An Evaluation of Urban Resilience to Flooding
Abstract
:1. Introduction
2. Methodology
2.1. Establish an ISM Model
- 1.
- Establish an adjacency relationship matrix.
- 2.
- Reachability matrix solution.
- 3.
- Determining the hierarchical evaluation network.
2.2. ANP Method
- Extracting the features of a problem.
- 2.
- Construct a pairwise comparison judgment matrix.
- 3.
- Calculate eigenvalues and eigenvectors.
- 4.
- Checking consistency.
- 5.
- Initialize supermatrix formation and supermatrix solution.
3. Empirical Research
3.1. Study Area
3.2. Determine the Relationship between ISM-Based Evaluation Indicators
- Determine the evaluation index system.
- 2.
- Establish adjacency matrix.
- 3.
- Calculation of reachable matrix.
3.3. ANP Model of Urban Flood Resilience
3.4. Results and Analysis
4. Discussion
5. Conclusions
- This study determined an indicator system for evaluating urban flood resilience and constructed an evaluation framework based on the ISM-ANP method. Using the ISM analysis method, the evaluation index system was divided into four layers, and V1, V3, V8, V10, V11, and V12 were determined as direct surface factors; in other words, these indicators will directly affect urban flood resilience and are classified in the upper layer of the ISM hierarchical structure. Factors V4, V5, and V6 and V7 and V13 were on the second and third layers, respectively, and identified as intermediate indirect factors. V2 and V9 were defined as deep-level fundamental factors, placed on the fourth layer of the ISM structure, and are the fundamental factors that affect the city’s ability to withstand floods.
- This study combines two model methods, namely, the interpretation structure model (ISM) and the analytic network process (ANP), and enriches the research content in the field of flood resilience. When the ISM method is applied, it is necessary to find experts in relevant fields to compare and judge the relationship between the selected indicators. On this basis, the ANP method uses expert survey methods to get the judgment matrix among indicators. Finally, the Super Decision software is used to get the weight of each indicator. However, because the ISM-ANP model relies on the personal experience, knowledge, and professional judgment of the decision maker, there is a certain degree of subjectivity. Therefore, when the model is actually used, the results may be different due to the difference in the personal level of the decision maker. Using expert groups to judge the relationship between factors may be limited by personal values or experience and knowledge. Different experts may have differences. It is more cumbersome to synthesize expert opinions, which also affect the final model analysis results.
- In this study, three cities in the Yangtze River Basin, namely Wuhan, Nanjing, and Hefei, were selected to quantify the interdependence among the evaluation indicators of urban flood resilience. ANP was used to calculate the weights and priority of the indicators among the different cities. This analysis process can be used as a new evaluation framework that can promote the use of multiple indicators to evaluate urban flood resilience.
- Moreover, through calculation and analysis, it was found that the rescue capacity (V2) plays a leading role in the flood resilience of the three cities, with the highest weight and the largest influence. For Wuhan, water distribution and water resource protection also have a major impact on flood resilience. For the city of Nanjing, reasonable spatial planning and land use are more important, and its water distribution also has a certain influence on the flood resilience. In Hefei, the level of infrastructure investment and public resources occupy relatively important positions, which have a greater impact on urban flood resilience.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Unweighted Supermatrix for Compatibility before Convergence of Dimensions
V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | ||
Wuhan | V1 | 0.071 | 0.066 | 0.064 | 0.062 | 0.066 | 0.065 | 0.069 | 0.061 | 0.058 | 0.052 | 0.051 | 0.055 | 0.056 |
V2 | 0.248 | 0.243 | 0.234 | 0.236 | 0.241 | 0.234 | 0.267 | 0.234 | 0.255 | 0.262 | 0.264 | 0.258 | 0.255 | |
V3 | 0.061 | 0.059 | 0.058 | 0.058 | 0.057 | 0.058 | 0.062 | 0.056 | 0.053 | 0.049 | 0.047 | 0.047 | 0.048 | |
V4 | 0.122 | 0.115 | 0.115 | 0.116 | 0.116 | 0.115 | 0.123 | 0.110 | 0.108 | 0.123 | 0.120 | 0.122 | 0.122 | |
V5 | 0.041 | 0.086 | 0.087 | 0.088 | 0.086 | 0.088 | 0.009 | 0.084 | 0.081 | 0.073 | 0.069 | 0.070 | 0.070 | |
V6 | 0.131 | 0.126 | 0.125 | 0.125 | 0.126 | 0.125 | 0.136 | 0.148 | 0.143 | 0.174 | 0.203 | 0.191 | 0.193 | |
V7 | 0.042 | 0.039 | 0.045 | 0.040 | 0.040 | 0.041 | 0.044 | 0.044 | 0.044 | 0.034 | 0.032 | 0.033 | 0.033 | |
V8 | 0.050 | 0.047 | 0.049 | 0.049 | 0.048 | 0.049 | 0.053 | 0.048 | 0.048 | 0.042 | 0.038 | 0.039 | 0.039 | |
V9 | 0.029 | 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | 0.030 | 0.027 | 0.027 | 0.024 | 0.023 | 0.025 | 0.024 | |
V10 | 0.041 | 0.038 | 0.039 | 0.039 | 0.038 | 0.039 | 0.041 | 0.037 | 0.036 | 0.032 | 0.031 | 0.032 | 0.032 | |
V11 | 0.082 | 0.078 | 0.079 | 0.078 | 0.076 | 0.079 | 0.084 | 0.073 | 0.074 | 0.065 | 0.061 | 0.064 | 0.065 | |
V12 | 0.027 | 0.026 | 0.026 | 0.026 | 0.026 | 0.026 | 0.028 | 0.027 | 0.025 | 0.022 | 0.020 | 0.020 | 0.021 | |
V13 | 0.054 | 0.049 | 0.051 | 0.053 | 0.052 | 0.054 | 0.054 | 0.053 | 0.047 | 0.046 | 0.040 | 0.043 | 0.043 | |
Nanjing | V1 | 0.051 | 0.055 | 0.048 | 0.057 | 0.053 | 0.056 | 0.053 | 0.053 | 0.056 | 0.053 | 0.053 | 0.055 | 0.053 |
V2 | 0.290 | 0.205 | 0.279 | 0.205 | 0.222 | 0.222 | 0.222 | 0.222 | 0.222 | 0.224 | 0.222 | 0.222 | 0.215 | |
V3 | 0.033 | 0.037 | 0.035 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.035 | |
V4 | 0.083 | 0.094 | 0.086 | 0.094 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.090 | |
V5 | 0.056 | 0.064 | 0.059 | 0.064 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.062 | 0.063 | 0.062 | 0.061 | |
V6 | 0.066 | 0.077 | 0.070 | 0.077 | 0.075 | 0.074 | 0.075 | 0.075 | 0.074 | 0.075 | 0.075 | 0.075 | 0.073 | |
V7 | 0.029 | 0.033 | 0.030 | 0.033 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.031 | |
V8 | 0.049 | 0.047 | 0.042 | 0.046 | 0.046 | 0.045 | 0.046 | 0.046 | 0.045 | 0.046 | 0.046 | 0.045 | 0.044 | |
V9 | 0.113 | 0.128 | 0.116 | 0.128 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.122 | |
V10 | 0.026 | 0.030 | 0.027 | 0.030 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.028 | |
V11 | 0.054 | 0.061 | 0.056 | 0.061 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.058 | |
V12 | 0.103 | 0.117 | 0.106 | 0.117 | 0.114 | 0.114 | 0.114 | 0.114 | 0.114 | 0.114 | 0.114 | 0.114 | 0.140 | |
V13 | 0.046 | 0.052 | 0.047 | 0.052 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.050 | |
Hefei | V1 | 0.206 | 0.113 | 0.152 | 0.169 | 0.186 | 0.170 | 0.144 | 0.154 | 0.172 | 0.171 | 0.212 | 0.142 | 0.190 |
V2 | 0.245 | 0.312 | 0.271 | 0.279 | 0.306 | 0.268 | 0.282 | 0.290 | 0.256 | 0.297 | 0.254 | 0.257 | 0.262 | |
V3 | 0.063 | 0.069 | 0.069 | 0.062 | 0.060 | 0.065 | 0.070 | 0.066 | 0.067 | 0.061 | 0.063 | 0.073 | 0.062 | |
V4 | 0.032 | 0.037 | 0.035 | 0.036 | 0.031 | 0.033 | 0.037 | 0.033 | 0.034 | 0.032 | 0.033 | 0.037 | 0.033 | |
V5 | 0.028 | 0.031 | 0.029 | 0.027 | 0.025 | 0.027 | 0.029 | 0.027 | 0.028 | 0.025 | 0.026 | 0.030 | 0.026 | |
V6 | 0.050 | 0.054 | 0.053 | 0.054 | 0.046 | 0.052 | 0.055 | 0.051 | 0.053 | 0.049 | 0.050 | 0.059 | 0.048 | |
V7 | 0.036 | 0.042 | 0.039 | 0.037 | 0.034 | 0.039 | 0.041 | 0.037 | 0.038 | 0.035 | 0.036 | 0.042 | 0.035 | |
V8 | 0.070 | 0.082 | 0.075 | 0.071 | 0.067 | 0.073 | 0.078 | 0.074 | 0.075 | 0.071 | 0.071 | 0.080 | 0.069 | |
V9 | 0.056 | 0.063 | 0.060 | 0.058 | 0.053 | 0.058 | 0.064 | 0.058 | 0.061 | 0.056 | 0.057 | 0.066 | 0.055 | |
V10 | 0.017 | 0.018 | 0.019 | 0.020 | 0.016 | 0.018 | 0.020 | 0.018 | 0.019 | 0.017 | 0.017 | 0.019 | 0.017 | |
V11 | 0.043 | 0.048 | 0.046 | 0.046 | 0.040 | 0.044 | 0.048 | 0.046 | 0.046 | 0.042 | 0.042 | 0.049 | 0.042 | |
V12 | 0.022 | 0.024 | 0.023 | 0.022 | 0.021 | 0.023 | 0.023 | 0.021 | 0.022 | 0.021 | 0.021 | 0.024 | 0.020 | |
V13 | 0.134 | 0.106 | 0.130 | 0.120 | 0.113 | 0.131 | 0.110 | 0.124 | 0.128 | 0.122 | 0.119 | 0.120 | 0.140 |
Appendix B. Limit Supermatrix for Compatibility before Convergence of Dimensions
V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | ||
Wuhan | V1 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 |
V2 | 0.245 | 0.245 | 0.245 | 0.245 | 0.245 | 0.245 | 0.245 | 0.245 | 0.245 | 0.245 | 0.245 | 0.245 | 0.245 | |
V3 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | 0.056 | |
V4 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | |
V5 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | 0.078 | |
V6 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | |
V7 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | 0.039 | |
V8 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | |
V9 | 0.027 | 0.027 | 0.027 | 0.027 | 0.027 | 0.027 | 0.027 | 0.027 | 0.027 | 0.027 | 0.027 | 0.027 | 0.027 | |
V10 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | 0.037 | |
V11 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | |
V12 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | |
V13 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | |
Nanjing | V1 | 0.054 | 0.054 | 0.054 | 0.054 | 0.054 | 0.054 | 0.054 | 0.054 | 0.054 | 0.054 | 0.054 | 0.054 | 0.054 |
V2 | 0.222 | 0.222 | 0.222 | 0.222 | 0.222 | 0.222 | 0.222 | 0.222 | 0.222 | 0.222 | 0.222 | 0.222 | 0.222 | |
V3 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | |
V4 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | |
V5 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | |
V6 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | |
V7 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | |
V8 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046 | |
V9 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | |
V10 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | |
V11 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | |
V12 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | 0.116 | |
V13 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | |
Hefei | V1 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 |
V2 | 0.279 | 0.279 | 0.279 | 0.279 | 0.279 | 0.279 | 0.279 | 0.279 | 0.279 | 0.279 | 0.279 | 0.279 | 0.279 | |
V3 | 0.066 | 0.066 | 0.066 | 0.066 | 0.066 | 0.066 | 0.066 | 0.066 | 0.066 | 0.066 | 0.066 | 0.066 | 0.066 | |
V4 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | 0.034 | |
V5 | 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | 0.028 | |
V6 | 0.052 | 0.052 | 0.052 | 0.052 | 0.052 | 0.052 | 0.052 | 0.052 | 0.052 | 0.052 | 0.052 | 0.052 | 0.052 | |
V7 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | 0.038 | |
V8 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | 0.075 | |
V9 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | 0.059 | |
V10 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | |
V11 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | 0.045 | |
V12 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | |
V13 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 | 0.122 |
Appendix C. Brief Description of Profiles of the Experts
Characteristics | n | % | ||
Experts (n = 8) | Experience | Up to 5 years | 3 | 37.5 |
5–10 years | 2 | 25 | ||
More than 10 years | 3 | 37.5 | ||
Expertise in | Urban resilience | 2 | 25 | |
Flood Management | 3 | 37.5 | ||
Environment, health, and safety | 2 | 25 | ||
Job position | Academician | 3 | 37.5 | |
Urban planner | 2 | 25 | ||
Municipal managers | 3 | 37.5 |
Appendix D. Questionnaire for Expert Consultation on Urban Flood Resilience Evaluation Index
- The following is the indicator system initially determined in our research. Please rate the importance of the indicators. Each item is divided into 5 levels according to the importance. They are 5 = most important, 4 = very important, 3 = somewhat important, 2. = not important, 1 = least important. Please rate the relative importance of the indicators and tick the corresponding ☐.
- If you think this indicator is not needed, you can mark “delete” in the edit column.
- If you think the description of the indicator is incorrect, please modify it in the content modification column.
- Additional indicators please fill in the blanks.
Primary Indicators | Primary Indicators | Content Modification |
Significance
5 4 3 2 1 |
Economic System | The level of infrastructure investment | ☐ ☐ ☐ ☐ ☐ | |
Rescue capabilities | ☐ ☐ ☐ ☐ ☐ | ||
Social security | ☐ ☐ ☐ ☐ ☐ | ||
Natural Environment | Environmentally sensitive area | ☐ ☐ ☐ ☐ ☐ | |
Water resource protection | ☐ ☐ ☐ ☐ ☐ | ||
Water distribution | ☐ ☐ ☐ ☐ ☐ | ||
Government and Organization | The flood control plan | ☐ ☐ ☐ ☐ ☐ | |
Rational spatial planning | ☐ ☐ ☐ ☐ ☐ | ||
Technological Capability | Weather Forecast Overview | ☐ ☐ ☐ ☐ ☐ | |
Flood resource recovery | ☐ ☐ ☐ ☐ ☐ | ||
Built Environment | Spatial structure of land use | ☐ ☐ ☐ ☐ ☐ | |
Public resource level | ☐ ☐ ☐ ☐ ☐ |
References
- Laurien, F.; Hochrainer-Stigler, S.; Keating, A.; Campbell, K.; Mechler, R.; Czajkowski, J. A typology of community flood resilience. Reg. Environ. Chang. 2020, 20, 24. [Google Scholar] [CrossRef] [Green Version]
- China Annual Flood and Drought Disaster Report. Available online: http://www.mwr.gov.cn/sj/#tjgb (accessed on 23 February 2021).
- Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef]
- Yin, J.; Gentine, P.; Sha, Z.; Sullivan, S.C.; Guo, S. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 2018, 9, 4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutter, S.L.; Burton, C.G.; Emrich, C.T. Disaster Resilience Indicators for Benchmarking Baseline Conditions. J. Homel. Secur. Emerg. Manag. 2010, 7. [Google Scholar] [CrossRef]
- Sun, H.; Cheng, X.; Dai, M. Regional flood disaster resilience evaluation based on analytic network process: A case study of the Chaohu Lake Basin, Anhui Province, China. Nat. Hazards 2016, 82, 39–58. [Google Scholar] [CrossRef]
- Xu, W.; Zhong, M.; Hong, Y.; Lin, K. Enhancing community resilience to urban floods with a network structuring model. Saf. Sci. 2020, 127, 104699. [Google Scholar] [CrossRef]
- Malhi, G.S.; Das, P.; Bell, E.; Mattingly, G.; Mannie, Z. Modelling resilience in adolescence and adversity: A novel framework to inform research and practice. Transl. Psychiatry 2019, 9, 316. [Google Scholar] [CrossRef] [Green Version]
- Batica, J.; Gourbesville, P. Methodology for Flood Resilience Index Development. In Proceedings of the International Conference on Flood Resilience Experiences in Asia & Europe–ICFR, Exeter, UK, 5–7 September 2013. [Google Scholar]
- Liao, K.-H. A Theory on Urban Resilience to Floods—A Basis for Alternative Planning Practices. Ecol. Soc. 2012, 17, 48. [Google Scholar] [CrossRef]
- Walker, B.; Hollin, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, Adaptability and Transformability in Social-ecological Systems. Ecol. Soc. 2004, 14, 1698–1707. [Google Scholar] [CrossRef]
- Allen, M.; Gillespie-Marthaler, L.; Abkowitz, M.; Camp, J. Evaluating flood resilience in rural communities: A case-based assessment of Dyer County, Tennessee. Nat. Hazards 2020, 101, 173–194. [Google Scholar] [CrossRef]
- Yu, K.J.; Xu, T.; Li, D.H.; Wang, C.L. Research progress on resilience of urban water system. Urban Plan. Forum 2015, 1, 75–83. [Google Scholar]
- Cai, J.M.; Guo, H.; Wang, D.G. A Review of Resilient City Studies Abroad. Prog. Geogr. 2012, 31, 1245–1255. [Google Scholar]
- Pearson, J.; Punzo, G.; Mayfield, M.; Brighty, G.; Parsons, A.; Collins, P.; Jeavons, S.; Tagg, A. Flood resilience: Consolidating knowledge between and within critical infrastructure sectors. Environ. Syst. Decis. 2018, 38, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Heinzlef, C.; Becue, V.; Serre, D. Operationalizing urban resilience to floods in embanked territories—Application in Avignon, Provence Alpes Cte d’azur region. Saf. Sci. 2019, 118, 181–193. [Google Scholar] [CrossRef]
- Liu, G.; Yuan, X.M.; Huang, J.; Wang, H.M. Urban flood resilience assessment based on PSR framework—Take the Su-Xi-Chang region as an example. Resour. Dev. Mar. 2018, 34, 593–598. [Google Scholar]
- Adedeji, T.; Proverbs, D.; Xiao, H.; Cobbing, P.; Oladokun, V. Making Birmingham a Flood Resilient City: Challenges and Opportunities. Water 2019, 11, 1699. [Google Scholar] [CrossRef] [Green Version]
- Lima, C.H.; Lall, U.; Troy, T.; Devineni, N. A climate informed model for nonstationary flood risk prediction: Application to Negro River at Manaus, Amazonia. J. Hydrol. 2015, 522, 594–602. [Google Scholar] [CrossRef]
- Lai, C.; Shao, Q.; Chen, X.; Wang, Z.; Zhou, X.; Yang, B.; Zhang, L. Flood risk zoning using a rule mining based on ant colony algorithm. J. Hydrol. 2016, 542, 268–280. [Google Scholar] [CrossRef]
- Koks, E.; Jongman, B.; Husby, T.; Botzen, W. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environ. Sci. Policy 2015, 47, 42–52. [Google Scholar] [CrossRef]
- Frigerio, I.; Amicis, M.D. Mapping social vulnerability to natural hazards in Italy: A suitable tool for risk mitigation strategies. Environ. Sci. Policy 2016, 63, 187–196. [Google Scholar] [CrossRef]
- Evers, M.; Almoradie, A.; de Brito, M.M. Enhancing Flood Resilience Through Collaborative Modelling and Multi-criteria Decision Analysis (MCDA). In Urban Disaster Resilience and Security; Springer: Berlin/Heidelberg, Germany, 2018; pp. 221–236. [Google Scholar]
- Serre, D.; Heinzlef, C. Assessing and mapping urban resilience to floods with respect to cascading effects through critical infrastructure networks. Int. J. Disaster Risk Reduct. 2018, 30, 235–243. [Google Scholar] [CrossRef]
- Han, S.L.; Li, T.; Zhuang, M.J. Discussion on evaluation index system of urban flood risk management level. China Water Wastewater 2015, 31, 7–10. [Google Scholar]
- Xu, T.; Wang, C.L.; Hong, M. Evaluation of urban waterlogging resilience in China based on grey box model. City Probl. 2015, 4, 2–11. [Google Scholar]
- Wingfield, J.; Bell, M. Improving the Flood Resilience of Buildings through Improved Materials, Methods and Details; CiteSeer: Princeton, NJ, USA, 2005; pp. 1–62. [Google Scholar]
- Huang, J.; Shen, J.W.; Yuan, X.M.; Wang, H.M. Simulation of urban flood toughness based on system dynamics—Take Nanjing as an example. Chin. J. Mech. Eng. 2020, 29, 2519–2529. [Google Scholar]
- Hyun, K.; Marcouiller, D.W.; Woosnam, K.M. Rescaling social dynamics in climate change: The implications of cumulative exposure, climate justice, and community resilience. Geoforum 2018, 96, 129–140. [Google Scholar]
- Cui, P.; Li, D. Measuring the Disaster Resilience of an Urban Community Using ANP-FCE Method from the Perspective of Capitals. Soci. Sci. Q. 2019, 100, 2059–2077. [Google Scholar] [CrossRef]
- Lin, L.; Wu, Z.; Liang, Q. Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework. Nat. L Hazards 2019, 97, 455–475. [Google Scholar] [CrossRef]
- Seekao, C.; Pharino, C. Assessment of the flood vulnerability of shrimp farms using a multicriteria evaluation and GIS: A case study in the Bangpakong Sub-Basin, Thailand. Environ. Earth Sci. 2016, 75, 308. [Google Scholar] [CrossRef]
- Rehman, S.; Sahana, M.; Hong, H.; Sajjad, H.; Ahmed, B.B. A systematic review on approaches and methods used for flood vulnerability assessment: Framework for future research. Nat. Hazards 2019, 96, 975–998. [Google Scholar] [CrossRef]
- Cao, Q. Study on Management of Urban Waterlogging Disaster in Wuhan. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2018. [Google Scholar]
- Bruijn, K. Resilience and Flood Risk Management: A Systems Approach Applied to Lowland Rivers; Delft University Press: Delft, The Netherlands, 2005. [Google Scholar]
- Xu, W.; Xiang, L.; Proverbs, D. Assessing Community Resilience to Urban Flooding in Multiple Types of the Transient Population in China. Water 2020, 12, 2784. [Google Scholar] [CrossRef]
- Zhou, L.; Yuan, W. Disaster Management Marching toward Resilient City. Comp. Econ. Soc. Syst. 2017, 5, 22–33. [Google Scholar]
- Xie, F.; Liu, M.; Nie, Q. The interface risk assessment of urban rail transit PPP project based on ISM-ANP-Fuzzy. J. Civ. Eng. Manag. 2018, 35, 167–172. [Google Scholar]
- Attri, R.; Dev, N.; Sharma, V. Interpretive Structural Modelling (ISM) approach: An Overview. Res. J. Manag. Sci 2013, 2, 3–8. [Google Scholar]
- Zhou, X.; Shi, Y.; Deng, X.; Deng, Y. D-DEMATEL: A new method to identify critical success factors in emergency management. Saf. Sci. 2017, 91, 93–104. [Google Scholar] [CrossRef]
- Xu, W.P.; Xiang, L.L. Community resilience evaluation of urban floating population based on population size correlation. Urban Dev. Res. 2020, 27, 94–99. [Google Scholar]
- Wnag, L.F. Network analysis method (ANP) theory and algorithm. Syst. Eng. Theory Pract. 2001, 3, 44–50. [Google Scholar]
- Chang, A.P.; Lin, J.D.; Chou, C.C. Analytic Network Process (ANP)-Selection of the Best Alternative in the Promotion of Participation in Infrastructure Projects. Int. J. Pavement Res. Technol. 2013, 6, 612–619. [Google Scholar]
- Meade, L.M.; Sarkis, J. Analyzing organizational project alternatives for agile manufacturing processes: An analytical network approach. Int. J. Prod. Res. 1999, 37, 241–261. [Google Scholar] [CrossRef]
- Wang, Y.G.; Wang, C.M. Influencing Factors of Airline Safety Performance Based on ISM and ANP. J. Saf. Environ. 2013, 13, 221–226. [Google Scholar]
- Guo, R.P.; Zou, J.Q.; Wang, Q.; Gai, W.Y.; Quan, H.C. Study on flood disaster sensitivity evaluation of Yanbian prefecture based on GIS and AHP technology. Shanxi Archit. 2020, 46, 168–169. [Google Scholar]
- Zhao, Q.F. Resilience Assessment of Urban Waterlogging Disaster and Its Improvement Strategy. Master’s Thesis, Institutes of Technology of Henan, Zhengzhou, China, 2019. [Google Scholar]
- Ren, J.C.; Xie, S.B.; Liu, H.; Sun, B. Study on urban waterlogging control strategy under sponge city background. Water Resour. Plann. Des. 2020, 11, 35–38. [Google Scholar]
- Xiao, N. Urban Waterlogging Elastic Analysis and Prevention Measures Study. Master’s Thesis, Dalian University of Technology, Dalian, China, 2019. [Google Scholar]
Scale | Concept Definition | Focus |
---|---|---|
Single building | The ability of buildings to resist external and internal damage during floods (Bowker and Wallingford, 2005). | Resistance |
City scale | Urban resilience to floods is defined as a city’s capacity to tolerate flooding and to reorganize should physical damage and socioeconomic disruption occur, so as to prevent deaths and injuries and maintain current socioeconomic identity, and to use cyclical floods as a learning opportunity to prepare cities for catastrophic floods (Liao, 2012). | Resilience and learning ability |
Watershed scale | The resilience of the system can be defined as: the ability of an area to recover from floods; the resistance of the system can be defined as: the ability to let water flow through without causing floods (De Bruijn, 2005). | Resilience |
Regional scale | (1) Spatial flood resilience refers to land management and storm runoff management measures based on floodplain zoning and urban greening. (2) Structural flood resilience refers to permanent flood control structures. (3) Social flood resilience refers to the establishment of sound institutions and management systems that consolidate the ability to prepare for and respond to uncertainties, changes, and hazards. (4) Flood resilience refers to the ability to withstand and recover from flood disaster through financial insurance assistance and government agency assistance (Tourbier, 2012). | Social resilience and spatial characteristics |
Scale of Importance | Linguistic Term | Explanation |
---|---|---|
1 | Equal importance | Two indicators contribute equally to the objective |
3 | Moderate importance | Judgment slightly favors one indicator over another |
5 | Strong importance | Judgment strongly favors one indicator over another |
7 | Very strong | An indicator is favored very strongly over another |
9 | Extreme strong | An indicator is favored extremely strongly over another |
2, 4, 6, 8 | Represents the intermediate value of the above adjacent judgment |
Dimension | Indicator | Description | Symbol |
---|---|---|---|
Economic System | The level of infrastructure investment | Investment in infrastructure construction such as providing services to improve the unfavorable external environment. | V1 |
Rescue capabilities | Relief and rescue capability. | V2 | |
Social security | Ensure that citizens with no income, low income, and various accidental disasters can survive. | V3 | |
Natural Environment | Environmentally sensitive area | High-potential areas for landslides, flooding, and other hazards. | V4 |
Water resource protection | High-potential areas for landslides, flooding, and other hazards. | V5 | |
Water distribution | Distribution of rivers, seas, and lakes. | V6 | |
Government and Organization | The flood control plan | Developed the hardware and software plans to prevent the flood shocks. | V7 |
Resource allocation capacity | Water resources distribution and regulation Capability. | V8 | |
Rational spatial planning | Long-term planning and overall planning of space resources and layout. | V9 | |
Technological Capability | Weather forecast overview | The forecasts and preparedness capacities. | V10 |
Flood resource recovery | Implement effective flood management and rationally allocate flood resources. | V11 | |
Built Environment | Spatial structure of land use | Spatial structures of the urban areas and regional areas. | V12 |
Public resource level | Life-support systems and infrastructure capability. | V13 |
Influencing Factor Vi | Reachability Set (Ri) | Antecedent Set (Ai) | Intersection Set (Ri ∩ Ai) | |
---|---|---|---|---|
V1 | 1 | 1, 4, 13 | 1 | V1 |
V2 | 2, 5, 6, 7, 10, 11, 12 | 2 | 2 | |
V3 | 3 | 3, 4, 9, 13 | 3 | V3 |
V4 | 1, 3, 4, 8, 11, 12 | 4, 9, 13 | 4 | |
V5 | 5, 10, 12 | 2, 5, 7, 9 | 5 | |
V6 | 6, 10, 11 | 2, 6, 7, 9, 13 | 6 | |
V7 | 5, 6, 7, 10, 11, 12 | 2, 7, 9 | 7 | |
V8 | 8 | 4, 8, 9, 13 | 8 | V8 |
V9 | 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | 9 | 9 | |
V10 | 10 | 2, 5, 6, 7, 9, 10, 13 | 10 | V10 |
V11 | 11 | 2, 4, 6, 7, 9, 11, 13 | 11 | V11 |
V12 | 12 | 2, 4, 6, 7, 9, 12, 13 | 12 | V12 |
V13 | 1, 3, 4, 6, 8, 10, 11, 12, 13 | 13 | 13 |
Indicators | Wuhan | Nanjing | Hefei |
---|---|---|---|
V1 | 0.063 | 0.054 | 0.161 |
V2 | 0.245 | 0.222 | 0.279 |
V3 | 0.056 | 0.036 | 0.066 |
V4 | 0.117 | 0.092 | 0.034 |
V5 | 0.078 | 0.063 | 0.028 |
V6 | 0.140 | 0.075 | 0.052 |
V7 | 0.039 | 0.032 | 0.038 |
V8 | 0.047 | 0.046 | 0.075 |
V9 | 0.027 | 0.125 | 0.059 |
V10 | 0.037 | 0.029 | 0.018 |
V11 | 0.075 | 0.060 | 0.045 |
V12 | 0.025 | 0.116 | 0.022 |
V13 | 0.050 | 0.051 | 0.122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Cong, J.; Proverbs, D.; Zhang, L. An Evaluation of Urban Resilience to Flooding. Water 2021, 13, 2022. https://doi.org/10.3390/w13152022
Xu W, Cong J, Proverbs D, Zhang L. An Evaluation of Urban Resilience to Flooding. Water. 2021; 13(15):2022. https://doi.org/10.3390/w13152022
Chicago/Turabian StyleXu, Wenping, Jinting Cong, David Proverbs, and Linlan Zhang. 2021. "An Evaluation of Urban Resilience to Flooding" Water 13, no. 15: 2022. https://doi.org/10.3390/w13152022
APA StyleXu, W., Cong, J., Proverbs, D., & Zhang, L. (2021). An Evaluation of Urban Resilience to Flooding. Water, 13(15), 2022. https://doi.org/10.3390/w13152022