How to Improve the Biological Quality of Urban Streams? Reviewing the Effect of Hydromorphological Alterations and Rehabilitation Measures on Benthic Invertebrates
Abstract
:1. Introduction
2. Impacts of Urbanisation and Climate Change on Urban Stream Hydrology
- Ecosystems to be protected must be identified, and objectives for their ecological state must be set.
- The resulting interplay between evapotranspiration, infiltration, and streamflow should resemble predevelopment conditions. This usually entails keeping significant runoff volumes from reaching the stream.
- Stormwater control measures (SCMs) should yield flow regimes that resemble the predevelopment regime in both quality and quantity.
- SCMs should be able to store water from high flow events so that the frequency of disturbance to biota does not increase in comparison with predevelopment conditions.
- SCMs should be implemented on all impervious surfaces in the catchment of the target stream.
3. Response of Aquatic Invertebrate Assemblages to Alterations in the Hydrology and Morphology of Streams
4. Effect of Hydromorphological Rehabilitation Measures on Benthic Invertebrate Communities
5. Insights and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Francis, R.A.; Hoggart, S.P.G. Waste Not, Want Not: The Need to Utilize Existing Artificial Structures for Habitat Improvement along Urban Rivers. Restor. Ecol. 2008, 16, 373–381. [Google Scholar] [CrossRef]
- Tsakaldimi, M.; Tsitsoni, T. The Importance of Streams Protection in Urban Areas from the Perspective of Ecology and Environmental Awareness. In Proceedings of the 5th International Conference on Environmental Management, Engineering, Planning and Economics, Mykonos, Greece, 14–18 June 2015. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Konrad, C.P.; Booth, D.B. Hydrologic Changes in Urban Streams and Their Ecological Significance. Am. Fish. Soc. Symp. 2005, 2005, 157–177. [Google Scholar]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The Urban Stream Syndrome: Current Knowledge and the Search for a Cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem Services in Urban Areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Maksimović, Č.; Kurian, M.; Ardakanian, R. Rethinking Infrastructure Design for Multi-Use Water Services; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Alcamo, J.; Bennett, E.M. Millennium Ecosystem Assessment (Program). In Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Ranta, E.; Vidal-Abarca, M.R.; Calapez, A.R.; Feio, M.J. Urban Stream Assessment System (UsAs): An Integrative Tool to Assess Biodiversity, Ecosystem Functions and Services. Ecol. Indic. 2021, 121, 106980. [Google Scholar] [CrossRef]
- Riis, T.; Kelly-Quinn, M.; Aguiar, F.; Manolaki, P.; Bruno, D.; Bejarano, M.; Clerici, N.; Fernandes, M.R.; Franco, J.C.; Pettit, N.; et al. Global Overview of Ecosystem Services Provided by Riparian Vegetation. BioScience 2020, 70. [Google Scholar] [CrossRef]
- European Commission. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Opoku, A. Biodiversity and the Built Environment: Implications for the Sustainable Development Goals (SDGs). Resour. Conserv. Recycl. 2019, 141, 1–7. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Findlay, S.J.; Taylor, M.P. Why Rehabilitate Urban River Systems? Area 2006, 38, 312–325. [Google Scholar] [CrossRef]
- Bennett, S.J.; Simon, A.; Castro, J.M.; Atkinson, J.F.; Bronner, C.E.; Blersch, S.S.; Rabideau, A.J. The Evolving Science of Stream Restoration. Geophys. Monogr. 2011, 194, 1–8. [Google Scholar] [CrossRef]
- Directive, H. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 1992, 206, 7–50. [Google Scholar]
- Council of the European Communities. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, 327, 1–72. [Google Scholar]
- Congress, U.S. Federal water pollution control act amendments of 1972. Public Law 1972, 92, 86. [Google Scholar]
- Violin, C.R.; Cada, P.; Sudduth, E.B.; Hassett, B.A.; Penrose, D.L.; Bernhardt, E.S. Effects of Urbanization and Urban Stream Restoration on the Physical and Biological Structure of Stream Ecosystems. Ecol. Appl. 2011, 21, 1932–1949. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for Ecologically Successful River Restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Feio, M.J.; Hughes, R.M.; Callisto, M.; Nichols, S.J.; Odume, O.N.; Quintella, B.R.; Kuemmerlen, M.; Aguiar, F.C.; Almeida, S.F.P.; Alonso-EguíaLis, P.; et al. The Biological Assessment and Rehabilitation of the World’s Rivers: An Overview. Water 2021, 13, 371. [Google Scholar] [CrossRef] [PubMed]
- Booth, D.B. Challenges and Prospects for Restoring Urban Streams: A Perspective from the Pacific Northwest of North America. J. North Am. Benthol. Soc. 2005, 24, 724–737. [Google Scholar] [CrossRef]
- Feio, M.J.; Ferreira, W.R.; Macedo, D.R.; Eller, A.P.; Alves, C.B.M.; França, J.S.; Callisto, M. Defining and Testing Targets for the Recovery of Tropical Streams Based on Macroinvertebrate Communities and Abiotic Conditions. River Res. Appl. 2015, 31, 70–84. [Google Scholar] [CrossRef]
- Shoredits, A.S.; Clayton, J.A. Assessing the Practice and Challenges of Stream Restoration in Urbanized Environments of the USA. Geogr. Compass 2013, 7, 358–372. [Google Scholar] [CrossRef]
- Rutherfurd, I.; Jerie, K.; Marsh, N. A Rehabilitation Manual for Australian Streams; Cooperative Research Centre for Catchment Hydrology, Land and Water Resources Research and Development Corporation: Canberra/Melbourne, Australia, 2000; Volume 1. [Google Scholar]
- Cortes, R.; Ferreira, T.; Hughes, S.J. Conservação e Restauro Fluvial. In Rios de Portugal: Comunidades, Processos e Alterações; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2019; pp. 359–379. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, A.D. Introduction and Philosophy. In Handbook of Ecological Restoration; Cambridge University Press: Cambridge, UK, 2002; pp. 3–9. [Google Scholar] [CrossRef]
- Palmer, M.A.; Menninger, H.L.; Bernhardt, E. River Restoration, Habitat Heterogeneity and Biodiversity: A Failure of Theory or Practice? Freshw. Biol. 2010, 55, 205–222. [Google Scholar] [CrossRef]
- Palmer, M.A.; Hondula, K.L.; Koch, B.J. Ecological Restoration of Streams and Rivers: Shifting Strategies and Shifting Goals. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 247–269. [Google Scholar] [CrossRef] [Green Version]
- Leps, M.; Sundermann, A.; Tonkin, J.D.; Lorenz, A.W.; Haase, P. Time Is No Healer: Increasing Restoration Age Does Not Lead to Improved Benthic Invertebrate Communities in Restored River Reaches. Sci. Total. Environ. 2016, 557–558, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Haase, P.; Hering, D.; Jähnig, S.C.; Lorenz, A.W.; Sundermann, A. How Does Ecological Status Respond to River Restoration? A Comparison of Fish, Benthic Invertebrates, Macrophytes and Hydromorphology. Hydrobiologia 2013, 704, 475–488. [Google Scholar] [CrossRef]
- Beechie, T.; Pess, G.; Roni, P.; Giannico, G. Setting River Restoration Priorities: A Review of Approaches and a General Protocol for Identifying and Prioritizing Actions. North Am. J. Fish. Manag. 2008, 28, 891–905. [Google Scholar] [CrossRef]
- Feio, M.J.; Teixeira, Z. Alterações Globais Dos Rios: Pressssões Antropogénicas e Alterações Climáticas. In Alterações Globais Dos rios: Pressssões Antropogénicas e Alterações Climáticas; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2019. [Google Scholar]
- Piggott, J.J.; Townsend, C.R.; Matthaei, C.D. Climate Warming and Agricultural Stressors Interact to Determine Stream Macroinvertebrate Community Dynamics. Glob. Chang. Biol. 2015, 21, 1887–1906. [Google Scholar] [CrossRef]
- Wagenhoff, A.; Townsend, C.R.; Phillips, N.; Matthaei, C.D. Subsidy-Stress and Multiple-Stressor Effects along Gradients of Deposited Fine Sediment and Dissolved Nutrients in a Regional Set of Streams and Rivers. Freshw. Biol. 2011, 56, 1916–1936. [Google Scholar] [CrossRef]
- Elbrecht, V.; Beermann, A.J.; Goessler, G.; Neumann, J.; Tollrian, R.; Wagner, R.; Wlecklik, A.; Piggott, J.J.; Matthaei, C.D.; Leese, F. Multiple-Stressor Effects on Stream Invertebrates: A Mesocosm Experiment Manipulating Nutrients, Fine Sediment and Flow Velocity. Freshw. Biol. 2016, 61, 362–375. [Google Scholar] [CrossRef]
- Sterling, J.L.; Rosemond, A.D.; Wenger, S.J. Watershed Urbanization Affects Macroinvertebrate Community Structure and Reduces Biomass through Similar Pathways in Piedmont Streams, Georgia, USA. Freshw. Sci. 2016, 35, 676–688. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. In Urban Ecology; Springer US: Boston, MA, USA, 2001; pp. 207–231. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Z.; Duan, X.; Pan, B. Effects of Pollution on Macroinvertebrates and Water Quality Bio-Assessment. Hydrobiologia 2014, 729, 247–259. [Google Scholar] [CrossRef]
- Wu, J.; Stewart, T.W.; Thompson, J.R.; Kolka, R.K.; Franz, K.J. Watershed Features and Stream Water Quality: Gaining Insight through Path Analysis in a Midwest Urban Landscape, USA. Landsc. Urban Plan. 2015, 143, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, L.M.; Mladenov, N.; Kinoshita, A.M.; Pinongcos, F.; Verbyla, M.E.; Gersberg, R. Fluorescence-Based Monitoring of Anthropogenic Pollutant Inputs to an Urban Stream in Southern California, USA. Sci. Total. Environ. 2020, 718, 137206. [Google Scholar] [CrossRef]
- Gunn, I.D.M.; O’Hare, M.T.; Maitland, P.S.; May, L. Long-Term Trends in Loch Leven Invertebrate Communities. Hydrobiologia 2012, 681, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Raddum, G.G.; Fjellheim, A. Liming of River Audna, Southern Norway: A Large-Scale Experiment of Benthic Invertebrate Recovery. AMBIO A J. Hum. Environ. 2003, 32, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Arce, E.; Archaimbault, V.; Mondy, C.P.; Usseglio-Polatera, P. Recovery Dynamics in Invertebrate Communities Following Water-Quality Improvement: Taxonomy- vs. Trait-Based Assessment. Freshw. Sci. 2014, 33, 1060–1073. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.D.; Castillo, M.M. Stream Ecology: Structure and Function of Running Waters, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Dodds, W.K.; Whiles, M.R. Freshwater Ecology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Feio, M.J.; Ferreira, V. Rios de Portugal: Comunidades, Processos e Alterações; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2019. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar] [CrossRef]
- Serra, S.R.Q.; Cortes, R.M.V.; Graça, M.A.S.; Pinto, P.; Anastácio, P.M.; Machado, A.L.; Calapez, A.R.; Feio, M.J. Invertebrados. In Rios de Portugal: Comunidades, Processos e Alterações; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2019; pp. 147–169. [Google Scholar] [CrossRef] [Green Version]
- Bonada, N.; Prat, N.; Resh, V.H.; Statzner, B. Developments in Aquatic Insect Biomonitoring: A Comparative Analysis of Recent Approaches. Annu. Rev. Entomol. 2006, 51, 495–523. [Google Scholar] [CrossRef] [Green Version]
- Kenney, M.A.; Sutton-grier, A.E.; Smith, R.F.; Gresens, S.E. Benthic Macroinvertebrates as Indicators of Water Quality: The Intersection of Science and Policy. Terr. Arthropod Rev. 2009, 2, 99. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, M.A.; Dobberfuhl, D.R.; Benke, A.C.; Huryn, A.D.; Suberkropp, K.; Thiele, J.E. Urbanization Affects Stream Ecosystem Function by Altering Hydrology, Chemistry, and Biotic Richness. Ecol. Appl. 2006, 16, 1796–1807. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Nunes, J.P.C.; Steenhuis, T.S.; Nunes, M.; de Lima, J.L.M.P.; Coelho, C.O.A.; Ferreira, A.J.D. Impact of Urban Development on Streamflow Regime of a Portuguese Peri-Urban Mediterranean Catchment. J. Soils Sediments 2016, 16, 2580–2593. [Google Scholar] [CrossRef]
- Konrad, C.P.; Booth, D.B. Hydrologic Trends Associated with Urban Development for Selected Streams in the Puget Sound Basin, Western Washington; US Geological Survey: Denver, CO, USA, 2002. [Google Scholar] [CrossRef]
- Palmer, M.A.; Richardson, D.C. Provisioning Services: A Focus on Fresh Water. In The Princeton Guide to Ecology; Princeton University Press: Princeton, NJ, USA, 2009; pp. 625–633. [Google Scholar]
- Serpa, D.; Nunes, J.P.; Santos, J.; Sampaio, E.; Jacinto, R.; Veiga, S.; Lima, J.C.; Moreira, M.; Corte-Real, J.; Keizer, J.J.; et al. Impacts of Climate and Land Use Changes on the Hydrological and Erosion Processes of Two Contrasting Mediterranean Catchments. Sci. Total. Environ. 2015, 538, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.J.; Leonard, A.W.; Ladson, A.R.; Fletcher, T.D. Urban Stormwater and the Ecology of Streams. Coop. Res. Cent. Freshw. Ecol. Coop. Res. Cent. Catchment Hydrol. 2004. [Google Scholar]
- Jacobson, C.R. Identification and Quantification of the Hydrological Impacts of Imperviousness in Urban Catchments: A Review. J. Environ. Manag. 2011, 1438–1448. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, Management and Modelling of Urban Hydrology and Its Consequences for Receiving Waters: A State of the Art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Hall, J.; Azad Hossain, A.K.M. Mapping Urbanization and Evaluating Its Possible Impacts on Streamwater Quality in Chattanooga, Tennessee, Using GIS and Remote Sensing. Sustainability 2020, 12, 1980. [Google Scholar] [CrossRef] [Green Version]
- Booth, D.B.; Roy, A.H.; Smith, B.; Capps, K.A. Global Perspectives on the Urban Stream Syndrome. Freshw. Sci. 2016, 35, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.R.; Cuffney, T.F.; Coles, J.F.; Fitzpatrick, F.; McMahon, G.; Steuer, J.; Bell, A.H.; May, J.T. Urban Streams across the USA: Lessons Learned from Studies in 9 Metropolitan Areas. J. North Am. Benthol. Soc. 2009, 28, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- McCuen, R.H. Downstream Effects of Stormwater Management Basins. J. Hydraul. Div. 1979, 105, 1343–1356. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic Shortcomings of Conventional Urban Stormwater Management and Opportunities for Reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- LAKE, P.S.; BOND, N.; REICH, P. Linking Ecological Theory with Stream Restoration. Freshw. Biol. 2007, 52, 597–615. [Google Scholar] [CrossRef]
- Stewardson, M.J.; Gippel, C.J. Incorporating Flow Variability into Environmental Flow Regimes Using the Flow Events Method. River Res. Appl. 2003, 19, 459–472. [Google Scholar] [CrossRef]
- Walsh, C.J.; Booth, D.B.; Burns, M.J.; Fletcher, T.D.; Hale, R.L.; Hoang, L.N.; Livingston, G.; Rippy, M.A.; Roy, A.H.; Scoggins, M.; et al. Principles for Urban Stormwater Management to Protect Stream Ecosystems. Freshw. Sci. 2016, 35, 398–411. [Google Scholar] [CrossRef] [Green Version]
- Nakano, D.; Nakamura, F. Responses of Macroinvertebrate Communities to River Restoration in a Channelized Segment of the Shibetsu River, Northern Japan. River Res. Appl. 2006, 22, 681–689. [Google Scholar] [CrossRef]
- Serra, S.R.Q.; Calapez, A.R.; Simões, N.E.; Sá Marques, J.A.A.; Laranjo, M.; Feio, M.J. Effects of Variations in Water Quantity and Quality in the Structure and Functions of Invertebrates’ Community of a Mediterranean Urban Stream. Urban Ecosyst. 2019, 22, 1173–1186. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Hubbart, J.A. Characterizing Land Use Impacts on Channel Geomorphology and Streambed Sedimentological Characteristics. Water 2019, 11, 1088. [Google Scholar] [CrossRef] [Green Version]
- Halajova, D.; Halaj, P.; Macura, V.; Skrinar, A. Urban River Design: A River Restoration Case Study. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 92090. [Google Scholar] [CrossRef]
- Ramler, D.; Keckeis, H. Effects of Large-River Restoration Measures on Ecological Fish Guilds and Focal Species of Conservation in a Large European River (Danube, Austria). Sci. Total. Environ. 2019, 686, 1076–1089. [Google Scholar] [CrossRef]
- Tang, V.T.; Fu, D.; Singh, R.P.; Rene, E.R.; Binh, T.N.; Sharma, A.K. Evaluating the Effectiveness of Ecological Restoration of Hard Bank Rivers: A Case Study from Shedu River Port, China. J. Water Supply: Res. Technol.-Aqua 2018, 67, 824–833. [Google Scholar] [CrossRef]
- Jia, G.; Shevliakova, E.; Artaxo, P.; de Noblet-Ducoudré, N.; Houghton, R.; House, J.; Kitajima, K.; Lennard, C.; Popp, A.; Sirin, A.; et al. Land–Climate Interactions. In Climate Change and Land; In Press: Geneva, Switzerland, 2019. [Google Scholar]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood Risk and Climate Change: Global and Regional Perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014 Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; 1132p. [Google Scholar]
- Hung, C.L.J.; James, L.A.; Carbone, G.J.; Williams, J.M. Impacts of Combined Land-Use and Climate Change on Streamflow in Two Nested Catchments in the Southeastern United States. Ecol. Eng. 2020, 143, 105665. [Google Scholar] [CrossRef]
- Mosley, L.M. Drought Impacts on the Water Quality of Freshwater Systems; Review and Integration. Earth-Sci. Rev. 2015, 140, 203–214. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [Green Version]
- Konrad, C.P.; Brasher, A.M.D.; May, J.T. Assessing Streamflow Characteristics as Limiting Factors on Benthic Invertebrate Assemblages in Streams across the Western United States. Freshw. Biol. 2008, 53, 1983–1998. [Google Scholar] [CrossRef]
- Meißner, T.; Sures, B.; Feld, C.K. Multiple Stressors and the Role of Hydrology on Benthic Invertebrates in Mountainous Streams. Sci. Total. Environ. 2019, 663, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Mor, J.R.; Dolédec, S.; Acuña, V.; Sabater, S.; Muñoz, I. Invertebrate Community Responses to Urban Wastewater Effluent Pollution under Different Hydro-Morphological Conditions. Environ. Pollut. 2019, 252, 483–492. [Google Scholar] [CrossRef]
- Feio, M.J.; Aguiar, F.C.; Almeida, S.F.P.; Ferreira, M.T. AQUAFLORA: A Predictive Model Based on Diatoms and Macrophytes for Streams Water Quality Assessment. Ecol. Indic. 2012, 18, 586–598. [Google Scholar] [CrossRef]
- Calapez, A.R.; Serra, S.R.Q.; Santos, J.M.; Branco, P.; Ferreira, T.; Hein, T.; Brito, A.G.; Feio, M.J. The Effect of Hypoxia and Flow Decrease in Macroinvertebrate Functional Responses: A Trait-Based Approach to Multiple-Stressors in Mesocosms. Sci. Total. Environ. 2018, 637–638, 647–656. [Google Scholar] [CrossRef]
- Schriever, T.A.; Bogan, M.T.; Boersma, K.S.; Cañedo-Argüelles, M.; Jaeger, K.L.; Olden, J.D.; Lytle, D.A. Hydrology Shapes Taxonomic and Functional Structure of Desert Stream Invertebrate Communities. Freshw. Sci. 2015, 34, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Stubbington, R.; Bogan, M.T.; Bonada, N.; Boulton, A.J.; Datry, T.; Leigh, C.; vander Vorste, R. The Biota of Intermittent Rivers and Ephemeral Streams: Aquatic Invertebrates; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Arscott, D.B.; Larned, S.; Scarsbrook, M.R.; Lambert, P. Aquatic Invertebrate Community Structure along an Intermittence Gradient: Selwyn River, New Zealand. J. North Am. Benthol. Soc. 2010, 29, 530–545. [Google Scholar] [CrossRef]
- Parker, S.R.; Adams, S.K.; Lammers, R.W.; Stein, E.D.; Bledsoe, B.P. Targeted Hydrologic Model Calibration to Improve Prediction of Ecologically-Relevant Flow Metrics. J. Hydrol. 2019, 573, 546–556. [Google Scholar] [CrossRef]
- Calapez, A.R.; Serra, S.R.Q.; Rivaes, R.; Aguiar, F.C.; Feio, M.J. Influence of River Regulation and Instream Habitat on Invertebrate Assemblage’ Structure and Function. Sci. Total. Environ. 2021, 794, 148696. [Google Scholar] [CrossRef] [PubMed]
- Erba, S.; Cazzola, M.; Belfiore, C.; Buffagni, A. Macroinvertebrate Metrics Responses to Morphological Alteration in Italian Rivers. Hydrobiologia 2020, 847, 2169–2191. [Google Scholar] [CrossRef]
- Buffagni, A.; Tenchini, R.; Cazzola, M.; Erba, S.; Balestrini, R.; Belfiore, C.; Pagnotta, R. Detecting the Impact of Bank and Channel Modification on Invertebrate Communities in Mediterranean Temporary Streams (Sardinia, SW Italy). Sci. Total. Environ. 2016, 565, 1138–1150. [Google Scholar] [CrossRef]
- Dinis, P.A.; Freitas, M.C.; Santos, P.P. Sedimentos. In Rios de Portugal: Comunidades, Processos e Alterações; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2019; pp. 51–73. [Google Scholar] [CrossRef] [Green Version]
- Caro-Borrero, A.; Carmona-Jiménez, J. Habitat Preferences in Freshwater Benthic Macroinvertebrates: Algae as Substratum and Food Resource in High Mountain Rivers from Mexico. Limnologica 2018, 69, 10–17. [Google Scholar] [CrossRef]
- Aguiar, F.C.; Espírito-Santo, M.D.; Ferreira, M.T. Plantas Aquáticas e Florestas Ribeirinhas. In Rios de Portugal: Comunidades, Processos e Alterações; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2019; pp. 123–146. [Google Scholar] [CrossRef] [Green Version]
- Gieswein, A.; Hering, D.; Feld, C.K. Additive Effects Prevail: The Response of Biota to Multiple Stressors in an Intensively Monitored Watershed. Sci. Total. Environ. 2017, 593–594, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Dala-Corte, R.B.; Melo, A.S.; Siqueira, T.; Bini, L.M.; Martins, R.T.; Cunico, A.M.; Pes, A.M.; Magalhães, A.L.B.; Godoy, B.S.; Leal, C.G.; et al. Thresholds of Freshwater Biodiversity in Response to Riparian Vegetation Loss in the Neotropical Region. J. Appl. Ecol. 2020, 57, 1391–1402. [Google Scholar] [CrossRef]
- Brettschneider, D.J.; Misovic, A.; Schulte-Oehlmann, U.; Oetken, M.; Oehlmann, J. Poison in Paradise: Increase of Toxic Effects in Restored Sections of Two Rivers Jeopardizes the Success of Hydromorphological Restoration Measures. Environ. Sci. Eur. 2019, 31. [Google Scholar] [CrossRef] [Green Version]
- Castillo, D.; Kaplan, D.; Mossa, J. A Synthesis of Stream Restoration Efforts in Florida (USA). River Res. Appl. 2016, 32, 1555–1565. [Google Scholar] [CrossRef]
- Selvakumar, A.; O’Connor, T.P.; Struck, S.D. Role of Stream Restoration on Improving Benthic Macroinvertebrates and In-Stream Water Quality in an Urban Watershed: Case Study. J. Environ. Eng. 2010, 136, 127–139. [Google Scholar] [CrossRef]
- Turunen, J.; Aroviita, J.; Marttila, H.; Louhi, P.; Laamanen, T.; Tolkkinen, M.; Luhta, P.L.; Kløve, B.; Muotka, T. Differential Responses by Stream and Riparian Biodiversity to In-Stream Restoration of Forestry-Impacted Streams. J. Appl. Ecol. 2017, 54, 1505–1514. [Google Scholar] [CrossRef] [Green Version]
- Ernst, A.G.; Warren, D.R.; Baldigo, B.P. Natural-Channel-Design Restorations That Changed Geomorphology Have Little Effect On Macroinvertebrate Communities In Headwater Streams. Restor. Ecol. 2012, 20, 532–540. [Google Scholar] [CrossRef]
- Verdonschot, P.F.M.; Nijboer, R.C. Towards a Decision Support System for Stream Restoration in the Netherlands: An Overview of Restoration Projects and Future Needs. Hydrobiologia 2002, 478, 131–148. [Google Scholar] [CrossRef]
- Louhi, P.; Mykrä, H.; Paavola, R.; Huusko, A.; Vehanen, T.; Mäki-Petäys, A.; Muotka, T. Twenty Years of Stream Restoration in Finland: Little Response by Benthic Macroinvertebrate Communities. Ecol. Appl. 2011, 21, 1950–1961. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.F.; Neideigh, E.C.; Rittle, A.M.; Wallace, J.R. Assessing Macroinvertebrate Community Response to Restoration of Big Spring Run: Expanded Analysis of before-after-Control-Impact Sampling Designs. River Res. Appl. 2020, 36, 79–90. [Google Scholar] [CrossRef]
- Muotka, T.; Syrjänen, J. Changes in Habitat Structure, Benthic Invertebrate Diversity, Trout Populations and Ecosystem Processes in Restored Forest Streams: A Boreal Perspective. Freshw. Biol. 2007, 52, 724–737. [Google Scholar] [CrossRef]
- Tullos, D.D.; Penrose, D.L.; Jennings, G.D.; Cope, W.G. Analysis of Functional Traits in Reconfigured Channels: Implications for the Bioassessment and Disturbance of River Restoration. J. N. Am. Benthol. Soc. 2009, 28, 80–92. [Google Scholar] [CrossRef]
- Kail, J.; Brabec, K.; Poppe, M.; Januschke, K. The Effect of River Restoration on Fish, Macroinvertebrates and Aquatic Macrophytes: A Meta-Analysis. Ecol. Indic. 2015, 58, 311–321. [Google Scholar] [CrossRef]
- Szita, R.; Horváth, A.; Winkler, D.; Kalicz, P.; Gribovszki, Z.; Csáki, P. A Complex Urban Ecological Investigation in a Mid-Sized Hungarian City–SITE Assessment and Monitoring of a Liveable Urban Area, PART 1: Water Quality Measurement. J. Environ. Manag. 2019, 247, 78–87. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Z.; Yang, H.; Bian, H.; Jiang, H.; Sheng, L.; He, C. Effects of Instream Restoration Measures on the Physical Habitats and Benthic Macroinvertebrates in an Agricultural Headwater Stream. Ecol. Eng. 2018, 122, 252–262. [Google Scholar] [CrossRef]
- Miller, J.W.; Paul, M.J.; Obenour, D.R. Assessing Potential Anthropogenic Drivers of Ecological Health in Piedmont Streams through Hierarchical Modeling. Freshw. Sci. 2019, 38, 771–789. [Google Scholar] [CrossRef]
- Tasca, F.A.; Goerl, R.F.; Michel, G.P.; Leite, N.K.; Sérgio, D.Z.; Belizário, S.; Caprario, J.; Finotti, A.R. Application of Systems Thinking to the Assessment of an Institutional Development Project of River Restoration at a Campus University in Southern Brazil. Environ. Sci. Pollut. Res. 2020, 27, 14299–14317. [Google Scholar] [CrossRef]
- Korsu, K. Response of Benthic Invertebrates to Disturbance from Stream Restoration: The Importance of Bryophytes. Hydrobiologia 2004, 523, 37–45. [Google Scholar] [CrossRef]
- Hancock, P.J. Human Impacts on the Stream–Groundwater Exchange Zone. Environ. Manag. 2002, 29, 763–781. [Google Scholar] [CrossRef]
- Boulton, A.J.; Findlay, S.; Marmonier, P.; Stanley, E.H.; Maurice Valett, H. The Functional Significance of the Hyporheic Zone in Streams and Rivers. Annu. Rev. Ecol. Syst. 1998, 29, 59–81. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, A.; Giardino, J.R.; Granados-Aguilar, R.; Price, A.E. Chapter 7-A Terrestrial Landscape Ecology Approach to the Critical Zone; Giardino, J.R., Houser, C.B.T.-D., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 19, pp. 203–238. [Google Scholar] [CrossRef]
- Merill, L.; Tonjes, D.J. A Review of the Hyporheic Zone, Stream Restoration, and Means to Enhance Denitrification. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2337–2379. [Google Scholar] [CrossRef]
- Stubbington, R.; Greenwood, A.M.; Wood, P.J.; Armitage, P.D.; Gunn, J.; Robertson, A.L. The Response of Perennial and Temporary Headwater Stream Invertebrate Communities to Hydrological Extremes. Hydrobiologia 2009, 630, 299–312. [Google Scholar] [CrossRef]
- Tonkin, J.D.; Stoll, S.; Sundermann, A.; Haase, P. Dispersal Distance and the Pool of Taxa, but Not Barriers, Determine the Colonisation of Restored River Reaches by Benthic Invertebrates. Freshw. Biol. 2014, 59, 1843–1855. [Google Scholar] [CrossRef]
- Spänhoff, B.; Arle, J. Setting Attainable Goals of Stream Habitat Restoration from a Macroinvertebrate View. Restor. Ecol. 2007, 15, 317. [Google Scholar] [CrossRef]
- Cockerill, K.; Anderson, W.P. Creating False Images: Stream Restoration in an Urban Setting. J. Am. Water Resour. Assoc. 2014, 50, 468–482. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerega, A.; Simões, N.E.; Feio, M.J. How to Improve the Biological Quality of Urban Streams? Reviewing the Effect of Hydromorphological Alterations and Rehabilitation Measures on Benthic Invertebrates. Water 2021, 13, 2087. https://doi.org/10.3390/w13152087
Zerega A, Simões NE, Feio MJ. How to Improve the Biological Quality of Urban Streams? Reviewing the Effect of Hydromorphological Alterations and Rehabilitation Measures on Benthic Invertebrates. Water. 2021; 13(15):2087. https://doi.org/10.3390/w13152087
Chicago/Turabian StyleZerega, Andreina, Nuno Eduardo Simões, and Maria João Feio. 2021. "How to Improve the Biological Quality of Urban Streams? Reviewing the Effect of Hydromorphological Alterations and Rehabilitation Measures on Benthic Invertebrates" Water 13, no. 15: 2087. https://doi.org/10.3390/w13152087
APA StyleZerega, A., Simões, N. E., & Feio, M. J. (2021). How to Improve the Biological Quality of Urban Streams? Reviewing the Effect of Hydromorphological Alterations and Rehabilitation Measures on Benthic Invertebrates. Water, 13(15), 2087. https://doi.org/10.3390/w13152087