Investigating Management of Transboundary Waters through Cooperation: A Serious Games Case Study of the Hueco Bolson Aquifer in Chihuahua, Mexico and Texas, United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Serious Games Background
2.2. Modeling Methodology
2.3. Workshop Implementation
2.4. Data Collection
- a short, 29-item survey (available upon request) administered at the beginning of Session 1 and again at the end of Session 6, which was designed to learn about participants’ knowledge about water use and conservation in the HB, and their beliefs about groundwater use responsibility and cooperation for management. Surveys were administered online, in English and Spanish, and followed IRB protocols for human subjects.
- polling on acceptable reductions and binational sharing in the reduction of the depletion rate and on options for technologies, policies, and broader approaches for meeting the target reductions (prior to Session 2)
- polling on options for meeting target reductions in depletion times and associated reductions in pumping (Session 6)
- a survey regarding participants’ opinions on the workshop salience and relevance, format of the workshop, and overall satisfaction with the workshop. In addition, bilingual students took notes during all sessions, and the notes were analyzed to develop common themes that arose during the discussions.
3. Results
3.1. Participation in Sessions
3.2. Synthesis of Session Observations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gleeson, T.; Wada, Y.; Bierkens, M.F.; Van Beek, L.P. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Van Beek, L.P.; Van Kempen, C.M.; Reckman, J.W.; Vasak, S.; Bierkens, M.F. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater depletion embedded in international food trade. Nature 2017, 543, 700–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konikow, L.F.; Kendy, E. Groundwater depletion: A global problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Aeschbach-Hertig, W.; Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 2012, 5, 853–861. [Google Scholar] [CrossRef]
- Jasechko, S.; Perrone, D. Global groundwater wells at risk of running dry. Science 2021, 372, 418–421. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Albrecht, T.R.; Varady, R.G.; Zuniga-Teran, A.; Gerlak, A.K.; De Grenade, R.R.; Lutz-Ley, A.; Martín, F.; Megdal, S.B.; Meza, F.; Melgar, D.O.; et al. Unraveling transboundary water security in the arid Americas. Water Int. 2018, 43, 1075–1113. [Google Scholar] [CrossRef]
- Hathaway, D.L. Transboundary Groundwater Policy: Developing Approaches in the Western and Southwestern United States 1. J. Am. Water Resour. Assoc. 2011, 47, 103–113. [Google Scholar] [CrossRef]
- Rivera, A.; Candela, L. Fifteen-year experiences of the internationally shared aquifer resources management initiative (ISARM) of UNESCO at the global scale. J. Hydrol. Reg. Stud. 2018, 20, 5–14. [Google Scholar] [CrossRef]
- Eckstein, G.E. Managing buried treasure across frontiers: The international Law of Transboundary Aquifers. Water Int. 2011, 36, 573–583. [Google Scholar] [CrossRef]
- Megdal, S.B.; Scott, C.A. The importance of institutional asymmetries to the development of binational aquifer assessment programs: The Arizona-Sonora experience. Water 2011, 3, 949–963. [Google Scholar] [CrossRef] [Green Version]
- Hayton, R.D.; Utton, A.E. Transboundary groundwaters: The Bellagio draft treaty. Nat. Resour. J. 1989, 29, 663. [Google Scholar]
- Eckstein, G.; Hardberger, A. State practice in the management and allocation of transboundary ground water resources in North America. Yearb. Int. Environ. Law 2007, 18, 96. [Google Scholar] [CrossRef] [Green Version]
- Aureli, A.; Eckstein, G. Strengthening cooperation on transboundary groundwater resources. Water Int. 2011, 36, 549–556. [Google Scholar] [CrossRef]
- Puri, S.; Appelgren, B.; Arnold, G.; Aureli, A.; Burchi, S.; Burke, S.; Margat, J.; Pallas, P. Internationally Shared (Transboundary) Aquifer Resources Management: Their Significance and Sustainable Management; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2001. [Google Scholar]
- Puri, S.; Aureli, A. Transboundary aquifers: A global program to assess, evaluate, and develop policy. Groundwater 2005, 43, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Varady, R.G.; Scott, C.A.; Megdal, S.B.; McEvoy, J.P. Transboundary Aquifer Institutions, Policies, and Governance: A Preliminary Inquiry; Citeseer: Princeton, NJ, USA, 2010. [Google Scholar]
- Szocs, T.; Rman, N.; Rotár-Szalkai, Á.; Tóth, G.; Lapanje, A.; Černák, R.; Nádor, A. The upper pannonian thermal aquifer: Cross border cooperation as an essential step to transboundary groundwater management. J. Hydrol. Reg. Stud. 2018, 20, 128–144. [Google Scholar] [CrossRef]
- Eckstein, G. The International Law of Transboundary Groundwater Resources, 1st ed.; Earthscan Water Text; Routledge: Abingdon, UK; New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Sindico, F. International Law and Transboundary Aquifers; Edward Elgar Publishing: Cheltenham, UK; Northampton, MA, USA, 2020. [Google Scholar]
- de los Cobos, G. The Genevese transboundary aquifer (Switzerland-France): The secret of 40 years of successful management. J. Hydrol. Reg. Stud. 2018, 20, 116–127. [Google Scholar] [CrossRef]
- Eckstein, G. The Newest Transboundary Aquifer Agreement: Jordan and Saudi Arabia Cooperate Over the Al-Sag/Al-Disi Aquifer. International Water Law Project Blog. 2015. Available online: https://www.internationalwaterlaw.org/blog/2015/08/31/the-newest-transboundary-aquifer-agreement-jordan-and-saudi-arabia-cooperate-over-the-al-sag-al-disi-aquifer/ (accessed on 13 November 2020).
- Hussein, H. The Guarani Aquifer System, highly present but not high profile: A hydropolitical analysis of transboundary groundwater governance. Environ. Sci. Policy 2018, 83, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Sindico, F.; Hirata, R.; Manganelli, A. The Guarani Aquifer System: From a Beacon of hope to a question mark in the governance of transboundary aquifers. J. Hydrol. Reg. Stud. 2018, 20, 49–59. [Google Scholar] [CrossRef]
- International Boundary and Water Commission (USIBWC). Convention between the United States and Mexico: Equitable Distribution of the Waters of the Rio Grande. International Boundary and Water Commission; 1906. Available online: https://www.ibwc.gov/Files/1906Conv.pdf (accessed on 30 June 2021).
- Mumme, S.P. Minute 242 and beyond: Challenges and opportunities for managing transboundary groundwater on the Mexico–US border. Nat. Resour. J. 2000, 40, 341–378. [Google Scholar]
- Tapia-Villaseñor, E.M.; Megdal, S.B. The US-Mexico Transboundary Aquifer Assessment Program as a Model for Transborder Groundwater Collaboration. Water 2021, 13, 530. [Google Scholar] [CrossRef]
- Sanchez, R.; Eckstein, G. Groundwater Management in the Borderlands of Mexico and Texas: The Beauty of the Unknown, the Negligence of the Present, and the Way Forward. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef] [Green Version]
- Callegary, J.; Megdal, S.; Villaseñor, E.T.; Petersen-Perlman, J.; Sosa, I.M.; Monreal, R.; Gray, F.; Noriega, F.G. Findings and lessons learned from the assessment of the Mexico-United States transboundary San Pedro and Santa Cruz aquifers: The utility of social science in applied hydrologic research. J. Hydrol. Reg. Stud. 2018, 20, 60–73. [Google Scholar] [CrossRef]
- Payan, T.; Cruz, P.L. Introduction. In Binational Commons: Institutional Development and Governance on the U.S.-Mexico Border. 2020. Available online: https://www.jstor.org/stable/10.2307/j.ctv16b77c6 (accessed on 15 July 2021).
- Alvarez, R. Borders and Bridges: Exploring a New Conceptual Architecture for (U.S.-Mexico) Border Studies: Borders and Bridges. J. Lat. Am. Caribb. Anthropol. 2012, 17, 24–40. [Google Scholar] [CrossRef]
- Payan, T.; Cruz, P.L.; Villarreal, C.P. Human Mobility at the US-Mexico Border. In Binational Commons: Institutional Development and Governance on the US-Mexico Border; University of Arizona Press: Tucson, AZ, USA, 2020; p. 318. [Google Scholar]
- Jeffery, C.; Schakel, A.H. Insights: Methods and Data beyond Methodological Nationalism. Reg. Stud. 2013, 47, 402–404. [Google Scholar] [CrossRef]
- Moore, S.A.; Rosenfeld, H.; Nost, E.; Vincent, K.; Roth, R.E. Undermining methodological nationalism: Cosmopolitan analysis and visualization of the North American hazardous waste trade. Environ. Plan. A Econ. Space 2018, 50, 1558–1579. [Google Scholar] [CrossRef]
- Far West Texas Water Planning Group. Far West Texas Water Plan; Texas Water Development Board: Austin, TX, USA, 2021. [Google Scholar]
- Rivera, A. What Should We Manage: Aquifers or Groundwater? Groundwater 2021. [Google Scholar] [CrossRef] [PubMed]
- Davidow, J. The US and Mexico: The Bear and the Porcupine; Markus Wiener Pub: Princeton, NJ, USA, 2004. [Google Scholar]
- Zeitoun, M.; Warner, J. Hydro-hegemony—A framework for analysis of trans-boundary water conflicts. Water Policy 2006, 8, 435–460. [Google Scholar] [CrossRef] [Green Version]
- Pahl-Wostl, C. Transitions towards adaptive management of water facing climate and global change. Water Resour. Manag. 2007, 21, 49–62. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Craps, M.; Dewulf, A.; Mostert, E.; Tabara, D.; Taillieu, T. Social learning and water resources management. Ecol. Soc. 2007, 12. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Sendzimir, J.; Jeffrey, P.; Aerts, J.; Berkamp, G.; Cross, K. Managing change toward adaptive water management through social learning. Ecol. Soc. 2007, 12. [Google Scholar] [CrossRef]
- Huitema, D.; Mostert, E.; Egas, W.; Moellenkamp, S.; Pahl-Wostl, C.; Yalcin, R. Adaptive water governance: Assessing the institutional prescriptions of adaptive (co-) management from a governance perspective and defining a research agenda. Ecol. Soc. 2009, 14. [Google Scholar] [CrossRef]
- Rodela, R.; Ligtenberg, A.; Bosma, R. Conceptualizing serious games as a learning-based intervention in the context of natural resources and environmental governance. Water 2019, 11, 245. [Google Scholar] [CrossRef] [Green Version]
- Madani, K.; Pierce, T.W.; Mirchi, A. Serious games on environmental management. Sustain. Cities Soc. 2017, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Den Haan, R.-J.; Van der Voort, M.C. On evaluating social learning outcomes of serious games to collaboratively address sustainability problems: A literature review. Sustainability 2018, 10, 4529. [Google Scholar] [CrossRef] [Green Version]
- Hallinger, P.; Wang, R.; Chatpinyakoop, C.; Nguyen, V.-T.; Nguyen, U.-P. A bibliometric review of research on simulations and serious games used in educating for sustainability, 1997–2019. J. Clean. Prod. 2020, 256, 120358. [Google Scholar] [CrossRef]
- Liarakou, G.; Sakka, E.; Gavrilakis, C.; Tsolakidis, C. Evaluation of serious games, as a tool for education for sustainable development. Eur. J. Open Distance E Learn. 2012, 15, 96. [Google Scholar]
- Wang, K.; Davies, E.G.R. A water resources simulation gaming model for the Invitational Drought Tournament. J. Environ. Manag. 2015, 160, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, W.T. Scientific Mediation through Serious Gaming Facilitates Transboundary Groundwater Cooperation. Water Resour. Impact 2018, 20, 3. [Google Scholar]
- Bolte, J.P.; Hulse, D.W.; Gregory, S.V.; Smith, C. Modeling biocomplexity–actors, landscapes and alternative futures. Environ. Model. Softw. 2007, 22, 570–579. [Google Scholar] [CrossRef] [Green Version]
- Hill, H.; Hadarits, M.; Rieger, R.; Strickert, G.; Davies, E.G.; Strobbe, K.M. The invitational drought tournament: What is it and why is it a useful tool for drought preparedness and adaptation? Weather. Clim. Extrem. 2014, 3, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Bathke, D.J.; Haigh, T.; Bernadt, T.; Wall, N.; Hill, H.; Carson, A. Using Serious Games to Facilitate Collaborative Water Management Planning Under Climate Extremes. J. Contemp. Water Res. Educ. 2019, 167, 50–67. [Google Scholar] [CrossRef]
- Gomes, S.; Hermans, L.; Islam, K.; Huda, S.; Hossain, A.; Thissen, W. Capacity Building for Water Management in Peri-Urban Communities, Bangladesh: A Simulation-Gaming Approach. Water 2018, 10, 1704. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, G.; Bichai, F.; Rusca, M. Experiential Learning through Role-Playing: Enhancing Stakeholder Collaboration in Water Safety Plans. Water 2018, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Medema, W.; Mayer, I.; Adamowski, J.; Wals, A.E.J.; Chew, C. The Potential of Serious Games to Solve Water Problems: Editorial to the Special Issue on Game-Based Approaches to Sustainable Water Governance. Water 2019, 11, 2562. [Google Scholar] [CrossRef] [Green Version]
- Medema, W.; Furber, A.; Adamowski, J.; Zhou, Q.; Mayer, I. Exploring the Potential Impact of Serious Games on Social Learning and Stakeholder Collaborations for Transboundary Watershed Management of the St. Lawrence River Basin. Water 2016, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- Marini, D.; Medema, W.; Adamowski, J.; Veissière, S.; Mayer, I.; Wals, A. Socio-Psychological Perspectives on the Potential for Serious Games to Promote Transcendental Values in IWRM Decision-Making. Water 2018, 10, 1097. [Google Scholar] [CrossRef] [Green Version]
- Meinzen-Dick, R.; Janssen, M.A.; Kandikuppa, S.; Chaturvedi, R.; Rao, K.; Theis, S. Playing games to save water: Collective action games for groundwater management in Andhra Pradesh, India. World Dev. 2018, 107, 40–53. [Google Scholar] [CrossRef]
- Goodspeed, R.; Babbitt, C.; Briones, A.L.G.; Pfleiderer, E.; Lizundia, C.; Seifert, C.M. Learning to Manage Common Resources: Stakeholders Playing a Serious Game See Increased Interdependence in Groundwater Basin Management. Water 2020, 12, 1966. [Google Scholar] [CrossRef]
- Aubert, A.H.; Bauer, R.; Lienert, J. A review of water-related serious games to specify use in environmental Multi-Criteria Decision Analysis. Environ. Model. Softw. 2018, 105, 64–78. [Google Scholar] [CrossRef]
- Adamatti, D.F.; Sichman, J.S.; Rabak, C.; Bommel, P.; Ducrot, R. JogoMan: A Prototype Using Multi-Agent-Based Simulation and Role-Playing Games in Water Management. In Proceedings of the Conference on Multi-Agent Modelling for Environmental Management, Les Arcs, Bourg Saint Maurice, France, 21–25 March 2005. [Google Scholar]
- Kocher, M.; Martin-Niedecken, A.L.; Li, Y.; Kinzelbach, W.; Wang, H.; Bauer, R.; Lunin, L. Save the Water—A China water management game project. In Proceedings of the 3rd International GamiFIN Conference (GamiFIN 2019), Levi, Finland, 8–10 April 2019. [Google Scholar] [CrossRef]
- Dray, A.; Perez, P.; Le Page, C.; D’Aquino, P.; White, I. Who wants to terminate the game? The role of vested interests and metaplayers in the ATOLLGAME experience. Simul. Gaming 2007, 38, 494–511. [Google Scholar] [CrossRef]
- Bots, P.W.; van Daalen, C.E. Participatory model construction and model use in natural resource management: A framework for reflection. Syst. Pract. Action Res. 2008, 21, 389. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, R.; Rodriguez, L.; Tortajada, C. Transboundary aquifers between Chihuahua, Coahuila, Nuevo Leon and Tamaulipas, Mexico, and Texas, USA: Identification and categorization. J. Hydrol. Reg. Stud. 2018, 20, 74–102. [Google Scholar] [CrossRef]
- Eastoe, C.J.; Hibbs, B.J.; Olivas, A.G.; Hogan, J.F.; Hawley, J.; Hutchison, W.R. Isotopes in the Hueco Bolson aquifer, Texas (USA) and Chihuahua (Mexico): Local and general implications for recharge sources in alluvial basins. Hydrogeol. J. 2008, 16, 737–747. [Google Scholar] [CrossRef]
- Hibbs, B.; Eastoe, C.; Hawley, J.; Granados-Olivas, A. Multiyear study of the binational Hueco Bolson Aquifer reformulates key conceptual models of groundwater flow. In Proceedings of the 2015 UCOWWR/NIWR/CUAHSI Annual Conference, Water Is Not for Gambling: Utilizing Science to Reduce Uncertainty, Carbondale, IL, USA, 16–18 June 2015; pp. 81–86. [Google Scholar]
- Granados-Olivas, A.; Creel, B.; Sanchez-Flores, E.; Chavez, J.; Hawley, J. Thirty years of groundwater evolution: Challenges and opportunities for binational planning and sustainable management of the transboundary Paso del Norte watersheds. In The US-Mexican Border Environment: Progress and Challenges for Sustainability; Lee, E., Ganster, P., Eds.; San Diego State University Press: San Diego, CA, USA, 2012; pp. 201–217. [Google Scholar]
- Creel, B.J.; Hawley, J.W.; Kennedy, J.F.; Granados-Olivas, A. Groundwater resources of the New Mexico-Texas-Chihuahua border region. New Mex. J. Sci. 2006, 44, 11–29. [Google Scholar]
- Hawley, J.W.; Kennedy, J.F.; Granados-Olivas, A.; Ortiz, M.A.; Hibbs, B.J. Hydrogeologic Framework of the Binational Western Hueco Bolsón-Paso del Norte Area, Texas, New Mexico, and Chihuahua: Overview and Progress Report on Digital-Model Development. In WRRI Technical Completion Report; The New Mexico Water Resources Research Institute: Las Cruces, NM, USA, 2009. [Google Scholar]
- Heywood, C.E.; Yager, R.M. Simulated Ground-Water Flow in the Hueco Bolson, an Alluvial-Basin Aquifer System Near El Paso, Texas; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2003; Volume 2, Number 4108.
- Sheng, Z.; Mace, R.E.; Fahy, M.P. The Hueco Bolson: An aquifer at the crossroads. In Aquifers of West Texas; Texas Water Development Board: Austin, TX, USA, 2001; pp. 66–75. [Google Scholar]
- Sheng, Z. Impacts of groundwater pumping and climate variability on groundwater availability in the Rio Grande Basin. Ecosphere 2013, 4, 1–25. [Google Scholar] [CrossRef]
- Groschen, G.E. Simulation of Ground-Water Flow and the Movement of Saline Water in the Hueco Bolson Aquifer, El Paso, Texas, and Adjacent Areas; US Department of the Interior, US Geological Survey: Reston, VA, USA, 1994.
User | Total Demand | Hueco Bolson Aquifer | Rio Grande | Mesilla-Conejo-Medanos Aquifer | Desalination |
---|---|---|---|---|---|
Ciudad Juárez | 151 | 121 | NA | 30 | NA |
El Paso | 118 | 53 | 30 | 27 | 8 |
Other | NA | 14 | NA | NA | NA |
Total | 269 | 188 | NA | NA | NA |
Recharge Component | Recharge |
---|---|
Mountain front | 9 |
Lateral inflow from Tularosa basin | 0 |
Engineered artificial recharge | 6 |
Seepage from Rio Grande channel | 1 |
Leakage from irrigation & return flow canals | 17 |
Total | 33 |
Ciudad Juárez | El Paso | Other | Total | Units | |
---|---|---|---|---|---|
Population increase | 66% | 33% | NA | NA | |
Reduction in Rio Grande supply | NA | 40% | NA | NA | |
Average demand | 204 | 141 | NA | NA | kAF/yr |
Average HB pumping | 164 | 63 | 14 | 242 | kAF/yr |
Recharge | NA | NA | NA | 33 | kAF/yr |
Depletion rate | NA | NA | NA | 209 | kAF/yr |
Option | Description | Cost (US$/kAF) | Maximum Amount (kAF/yr) |
---|---|---|---|
Desalination | A desalination plant is constructed and operated to jointly serve Ciudad Juárez and El Paso and would draw from brackish portions of the HB. | 518 | CJ: total demand EP: total demand |
Aquifer recharge with treated wastewater | Treated tertiary effluent is applied to recharge basins overlying the HB to recharge the freshwater aquifer and reduce brackish water intrusion. | 1000 | CJ: 133 EP: 71 |
Direct potable reuse | Treated tertiary effluent is piped to water treatment plants and blended with current water supplies. | 850 | CJ: 133 EP: 71 |
Imported water | Groundwater is secured in remote aquifers and pipelines and pumping plants are constructed. | 2400 | CJ: total demand EP: total demand |
Incentivized household water conservation | Educational and financial incentive campaigns are implemented to reduce household and commercial water use. | 367 | CJ: 15 EP: 30 |
Reduce infrastructure leaks | The cities repair leaking water distribution systems and continue leak detection and replacement campaigns. | 2295 | CJ: 27 EP: 4 |
Option | CJ Portfolio | EP Portfolio |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Participation | Mexico | US | Total |
---|---|---|---|
any session | 7 | 13 | 20 |
more than 1 session | 6 | 12 | 18 |
more than 2 sessions | 5 | 10 | 15 |
more than 3 sessions | 5 | 9 | 14 |
more than 4 sessions | 2 | 4 | 6 |
all 6 sessions | 1 | 2 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayer, A.; Heyman, J.; Granados-Olivas, A.; Hargrove, W.; Sanderson, M.; Martinez, E.; Vazquez-Galvez, A.; Alatorre-Cejudo, L.C. Investigating Management of Transboundary Waters through Cooperation: A Serious Games Case Study of the Hueco Bolson Aquifer in Chihuahua, Mexico and Texas, United States. Water 2021, 13, 2001. https://doi.org/10.3390/w13152001
Mayer A, Heyman J, Granados-Olivas A, Hargrove W, Sanderson M, Martinez E, Vazquez-Galvez A, Alatorre-Cejudo LC. Investigating Management of Transboundary Waters through Cooperation: A Serious Games Case Study of the Hueco Bolson Aquifer in Chihuahua, Mexico and Texas, United States. Water. 2021; 13(15):2001. https://doi.org/10.3390/w13152001
Chicago/Turabian StyleMayer, Alex, Josiah Heyman, Alfredo Granados-Olivas, William Hargrove, Mathew Sanderson, Erica Martinez, Adrian Vazquez-Galvez, and Luis Carlos Alatorre-Cejudo. 2021. "Investigating Management of Transboundary Waters through Cooperation: A Serious Games Case Study of the Hueco Bolson Aquifer in Chihuahua, Mexico and Texas, United States" Water 13, no. 15: 2001. https://doi.org/10.3390/w13152001
APA StyleMayer, A., Heyman, J., Granados-Olivas, A., Hargrove, W., Sanderson, M., Martinez, E., Vazquez-Galvez, A., & Alatorre-Cejudo, L. C. (2021). Investigating Management of Transboundary Waters through Cooperation: A Serious Games Case Study of the Hueco Bolson Aquifer in Chihuahua, Mexico and Texas, United States. Water, 13(15), 2001. https://doi.org/10.3390/w13152001