Evaluation of Costs and Efficiencies of Urban Low Impact Development (LID) Practices on Stormwater Runoff and Soil Erosion in an Urban Watershed Using the Water Erosion Prediction Project (WEPP) Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Selected Watershed
2.2. WEPP Model Setup, Calibration, Validation, and Evaluation
2.3. Identification of Locations for LID Implementation
2.4. LID Design and Representation in the Model
2.5. Cost Calculation of LIDs
2.6. Evaluations and Comparison of LIDs
3. Results
3.1. Baseline Water Balance and Runoff Depths
3.2. Evaluation and Comparison of LIDs
3.2.1. LID Impacts on Water Balance
3.2.2. Costs of LIDs and Impacts on Average Annual Runoff Depths and Soil Losses
3.2.3. LID Impacts on Average Annual and Monthly Runoff Depths and Soil Losses
3.2.4. Hillslope Runoff Rates and Depths and Soil Losses under Storm Events
4. Discussion
4.1. Peak Runoff Depth Simulation and Potential Improvements
4.2. Costs and Effectiveness of LIDs
4.2.1. LIDs in CEAs vs. LIDs in All Suitable Areas
4.2.2. Single LIDs vs. Bundled LIDs
4.2.3. Effectiveness of LIDs
4.3. Selection of LIDs
4.4. Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goncalves, M.L.R.; Zischg, J.; Rau, S.; Sitzmann, M.; Rauch, W.; Kleidorfer, M. Modeling the effects of introducing low impact development in a tropical city: A case study from Joinville, Brazil. Sustainability 2018, 10, 728. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, R.; Guo, T.; Engel, B.A.; Flanagan, D.C.; Lee, J.G.; Li, S.; Pijanowski, B.C.; Collingsworth, P.D.; Wallace, C.W. Evaluating efficiencies and cost-effectiveness of best management practices in improving agricultural water quality using integrated SWAT and cost evaluation tool. J. Hydrol. 2019, 577, 123965. [Google Scholar] [CrossRef]
- Arabi, M.; Govindaraju, R.S.; Hantush, M.M. Cost-effective allocation of watershed management practices using a genetic algorithm. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Grebel, J.E.; Mohanty, S.K.; Torkelson, A.A.; Boehm, A.B.; Higgins, C.P.; Maxwell, R.M.; Nelson, K.L.; Sedlak, D.L. Engineered infiltration systems for urban stormwater reclamation. Environ. Eng. Sci. 2013, 30, 437–454. [Google Scholar] [CrossRef]
- Liu, L.; Perez, M.A.; Whitman, J.B. Evaluation of lamella settlers for treating suspended sediment. Water 2020, 12, 2705. [Google Scholar] [CrossRef]
- Si, Q.; Lusk, M.G.; Inglett, P.W. Inorganic nitrogen production and removal along the sediment gradient of a stormwater infiltration basin. Water 2021, 13, 320. [Google Scholar] [CrossRef]
- Liu, Y.; Bralts, V.F.; Engel, B.A. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. Sci. Total Environ. 2015, 511, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. Best Management Practices (BMPs) Siting Tool. 2018. Available online: https://www.epa.gov/water-research/best-management-practices-bmps-siting-tool (accessed on 6 June 2021).
- Istenič, D.; Arias, C.A.; Vollertsen, J.; Nielsen, A.H.; Wium-Andersen, T.; Hvitved-Jacobsen, T.; Brix, H. Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds. J. Environ. Sci. Health A 2012, 47, 1466–1477. [Google Scholar] [CrossRef]
- Schulte, L.A.; Niemi, J.; Helmers, M.J.; Liebman, M.; Arbuckle, J.G.; James, D.E.; Kolka, R.K.; O’Neal, M.E.; Tomer, M.D.; Tyndall, J.C. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 11247–11252. [Google Scholar] [CrossRef] [Green Version]
- Her, Y.; Jeong, J.; Arnold, J.; Gosselink, L.; Glick, R.; Jaber, F. A new framework for modeling decentralized low impact developments using Soil and Water Assessment Tool. Environ. Model. Softw. 2017, 96, 305–322. [Google Scholar] [CrossRef]
- Guo, T.; Cibin, R.; Chaubey, I.; Gitau, M.; Arnold, J.G.; Srinivasan, R.; Kiniry, J.R.; Engel, B.A. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT. Sci. Total Environ. 2018, 613, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Confesor, R., Jr.; Saleh, A.; King, K. Crop growth, hydrology, and water quality dynamics in agricultural fields across the Western Lake Erie Basin: Multi-site verification of the Nutrient Tracking Tool (NTT). Sci. Total Environ. 2020, 726, 138485. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Engel, B.A.; Shao, G.; Arnold, J.G.; Srinivasan, R.; Kiniry, J.R. Development and improvement of the simulation of woody bioenergy crops in the Soil and Water Assessment Tool (SWAT). Environ. Model. Softw. 2019, 122, 104295. [Google Scholar] [CrossRef]
- Guo, T.; Srivastava, A.; Flanagan, D.C. Improving and calibrating channel erosion simulation in the Water Erosion Prediction Project (WEPP) model. J. Environ. Manag. 2021, 291, 112616. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Brooks, E.S.; Dobre, M.; Elliot, W.J.; Wu, J.Q.; Flanagan, D.C.; Gravelle, J.A.; Link, T.E. Modeling forest management effects on water and sediment yield from nested, paired watersheds in the interior Pacific Northwest, USA using WEPP. Sci. Total Environ. 2020, 701, 134877. [Google Scholar] [CrossRef]
- Srivastava, A.; Flanagan, D.C.; Frankenberger, J.R.; Engel, B.A. Updated climate database and impacts on WEPP model predictions. J. Soil Water Conserv. 2019, 74, 334–349. [Google Scholar] [CrossRef]
- Srivastava, A.; Wu, J.Q.; Elliot, W.J.; Brooks, E.S.; Flanagan, D.C. Modeling streamflow in a snow-dominated forest watershed using the Water Erosion Prediction Project (WEPP) model. Trans. ASABE 2017, 60, 1171–1187. [Google Scholar] [CrossRef]
- Srivastava, A.; Wu, J.Q.; Elliot, W.J.; Brooks, E.S.; Flanagan, D.C. A simulation study to estimate effects of wildfire and forest management on hydrology and sediment in a forested watershed, Northwestern US. Trans. ASABE 2018, 61, 1579–1601. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Nearing, M.A. (Eds.) USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation; NSERL Report No. 10; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995.
- Frankenberger, J.R.; Dun, S.; Flanagan, D.C.; Wu, J.Q.; Elliot, W.J. Development of a GIS interface for WEPP model application to Great Lakes forested watersheds; ISELE Paper No. 11139. In Proceedings of the International Symposium on Erosion and Landscape Evolution, Anchorage, AK, USA, 18–21 September 2011; ASABE: St. Joseph, MI, USA, 2011. 8p. [Google Scholar]
- Doherty, J. PEST model-independent parameter estimation user manual. Watermark Numer. Comput. Brisb. Aust. 2004, 3338, 3349. [Google Scholar]
- Guo, T.; Gitau, M.; Merwade, V.; Arnold, J.; Raghavan, S.; Hirschi, M.; Engel, B. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest. Hydrol. Earth Syst. Sci. 2018, 22, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Adams, B.J. Urban stormwater quality control analysis with detention ponds. Water Environ. Res 2006, 78, 744–753. [Google Scholar] [CrossRef]
- Texas Department of Transportation (State of Texas). Item 164 Seeding for Erosion Control. TxDOT 2004 Standard Specifications Book. 2004. Available online: http://www.dot.state.tx.us/DES/specs/2004/04rthwk.htm#164 (accessed on 27 July 2021).
- Liu, Y.; Guo, T.; Wang, R.; Engel, B.A.; Flanagan, D.C.; Li, S.; Pijanowski, B.C.; Collingsworth, P.D.; Lee, J.G.; Wallace, C.W. A SWAT-based optimization tool for obtaining cost-effective strategies for agricultural conservation practice implementation at watershed scales. Sci. Total Environ. 2019, 691, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Savabi, M.; Skaggs, R.; Onstad, C. Chapter 6. Subsurface hydrology. In USDA-Water Erosion Prediction Project Hillslope Profile and Watershed Model Documentation; Flanagan, D.C., Nearing, M.A., Eds.; NSERL Report No. 10; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995. [Google Scholar]
- Savabi, M.; Williams, J. Chapter 5. Water balance and percolation. In USDA-Water Erosion Prediction Project Hillslope Profile and Watershed Model Documentation; Flanagan, D.C., Nearing, M.A., Eds.; NSERL Report No. 10; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1989. [Google Scholar]
- Cochrane, T.A.; Flanagan, D.C. Assessing water erosion in small watersheds using WEPP with GIS and digital elevation models. J. Soil Water Conserv. 1999, 54, 678–685. [Google Scholar]
- Cochrane, T.A.; Flanagan, D.C. Effect of DEM resolutions in the runoff and soil loss predictions of the WEPP watershed model. Trans. ASAE 2005, 48, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Nearing, M.A.; Deer-Ascough, L.; Laflen, J.M. Sensitivity analysis of the WEPP hillslope profile erosion model. Trans. ASAE 1990, 33, 839–849. [Google Scholar] [CrossRef]
- Wang, L.; Wu, J.Q.; Elliot, W.J.; Dun, S.; Lapin, S.; Fiedler, F.R.; Flanagan, D.C. Implementation of channel-routing routines in the Water Erosion Prediction Project (WEPP) model. In Proceedings of the SIAM Conference on “Mathematics for Industry”, San Francisco, CA, USA, 9–10 October 2009; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010; pp. 120–127. [Google Scholar]
- Wang, L.; Wu, J.Q.; Elliot, W.J.; Fiedler, F.R.; Lapin, S. Linear diffusion-wave channel routing using a discrete Hayami convolution method. J. Hydrol. 2014, 509, 282–294. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Livingston, S.J. USDA-Water Erosion Prediction Project User Summary; NSERL Report No. 11; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995.
- Flanagan, D.C.; Gilley, J.E.; Franti, T.G. Water Erosion Prediction Project (WEPP): Development history, model capabilities, and future enhancements. Trans. ASABE 2007, 50, 1603–1612. [Google Scholar] [CrossRef]
- Guo, T.; Johnson, L.T.; LaBarge, G.A.; Penn, C.J.; Stumpf, R.P.; Baker, D.B.; Shao, G. Less agricultural phosphorus applied in 2019 led to less dissolved phosphorus transported to Lake Erie. Environ. Sci. Technol. 2020, 55, 283–291. [Google Scholar] [CrossRef]
- Martin, J.F.; Kalcic, M.M.; Apostel, A.M.; Kast, J.B.; Kujawa, H.; Aloysisu, N.; Evenson, G.; Murumkar, A.; Brooker, M.R.; Becker, R.; et al. Evaluating Management Options to Reduce Lake Erie Algal Blooms with Models of the Maumee River Watershed. Final Project Report-OSU Knowledge Exchange. 2019. Available online: http://kx.osu.edu/project/environment/habri-multi-model (accessed on 27 July 2021).
Design | Scenario No. | Scenario Description | Abbreviation | Locations |
Single LID_ Critically Eroding Areas (CEAs) | 1 | Native planting in CEAs | NP(C) | Hillslopes (10, 16, 17) |
2 | Permeable pavement in CEAs | PP(C) | Hillslopes (10, 16) | |
3 | Rain garden in CEAs | RG(C) | Hillslopes (16, 17) | |
Single LID_All suitable areas | 4 | Native planting | NP | Hillslopes (9, 10, 12, 13, 14, 16, 17) |
5 | Permeable pavement | PP | Hillslopes (9, 10, 13, 14, 16, 17) | |
6 | Rain garden | RG | Hillslopes (13, 14, 16, 17) | |
7 | Detention pond | DP | Channels | |
Bundled (Single LID_CEAs and detention pond) | 8 | Native planting in CEAs with detention pond | NP(C)_DP | Hillslopes (10, 16, 17) and channels |
9 | Permeable pavement in CEAs with detention pond | PP(C)_DP | Hillslopes (10, 16) and channels | |
10 | Rain garden in CEAs with detention pond | RG(C)_DP | Hillslopes (16, 17) and channels | |
Bundled (Single LID_All suitable areas and detention pond) | 11 | Native planting with detention pond | NP_DP | Hillslopes (9, 10, 12, 13, 14, 16, 17) and channels |
12 | Permeable pavement with detention pond | PP_DP | Hillslopes (9, 10, 13, 14, 16, 17) and channels | |
13 | Rain garden with detention pond | RG_DP | Hillslopes (13, 14, 16, 17) and channels |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, T.; Srivastava, A.; Flanagan, D.C.; Liu, Y.; Engel, B.A.; McIntosh, M.M. Evaluation of Costs and Efficiencies of Urban Low Impact Development (LID) Practices on Stormwater Runoff and Soil Erosion in an Urban Watershed Using the Water Erosion Prediction Project (WEPP) Model. Water 2021, 13, 2076. https://doi.org/10.3390/w13152076
Guo T, Srivastava A, Flanagan DC, Liu Y, Engel BA, McIntosh MM. Evaluation of Costs and Efficiencies of Urban Low Impact Development (LID) Practices on Stormwater Runoff and Soil Erosion in an Urban Watershed Using the Water Erosion Prediction Project (WEPP) Model. Water. 2021; 13(15):2076. https://doi.org/10.3390/w13152076
Chicago/Turabian StyleGuo, Tian, Anurag Srivastava, Dennis C. Flanagan, Yaoze Liu, Bernard A. Engel, and Madeline M. McIntosh. 2021. "Evaluation of Costs and Efficiencies of Urban Low Impact Development (LID) Practices on Stormwater Runoff and Soil Erosion in an Urban Watershed Using the Water Erosion Prediction Project (WEPP) Model" Water 13, no. 15: 2076. https://doi.org/10.3390/w13152076
APA StyleGuo, T., Srivastava, A., Flanagan, D. C., Liu, Y., Engel, B. A., & McIntosh, M. M. (2021). Evaluation of Costs and Efficiencies of Urban Low Impact Development (LID) Practices on Stormwater Runoff and Soil Erosion in an Urban Watershed Using the Water Erosion Prediction Project (WEPP) Model. Water, 13(15), 2076. https://doi.org/10.3390/w13152076