Towards Regional Scale Stormwater Flood Management Strategies through Rapid Preliminary Intervention Screening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rapid Flood Modelling Using Cellular Automata
2.2. San Francisco Bay Area Case Study
2.3. Developing Intervention Scenarios for the Bay Area
2.4. Valuing the Flood Management Benefits of Interventions
3. Results
3.1. Evaluating Flood Depths Across a Range of Storm Return Periods
3.2. Evaluating Flood Depths Across Scenarios
3.3. Valuing the Flood Management Benefits of Interventions
4. Discussion
4.1. Rapid Modelling as a Component of Regional Scale Stormwater Management
4.2. What Do These Results Mean for Stormwater Interventions in the Bay Area?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Committee on Climate Change. UK Climate Change Risk Assessment 2017 Synthesis Report. 2017. Available online: https://www.theccc.org.uk/wp-content/uploads/2016/07/UK-CCRA-2017-Synthesis-Report-Committee-on-Climate-Change.pdf (accessed on 4 July 2017).
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 2018, 13, 034009. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.; Harris, R.J.; Hunter, A.M.; Williams, N. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Carter, J.G.; White, I.; Richards, J. Sustainability appraisal and flood risk management. Environ. Impact Assess. Rev. 2009, 29, 7–14. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Brown, R.R. The water sensitive city: Principles for practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallegatte, S.; Green, C.; Nicholls, R.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Djordjević, S.; Butler, D.; Gourbesville, P.; Mark, O.; Pasche, E. New policies to deal with climate change and other drivers impacting on resilience to flooding in urban areas: The CORFU approach. Environ. Sci. Policy 2011, 14, 864–873. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.; Ward, S.; Sweetapple, C.; Imani, M.; Diao, K.; Farmani, R.; Fu, G. Reliable, resilient and sustainable water management: The Safe & SuRe approach. Glob. Challenges 2016, 1, 63–77. [Google Scholar] [CrossRef]
- Pitt, M. 2008 The Pitt review: Learning lessons from the 2007 floods. Available online: https://webarchive.nationalarchives.gov.uk/20100812084907/http://archive.cabinetoffice.gov.uk/pittreview/_/media/assets/www.cabinetoffice.gov.uk/flooding_review/pitt_review_full%20pdf.pdf (accessed on 23 July 2021).
- EWA. EWA Expert Meeting on Pluvial Flood Risk in Europe Report. 2009. Available online: http://www.dwa.de/portale/ewa/ewa.nsf/C125723B0047EC38/B5A125AF564B24E2C1257750002C1FD9/$FILE/EWAexpertmeetingonpluvialflood_FinalReport.pdf (accessed on 8 March 2018).
- Löwe, R.; Urich, C.; Domingo, N.S.; Mark, O.; Deletic, A.; Arnbjerg-Nielsen, K. Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations—A new generation of urban planning tools. J. Hydrol. 2017, 550, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Wing, O.E.J.; Bates, P.D.; Smith, A.M.; Sampson, C.C.; A Johnson, K.; Fargione, J.; Morefield, P. Estimates of present and future flood risk in the conterminous United States. Environ. Res. Lett. 2018, 13, 034023. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.; Hatt, B.E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- Woods Ballard, B.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SuDS Manual (C753); CIRIA: London, UK, 2015. [Google Scholar]
- Fenner, R. Spatial Evaluation of Multiple Benefits to Encourage Multi-Functional Design of Sustainable Drainage in Blue-Green Cities. Water 2017, 9, 953. [Google Scholar] [CrossRef] [Green Version]
- Kuller, M.; Farrelly, M.; Deletic, A.; Bach, P.M. Building effective Planning Support Systems for green urban water infrastructure—Practitioners’ perceptions. Environ. Sci. Policy 2018, 89, 153–162. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2014, 12, 525–542. [Google Scholar] [CrossRef]
- Jones, M.R.; Fowler, H.; Kilsby, C.; Blenkinsop, S. An assessment of changes in seasonal and annual extreme rainfall in the UK between 1961 and 2009. Int. J. Clim. 2012, 33, 1178–1194. [Google Scholar] [CrossRef]
- Westra, S.J.; Fowler, H.; Evans, J.; Alexander, L.; Berg, P.; Johnson, F.; Kendon, E.J.; Lenderink, G.; Roberts, N.M. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 2014, 52, 522–555. [Google Scholar] [CrossRef]
- Meehl, G.A.; Karl, T.; Easterling, D.R.; Changnon, S.; Pielke, R.; Changnon, D.; Evans, J.; Groisman, P.Y.; Knutson, T.R.; Kunkel, K.E.; et al. An Introduction to Trends in Extreme Weather and Climate Events: Observations, Socioeconomic Impacts, Terrestrial Ecological Impacts, and Model Projections. Bull. Am. Meteorol. Soc. 2000, 81, 413–416. [Google Scholar] [CrossRef] [Green Version]
- Quevauviller, P. Adapting to climate change: Reducing water-related risks in Europe—EU policy and research considerations. Environ. Sci. Policy 2011, 14, 722–729. [Google Scholar] [CrossRef]
- Hoang, L.; Fenner, R. System interactions of stormwater management using sustainable urban drainage systems and green infrastructure. Urban Water J. 2015, 13, 739–758. [Google Scholar] [CrossRef] [Green Version]
- Schubert, J.E.; Burns, M.J.; Fletcher, T.D.; Sanders, B.F. A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards. Adv. Water Resour. 2017, 108, 55–68. [Google Scholar] [CrossRef]
- Meng, T.; Hsu, D. Stated preferences for smart green infrastructure in stormwater management. Landsc. Urban Plan. 2019, 187, 1–10. [Google Scholar] [CrossRef]
- Webber, J.L.; Fletcher, T.D.; Cunningham, L.; Fu, G.; Butler, D.; Burns, M.J. Is green infrastructure a viable strategy for managing urban surface water flooding? Urban Water J. 2019, 17, 598–608. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Deletic, A.; Dotto, C.B.S.; Allen, R.; Bach, P.M. Modelling a ‘business case’ for blue-green infrastructure: Lessons from the Water Sensitive Cities Toolkit. Blue-Green Syst. 2020, 2, 383–403. [Google Scholar] [CrossRef]
- O’Donnell, E.; Thorne, C.; Ahilan, S.; Arthur, S.; Birkinshaw, S.; Butler, D.; Dawson, D.; Everett, G.; Fenner, R.; Glenis, V.; et al. The blue-green path to urban flood resilience. Blue-Green Syst. 2019, 2, 28–45. [Google Scholar] [CrossRef] [Green Version]
- Jose, R.; Wade, R.; Jefferies, C. Smart SUDS: Recognising the multiple-benefit potential of sustainable surface water management systems. Water Sci. Technol. 2015, 71, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Mijic, A.; Ossa-Moreno, J.; Smith, K.M. Multifunctional Benefits of SuDS: Techno-Economic Evaluation of Decentralised Solutions for Urban Water Management. In Geophysical Research Abstracts EGU General Assembly; 2016; Volume 18, p. 9994. Available online: http://meetingorganizer.copernicus.org/EGU2016/EGU2016-9994.pdf (accessed on 24 August 2017).
- Keeler, B.L.; Hamel, P.; McPhearson, T.; Hamann, M.H.; Donahue, M.L.; Prado, K.A.M.; Arkema, K.K.; Bratman, G.N.; Brauman, K.A.; Finlay, J.C.; et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2019, 2, 29–38. [Google Scholar] [CrossRef]
- E Pataki, D.; Carreiro, M.M.; Cherrier, J.; E Grulke, N.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Burns, M.J.; Wallis, E.; Matic, V. Building capacity in low-impact drainage management through research collaboration. Freshw. Sci. 2015, 34, 1176–1185. [Google Scholar] [CrossRef]
- Giese, E.; Rockler, A.; Shirmohammadi, A.; Pavao-Zuckerman, M.A. Assessing Watershed-Scale Stormwater Green Infrastructure Response to Climate Change in Clarksburg, Maryland. J. Water Resour. Plan. Manag. 2019, 145, 05019015. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; van Hullebusch, E.D.; Kazak, J.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef] [Green Version]
- Keeler, B.L.; Dalzell, B.; Gourevitch, J.D.; Hawthorne, P.; A Johnson, K.; Noe, R.R. Putting people on the map improves the prioritization of ecosystem services. Front. Ecol. Environ. 2019, 17, 151–156. [Google Scholar] [CrossRef]
- Elliott, A.H.; Trowsdale, S.A. A review of models for low impact urban stormwater drainage. Env. Mod. Soft. 2007, 22, 394–405. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Ng, A.W. Tools for modeling of stormwater management and economics of green infrastructure practices: A review. Water Air Soil Pollut. 2014, 225, 2055. [Google Scholar] [CrossRef] [Green Version]
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Available online: https://www.jstor.org/stable/26270403 (accessed on 16 June 2021).
- Lechner, A.M.; Gomes, R.L.; Rodrigues, L.; Ashfold, M.J.; Selvam, S.B.; Wong, E.P.; Raymond, C.M.; Zieritz, A.; Sing, K.W.; Moug, P.; et al. Challenges and considerations of applying nature-based solutions in low- and middle-income countries in Southeast and East Asia. Blue-Green Syst. 2020, 2, 331–351. [Google Scholar] [CrossRef]
- McKenzie, E.; Posner, S.; Tillmann, P.; Bernhardt, J.R.; Howard, K.; Rosenthal, A. Understanding the Use of Ecosystem Service Knowledge in Decision Making: Lessons from International Experiences of Spatial Planning. Environ. Plan. C Gov. Policy 2014, 32, 320–340. [Google Scholar] [CrossRef]
- Davoudi, S. Evidence-Based Planning. disP Plan. Rev. 2006, 42, 14–24. [Google Scholar] [CrossRef]
- Rich, R.F. Measuring knowledge utilization: Processes and outcomes. Knowl. Soc. 1997, 10, 11–24. [Google Scholar] [CrossRef]
- Tozer, L.; Hörschelmann, K.; Anguelovski, I.; Bulkeley, H.; Lazova, Y. Whose city? Whose nature? Towards inclusive nature-based solution governance. Cities 2020, 107. [Google Scholar] [CrossRef]
- Dottori, F.; Todini, E. Developments of a flood inundation model based on the cellular automata approach: Testing different methods to improve model performance. Phys. Chem. Earth, Parts A/B/C 2011, 36, 266–280. [Google Scholar] [CrossRef]
- Caviedes-Voullième, D.; Fernández-Pato, J.; Hinz, C. Cellular Automata and Finite Volume solvers converge for 2D shallow flow modelling for hydrological modelling. J. Hydrol. 2018, 563, 411–417. [Google Scholar] [CrossRef]
- Murray, A.B.; Paola, C. A cellular model of braided rivers. Nat. Cell Biol. 1994, 371, 54–57. [Google Scholar] [CrossRef]
- Douvinet, J.; van de Wiel, M.J.; Delahaye, D.; Cossart, E. A flash flood hazard assessment in dry valleys (northern France) by cellular automata modelling. Nat. Hazards 2014, 75, 2905–2929. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, P.R.; Dalponte, D.D.; Vénere, M.J.; Clausse, A. Cellular automata algorithm for simulation of surface flows in large plains. Simul. Model. Pr. Theory 2007, 15, 315–327. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; Liu, H.; Zhu, J.; Song, Y.; Liang, J. Real-time flood simulations using CA model driven by dynamic observation data. Int. J. Geogr. Inf. Sci. 2015, 29, 1–13. [Google Scholar] [CrossRef]
- Kassogué, H.; Bernoussi, A.; Maâtouk, M.; Amharref, M. A two scale cellular automaton for flow dynamics modeling (2CAFDYM). Appl. Math. Model. 2017, 43, 61–77. [Google Scholar] [CrossRef]
- Parsons, J.A.; Fonstad, M. A cellular automata model of surface water flow. Hydrol. Process. 2007, 21, 2189–2195. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Zhang, C.; Chen, A.S.; Fu, G. Assessing real options in urban surface water flood risk management under climate change. Nat. Hazards 2018, 94, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gibson, M.J.; Savic, D.A.; Djordjevic, S.; Chen, A.S.; Fraser, S.; Watson, T. Accuracy and Computational Efficiency of 2D Urban Surface Flood Modelling Based on Cellular Automata. Procedia Eng. 2016, 154, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Guidolin, M.; Duncan, A.; Ghimire, B.; Gibson, M.; Keedwell, E.; Chen, A.S.; Djordjević, S. CADDIES: A New Framework for Rapid Development of Parallel Cellular Automata Algorithms for Flood Simulation. 2012. Available online: https://ore.exeter.ac.uk/repository/bitstream/handle/10036/3742/HIC2012_0044_CADDIES_A_new_framework_for_rapid_development_of_parallel_cellula.pdf?sequence=2&isAllowed=y (accessed on 10 May 2017).
- Guidolin, M.; Chen, A.; Ghimire, B.; Keedwell, E.C.; Djordjević, S.; Savić, D.A. A weighted cellular automata 2D inundation model for rapid flood analysis. Environ. Model. Softw. 2016, 84, 378–394. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, B.; Chen, A.S.; Guidolin, M.; Keedwell, E.C.; Djordjevic, S.; Savic, D. Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. J. Hydroinformatics 2012, 15, 676–686. [Google Scholar] [CrossRef] [Green Version]
- Webber, J.; Booth, G.; Gunasekara, R.; Fu, G.; Butler, D. Validating a rapid assessment framework for screening surface water flood risk. Water Environ. J. 2018, 33, 427–442. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, A.; Fu, G.; Djordjevic, S.; Zhang, C.; Savić, D.A. An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features. Environ. Model. Softw. 2018, 107, 85–95. [Google Scholar] [CrossRef]
- Webber, J.L.; Fu, G.; Butler, D. Comparing cost-effectiveness of surface water flood management interventions in a UK catchment. J. Flood Risk Manag. 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Bayareacensus.ca.gov. Bay Area Census 2010. 2010. Available online: http://www.bayareacensus.ca.gov (accessed on 11 December 2019).
- USGS. National Elevation Dataset. 2019. Available online: https://catalog.data.gov/dataset/usgs-national-elevation-dataset-ned (accessed on 11 December 2019).
- NOAA. C-CAP Land Cover Atlas. 2010. Available online: http://www.csc.noaa.gov/landcover (accessed on 11 December 2019).
- NOAA. NOAA Atlas Data-Set. 2017. Available online: https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html (accessed on 11 December 2019).
- Phillips, J.V.; Tadayon, S. Selection of Manning’s Roughness Coefficient for Natural and Constructed Vegetated and Non-Vegetated Channels, and Vegetation Maintenance Plan Guidelines for Vegetated Channels in Central Arizona; USGS Scientific Investigations Report 2006-5108; USGS Geological Survey: Reston, VA, USA, 2006. [Google Scholar]
- Arcement, G.J., Jr.; Schneider, V.R. Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains; Report No. FHWA-TS-84-204.; U.S. G.P.O.: Washington, DC, USA, 1989. [Google Scholar]
- Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Thomsen, B.W.; Hjalmarson, H.W. Estimated Manning’s roughness coefficients for stream channels and flood plains in Maricopa County, Arizona. 1991. Available online: https://www.sciencebase.gov/catalog/item/5057a17ae4b01ad7e0286f64 (accessed on 23 July 2021).
- Butler, D.; Digman, C.; Makropoulos, C.; Davies, J. Urban Drainage, 4th ed.; CRC Press: London, UK, 2018. [Google Scholar]
- USDA. National Engineering Handbook, Part 630 Hydrology; Chapter 7 Hydrologic Soil Group; United States Department of Agriculture: Washington, DC, USA, 2009.
- Environment Agency. What is the Updated Flood Map for Surface Water? 2013. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/297432/LIT_8988_0bf634.pdf (accessed on 27 January 2017).
- Melville-Shreeve, P.; Ward, S.; Butler, D. Rainwater Harvesting Typologies for UK Houses: A Multi Criteria Analysis of System Configurations. Water 2016, 8, 129. [Google Scholar] [CrossRef] [Green Version]
- Ahilan, S.; Webber, J.; Butler, D. Building urban flood resilience with rainwater management. In Proceedings of the 17th International Computing & Control for the Water Industry Conference, Exeter, UK, 1–4 September 2019; pp. 3–4. [Google Scholar]
- Balbi, M.; Lallemant, D. OpenProFIA. GitLab. 2017. Available online: https://gitlab.com/mbalbi/OpenPROFIA.git (accessed on 23 July 2021).
- Jha, A.K.; Bloch, R.; Lamond, J. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century. World Bank. 2012. Available online: https://openknowledge.worldbank.org/handle/10986/2241 (accessed on 11 December 2019).
- Hammond, M.; Chen, A.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef] [Green Version]
- University of Exeter. Flood Damage Model Guidelines. CORFU project (WP3 output). 2014. Available online: https://ore.exeter.ac.uk/repository/bitstream/handle/10871/21213/Flood%20Damage%20Model%20Guidelines.pdf?sequence=1&isAllowed=y (accessed on 4 July 2018).
- FEMA Mitigation Division. Ulti-Hazard Loss Estimation Methodology, Flood Model, HAZUS, Technical Manual. 2015. Available online: https://www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_technical-manual_2.1.pdf (accessed on 23 July 2021).
- Scawthorn, C.; Flores, P.; Blais, N.; Seligson, H.; Tate, E.; Chang, S.; Mifflin, E.; Thomas, W.; Murphy, J.; Jones, C.; et al. HAZUS-MH Flood Loss Estimation Methodology. II. Damage and Loss Assessment. Nat. Hazards Rev. 2006, 7, 72–81. [Google Scholar] [CrossRef]
- US Army Corps of Engineers. Business Depth-Damage Analysis Procedures; US Army Corps of Engineers, Engineer Institute for Water Resources: Washington, DC, USA, 1985.
- US Army Corps of Engineers. Catalog of Residential Depth-Damage Functions; US Army Corps of Engineers, Engineer Institute for Water Resources: Washington, DC, USA, 1992. [Google Scholar]
- Bowker, P.; Escarameia, M.; Tagg, A. Improving the Flood Performance of New Buildings-Flood Resilient Construction; 2007; p. 100. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/7730/flood_performance.pdf (accessed on 27 January 2017).
- Gölz, S.; Schinke, R.; Naumann, T. Assessing the effects of flood resilience technologies on building scale. Urban Water J. 2015, 12, 30–43. [Google Scholar] [CrossRef]
- Kunapo, J.; Fletcher, T.D.; Ladson, A.R.; Cunningham, L.; Burns, M.J. A spatially explicit framework for climate adaptation. Urban Water J. 2018, 15, 159–166. [Google Scholar] [CrossRef]
- Burns, M.J.; Schubert, J.E.; Fletcher, T.D.; Sanders, B.F. Testing the impact of at-source stormwater management on urban flooding through a coupling of network and overland flow models. Wiley Interdiscip. Rev. Water 2015, 2, 291–300. [Google Scholar] [CrossRef]
- O’Donnell, E.C.; Lamond, J.E.; Thorne, C.R. Recognising barriers to implementation of Blue-Green Infrastructure: A Newcastle case study. Urban Water J. 2017, 14, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Fewtrell, T.J.; Duncan, A.; Sampson, C.; Neal, J.; Bates, P. Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data. Phys. Chem. Earth Parts A/B/C 2011, 36, 281–291. [Google Scholar] [CrossRef]
- Yu, D.; Lane, S.N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: Mesh resolution effects. Hydrol. Process. 2005, 20, 1541–1565. [Google Scholar] [CrossRef]
- Mignot, E.; Paquier, A.; Haider, S. Modeling floods in a dense urban area using 2D shallow water equations. J. Hydrol. 2006, 327, 186–199. [Google Scholar] [CrossRef] [Green Version]
- Box, G. Science and statistics. J. Am. Stat. Assoc. 1976, 71, 791–799. [Google Scholar] [CrossRef]
- Dottori, F.; Di Baldassarre, G.; Todini, E. Detailed data is welcome, but with a pinch of salt: Accuracy, precision, and uncertainty in flood inundation modeling. Water Resour. Res. 2013, 49, 6079–6085. [Google Scholar] [CrossRef]
- San Francisco Public Utilities Commission. 100-Year Storm Flood Risk Map. 2018. Available online: https://sfwater.org/index.aspx?page=1229 (accessed on 11 December 2019).
- Environment Agency. Cost estimation for SUDS—Summary of evidence (Report SC080039/R9). 2015. Available online: www.environment-agency.gov.uk (accessed on 30 January 2017).
- Bowker, P. Flood Resistance and Resilience Solutions: An R & D Scoping Study. 2007. Available online: https://aquobex.com/wp-content/uploads/2020/06/Flood-resilience-RD-Scoping-Study-1.pdf (accessed on 13 January 2016).
- López-Marrero, T.; Tschakert, P. From theory to practice: Building more resilient communities in flood-prone areas. Environ. Urban. 2011, 23, 229–249. [Google Scholar] [CrossRef]
- Labaka, L.; Hernantes, J.; Sarriegi, J.M. A holistic framework for building critical infrastructure resilience. Technol. Forecast. Soc. Chang. 2016, 103, 21–33. [Google Scholar] [CrossRef]
- Ossa-Moreno, J.; Smith, K.M.; Mijic, A. Economic analysis of wider benefits to facilitate SuDS uptake in London, UK. Sustain. Cities Soc. 2017, 28, 411–419. [Google Scholar] [CrossRef] [Green Version]
- GreenInfo Network. Bay Area Greenprint. 2021. Available online: https://www.bayareagreenprint.org/ (accessed on 16 June 2021).
- Adapting to Rising Tides. Adapting to Rising Tides Bay Area: Regional Sea Level Rise Vulnerability and Adaptation Study. 2020. Available online: http://www.adaptingtorisingtides.org/project/art-bay-area/ (accessed on 16 June 2016).
- CIRIA. BeST (Benefits of SuDS Tool) W045d BeST—User Manual Release Version 1; 2015; pp. 1–22. Available online: http://observatoriaigua.uib.es/repositori/suds_herramientas_6.pdf (accessed on 13 January 2016).
- Bowen, K.; Lynch, Y. The public health benefits of green infrastructure: The potential of economic framing for enhanced decision-making. Curr. Opin. Environ. Sustain. 2017, 25, 90–95. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Economics, D.B.-E. Classifying and Valuing Ecosystem Services for Urban Planning; 2013; pp. 235–245. Available online: https://www.sciencedirect.com/science/article/pii/S092180091200362X (accessed on 11 December 2019).
- Kuller, M.; Bach, P.M.; Roberts, S.; Browne, D.; Deletic, A. A planning-support tool for spatial suitability assessment of green urban stormwater infrastructure. Sci. Total. Environ. 2019, 686, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Bartos, M.D.; Wong, B.; Kerkez, B. Open storm: A complete framework for sensing and control of urban watersheds. Environ. Sci. Water Res. Technol. 2017, 4, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.D.; Fletcher, T.D.; Duncan, H.P.; Bergmann, D.J.; Breman, J.; Burns, M.J. Improving the Multi-Objective Performance of Rainwater Harvesting Systems Using Real-Time Control Technology. Water 2018, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.D.; Burns, M.J.; Cherqui, F.; Fletcher, T.D. Enhancing stormwater control measures using real-time control technology: A review. Urban Water J. 2020, 18, 101–114. [Google Scholar] [CrossRef]
- Xu, W.D.; Fletcher, T.D.; Burns, M.J.; Cherqui, F. Real-Time Control of Rainwater Harvesting Systems: The Benefits of Increasing Rainfall Forecast Window. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
Scenario | Structural | Contents | Total | Losses Mitigated |
---|---|---|---|---|
Baseline 25 years | 903 | 361 | 1264 | - |
Urban Greening Intensive 25 years | 312 | 120 | 432 | 832 |
Urban Greening Moderate 25 years | 830 | 325 | 1155 | 109 |
RWC Intensive 25 years | 357 | 140 | 497 | 767 |
RWC Moderate 25 years | 766 | 304 | 1070 | 194 |
Baseline 100 years | 1651 | 703 | 2354 | - |
Urban Greening Intensive 100 years | 1157 | 460 | 1617 | 737 |
Urban Greening Moderate 100 years | 1605 | 643 | 2248 | 106 |
RWC Intensive 100 years | 1055 | 429 | 1483 | 871 |
RWC Moderate 100 years | 1476 | 617 | 2093 | 261 |
County | Urban Greening (Intensive) | Urban Greening (Moderate) | RWC (Intensive) | RWC (Moderate) | ||||
---|---|---|---|---|---|---|---|---|
25 Years | 100 Years | 25 Years | 100 Years | 25 Years | 100 Years | 25 Years | 100 Years | |
Alameda | 207 | 196 | 30 | 30 | 186 | 224 | 47 | 69 |
Contra Costa | 119 | 99 | 12 | 19 | 117 | 124 | 29 | 37 |
Marin | 22 | 17 | 1 | −1 | 22 | 24 | 5 | 7 |
Napa | 19 | 14 | 3 | 4 | 18 | 16 | 5 | 5 |
San Francisco | 83 | 75 | 12 | 21 | 79 | 89 | 20 | 26 |
San Mateo | 83 | 72 | 10 | 9 | 79 | 87 | 20 | 25 |
Santa Clara | 237 | 224 | 32 | 27 | 208 | 253 | 53 | 78 |
Solano | 40 | 22 | 4 | −4 | 39 | 32 | 10 | 9 |
Sonoma | 18 | 18 | 1 | 2 | 17 | 22 | 4 | 6 |
County | Urban Greening (Intensive) | Urban Greening (Moderate) | RWC (Intensive) | RWC (Moderate) | ||||
---|---|---|---|---|---|---|---|---|
25 Years | 100 Years | 25 Years | 100 Years | 25 Years | 100 Years | 25 Years | 100 Years | |
Alameda | 72.9 | 35.7 | 10.6 | 5.5 | 65.5 | 40.8 | 16.5 | 12.6 |
Contra Costa | 50.4 | 23.7 | 5.1 | 4.5 | 49.6 | 29.7 | 12.3 | 8.9 |
Marin | 34.9 | 16.3 | 1.6 | −1.0 | 34.9 | 23.1 | 7.9 | 6.7 |
Napa | 42.2 | 19.4 | 6.7 | 5.6 | 40.0 | 22.2 | 11.1 | 6.9 |
San Francisco | 92.2 | 40.1 | 13.3 | 11.2 | 87.8 | 47.6 | 22.2 | 13.9 |
San Mateo | 61.9 | 29.5 | 7.5 | 3.7 | 59.0 | 35.7 | 14.9 | 10.2 |
Santa Clara | 79.5 | 37.9 | 10.7 | 4.6 | 69.8 | 42.8 | 17.8 | 13.2 |
Solano | 59.7 | 19.8 | 6.0 | −3.6 | 58.2 | 28.8 | 14.9 | 8.1 |
Sonoma | 40.0 | 23.1 | 2.2 | 2.6 | 37.8 | 28.2 | 8.9 | 7.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Webber, J.L.; Balbi, M.; Lallemant, D.; Gibson, M.J.; Fu, G.; Butler, D.; Hamel, P. Towards Regional Scale Stormwater Flood Management Strategies through Rapid Preliminary Intervention Screening. Water 2021, 13, 2027. https://doi.org/10.3390/w13152027
Webber JL, Balbi M, Lallemant D, Gibson MJ, Fu G, Butler D, Hamel P. Towards Regional Scale Stormwater Flood Management Strategies through Rapid Preliminary Intervention Screening. Water. 2021; 13(15):2027. https://doi.org/10.3390/w13152027
Chicago/Turabian StyleWebber, James L., Mariano Balbi, David Lallemant, Michael J. Gibson, Guangtao Fu, David Butler, and Perrine Hamel. 2021. "Towards Regional Scale Stormwater Flood Management Strategies through Rapid Preliminary Intervention Screening" Water 13, no. 15: 2027. https://doi.org/10.3390/w13152027
APA StyleWebber, J. L., Balbi, M., Lallemant, D., Gibson, M. J., Fu, G., Butler, D., & Hamel, P. (2021). Towards Regional Scale Stormwater Flood Management Strategies through Rapid Preliminary Intervention Screening. Water, 13(15), 2027. https://doi.org/10.3390/w13152027