershed. Ecol. Appl. 2008, 18, 789–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Christensen, A.; Twilley, R.R. Benthic fluxes of dissolved oxygen and nutrients across hydrogeomorphic zones in a coastal deltaic floodplain within the Mississippi River delta plain. Biogeochemistry 2020, 149, 115–140. [Google Scholar] [CrossRef]
- Klocker, C.A.; Kaushal, S.S.; Groffman, P.M.; Mayer, P.M.; Morgan, R.P. Nitrogen uptake and denitrification in restored and unrestored streams in urban Maryland, USA. Aquat. Sci. 2009, 71, 411–424. [Google Scholar] [CrossRef]
- Dettmann, E.H. Coastal and estuarine research federation effect of water residence time on annual export and denitrification of nitrogen in estuaries: A model analysis. Estuaries 2001, 24, 481–490. [Google Scholar] [CrossRef]
- Nixon, S.W.; Ammerman, J.W.; Atkinson, L.P.; Berounsky, V.M.; Billen, G.; Boicourt, W.C.; Boynton, W.R.; Church, T.M.; Elmgren, D.M.D.; Ai, E. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 1996, 35, 141–180. [Google Scholar] [CrossRef]
- Janssen, A.B.G.; van Wijk, D.; van Gerven, L.P.A.; Bakker, E.S.; Brederveld, R.J.; DeAngelis, D.L.; Janse, J.H.; Mooij, W.M. Success of lake restoration depends on spatial aspects of nutrient loading and hydrology. Sci. Total Environ. 2019, 679, 248–259. [Google Scholar] [CrossRef]
- Schmadel, N.M.; Harvey, J.W.; Alexander, R.B.; Schwarz, G.E.; Moore, R.B.; Eng, K.; Gomez-Velez, J.D.; Boyer, E.W.; Scott, D. Thresholds of lake and reservoir connectivity in river networks control nitrogen removal. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
Scenarios | Conditions |
---|---|
E1 | The wet periods |
E2 | The normal periods |
E3 | The dry periods |
E4 | Same as E3, open Ecological gate (EG) inflow and Ahongkou gate (AHK) outflow |
E5 | Same as E3, open Ecological gate (EG) inflow and Dawutizha gate (DWTZ) outflow |
E6 | Same as E3, under different wind direction (WD) |
Scenarios | Water Level (m) | WB (m3/s) | EG (m3/s) | AHK (m3/s) | DWTZ (m3/s) | WD |
---|---|---|---|---|---|---|
E1 | 1047.5 | 61.4 | 0.0 | 0.0 | 60.0 | SW |
E2 | 1046.2 | 51.8 | 0.0 | 0.0 | 33.3 | SW |
E3 | 1045.0 | 43.3 | 0.0 | 0.0 | 13.3 | SW |
E4 | 1045.0 | 43.3 | 20 | 20 | 13.3 | SW |
E5 | 1045.0 | 43.3 | 20 | 0.0 | 33.3 | SW |
E6 | 1045.0 | 43.3 | 0.0 | 0.0 | 13.3 | NW |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | |
---|---|---|---|---|---|---|---|---|
E1-N | 6 | 780 | 1445 | 1040 | 1117 | 823 | 356 | 288 |
E2-N | 21 | 902 | 1519 | 1139 | 744 | 1219 | 771 | 831 |
E3-N | 35 | 894 | 1472 | 1190 | 749 | 1296 | 1098 | 1081 |
E4-N | 28 | 290 | 714 | 51 | 574 | 1341 | 641 | 1041 |
E5-N | 29 | 290 | 715 | 51 | 573 | 1185 | 1135 | 925 |
E6-N | 31 | 1070 | 1584 | 834 | 579 | 855 | 1246 | 1065 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | |
---|---|---|---|---|---|---|---|---|
E1-F | 10 | 999 | 1648 | 875 | 715 | 561 | 381 | 252 |
E2-F | 25 | 1064 | 1607 | 951 | 591 | 798 | 819 | 485 |
E3-F | 46 | 941 | 1480 | 1215 | 773 | 1291 | 1159 | 771 |
E4-F | 34 | 340 | 783 | 61 | 687 | 1445 | 725 | 720 |
E5-F | 36 | 339 | 783 | 61 | 692 | 1289 | 1195 | 653 |
E6-F | 36 | 1113 | 1594 | 898 | 570 | 934 | 1323 | 600 |
E1 | E2 | E3 | E4 | E5 | E6 | |
---|---|---|---|---|---|---|
Without farmland drainages | 594 | 684 | 794 | 550 | 598 | 757 |
With farmland drainages | 568 | 670 | 801 | 579 | 626 | 773 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhong, R.; Bao, A.; Liu, T. Diagnostic Simulation of Water Age in Small Lake of Bosten Lake. Water 2021, 13, 1996. https://doi.org/10.3390/w13151996
Liu Y, Zhong R, Bao A, Liu T. Diagnostic Simulation of Water Age in Small Lake of Bosten Lake. Water. 2021; 13(15):1996. https://doi.org/10.3390/w13151996
Chicago/Turabian StyleLiu, Ying, Ruisen Zhong, Anming Bao, and Tie Liu. 2021. "Diagnostic Simulation of Water Age in Small Lake of Bosten Lake" Water 13, no. 15: 1996. https://doi.org/10.3390/w13151996
APA StyleLiu, Y., Zhong, R., Bao, A., & Liu, T. (2021). Diagnostic Simulation of Water Age in Small Lake of Bosten Lake. Water, 13(15), 1996. https://doi.org/10.3390/w13151996