Spatial Variability of Water Resources State of Regions around the “Belt and Road”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
- (1)
- Precipitation
- (2)
- Drought
- (3)
- Flood
- (4)
- Population
- (5)
- Cropland
- (6)
- Railway and Highway
3. Analysis of Spatio-Temporal Heterogeneity of Water Security
3.1. Precipitation
3.2. Droughts
3.3. Flood
4. Hydrological Disaster Impact Analysis
4.1. Water Hazard Risk Analysis
4.2. Potential Impact Population Analysis
4.3. Potential Impact Corridor Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.D. Scientific understanding of the Belt and Road Initiative of China and related research themes. Prog. Geogr. 2015, 34, 538–544. [Google Scholar]
- National Development and Reform Commission; Ministry of Foreign Affairs; Ministry of Commerce of the People’s Republic of China. Vision and Actions on Jointly Building Silk Road Economic Belt and 21st-Century Maritime Silk Road; Belt and Road Forum for International Cooperation: Beijing, China, 2015.
- Yang, J.; Guo, A.; Li, X.; Huang, T. Study on the Impact of High-speed Railway Opening on China’s Accessibility Pattern and Spatial Equality. Sustainability 2018, 10, 2943. [Google Scholar] [CrossRef] [Green Version]
- Lappalainen, H.K.; Kulmala, M.; Kujansuu, J.; Petäjä, T.; Mahura, A.; de Leeuw, G.; Zilitinkevich, S.; Juustila, M.; Kerminen, V.-M.; Bormstein, B.; et al. The Silk Road agenda of the Pan-Eurasian Experiment (PEEX) program. Big Earth Data 2018, 2, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, Z.; Li, W.; Deng, H.; Shen, Y. Water and ecological security: Dealing with hydroclimatic challenges at the heart of China’s Silk Road. Environ. Earth Sci. 2016, 75, 881. [Google Scholar] [CrossRef]
- Howard, K.W.F.; Howard, K.K. The new “Silk Road Economic Belt” as a threat to the sustainable management of Central Asia’s transboundary water resources. Environ. Earth Sci. 2016, 75, 976. [Google Scholar] [CrossRef]
- Tan, C.; Guo, B.; Kuang, H.; Yang, H.; Ma, M. Lake Area Changes and Their Influence on Factors in Arid and Semi-Arid Regions along the Silk Road. Remote Sens. 2018, 10, 595. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Sun, J.; Ge, Q.; Li, X. Assessing the Impacts of Urbanization-Associated Green Space on Urban Land Surface Temperature: A Case Study of Dalian, China. Urban For. Urban Green. 2017, 22, 1–10. [Google Scholar] [CrossRef]
- Li, Z.F. Water security and the implementation of ’one belt-one road’ strategy. J. China Univ. Geosci. 2017, 17, 45–53. [Google Scholar]
- Kong, F. ‘Belt and Road’ comprehensive natural disaster risk assessment and policy recommendations. In Proceedings of the 35th Annual Meeting of the Chinese Meteorological Society, Hefei, China, 24–26 October 2018. [Google Scholar]
- National Remote Sensing Center of China (NRSCC). 2015 Global Ecosystems and Environment Observation: Annual Report. 2015. Available online: http://www.chinageoss.cn/geoarc/2015/B/B0/index.html (accessed on 30 July 2021).
- Cheng, C.S.; Li, Q.; Li, G. Possible impacts of climate change on extreme weather events at local scale in south–central Canada. Clim. Chang. 2012, 112, 963–979. [Google Scholar] [CrossRef] [Green Version]
- Syafrina, A.H.; Zalina, M.D.; Juneng, L. Historical trend of hourly extreme rainfall in Peninsular Malaysia. Theor. Appl. Climatol. 2015, 120, 259–285. [Google Scholar] [CrossRef] [Green Version]
- Yazid, M.; Humphries, U. Regional Observed Trends in Daily Rainfall Indices of Extremes over the Indochina Peninsula from 1960 to 2007. Climate 2015, 3, 168–192. [Google Scholar] [CrossRef] [Green Version]
- Rajeevan, M.; Bhate, J.; Jaswal, A.K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 2008, 35, 60–74. [Google Scholar]
- Zuo, Q.; Han, C.; Junxia, M.A.; Liu, J. Water resources characteristics and supporting capacity for‘the belt and road’ in china mainland. J. Hydraul. Eng. 2017, 48, 631–639. [Google Scholar]
- Krishnamurthy, C.K.B.; Lall, U.; Hyunhan, K. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Clim. 2009, 22, 4737–4746. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-J.; Lin, C.Y.; Wu, Y.-T.; Wu, P.-C.; Lung, S.-C.; Su, H.-J. Effects of Extreme Precipitation to the Distribution of Infectious Diseases in Taiwan, 1994–2008. PLoS ONE 2012, 7, e34651. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Working Group II Contribution to the IPCC Fifth Assessment Report, Climate Change 2014: Impacts, Adaptation, and Vulnerability. 2014. Available online: http://www.ipcc.ch/report/ar5/wg2/ (accessed on 30 July 2020).
- Xia, J.; Duan, Q.-Y.; Luo, Y.; Xie, Z.-H.; Liu, Z.-Y.; Mo, X.-G. Climate change and water resources: Case study of Eastern Monsoon Region of China. Adv. Clim. Chang. Res. 2017, 8, 63–67. [Google Scholar] [CrossRef]
- Modarres, R.; Sarhadi, A.; Burn, D.H. Changes of extreme drought and flood events in Iran. Glob. Planet. Chang. 2016, 144, 67–81. [Google Scholar] [CrossRef]
- Yu, X.-B.; Yu, X.-R.; Li, C.; Ji, Z. Information diffusion-based risk assessment of natural disasters along the silk road economic belt in China. J. Clean. Prod. 2020, 244, 118744. [Google Scholar]
- Chai, D.; Wang, M.; Liu, K. Driving factors of natural disasters in Belt and Road countries. Int. J. Disaster Risk Reduct. 2020, 51, 101774. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, K.; Wang, M.; Koks, E.E. River Flood and Earthquake Risk Assessment of Railway Assets along the Belt and Road. Int. J. Disaster Risk Sci. 2021, 1–15. [Google Scholar] [CrossRef]
- National Remote Sensing Center of China (NRSCC). The Belt and Road Initiative Ecological and Environment Conditions. 2017. Available online: http://www.chinageoss.org/geoarc/2017/ (accessed on 30 July 2021).
- Jia, L.; Mancini, M.; Su, B.; Lu, J.; Menenti, M. Constructing the ‘Belt and Road’ Water Resource Space Observation Cooperation Research. Bull. Chin. Acad. Sci. 2017, 32, 60–69. (In Chinese) [Google Scholar]
- Li, M.L.; Li, Y.Y.; Hou, J.; Xiao, P. ‘Belt and Road’ national water resource characteristics analysis and cooperation prospect. Water Resour. Plan. Des. 2017, 1, 34–38. (In Chinese) [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, P.; Rigi, A.; Kamak, M.M. Evaluating the sensitivity of precipitation-based drought indices to different lengths of record. J. Hydrol. 2019, 579, 124181. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia. China Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Intergovermental Panel on Climate Change (IPCC). Climate Change-The Scientific Basis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Liu, Y.; Yuan, X.; Guo, L.; Huang, Y.; Zhang, X. Driving force analysis of the temporal and spatial distribution of flash floods in sichuan province. Sustainability 2017, 9, 1527. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Mancini, M.; Su, B.; Jing, L.; Menenti, M. Monitoring Water Resources and Water Use from Earth Observation in the Belt and Road Countries. Bull. Chin. Acad. Sci. 2017, 32, 62–73. [Google Scholar]
- Młyński, D.; Cebulska, M.; Wałęga, A. Trends, Variability, and Seasonality of Maximum Annual Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere 2018, 9, 313. [Google Scholar] [CrossRef] [Green Version]
- Twardosz, R.; Cebulska, M. Temporal variability of the highest and the lowest monthly precipitation totals in the Polish Carpathian Mountains (1881–2018). Theor. Appl. Climatol. 2020, 140, 327–341. [Google Scholar] [CrossRef]
- Kholiavchuk, D.; Cebulska, M. The highest monthly precipitation in the area of the Ukrainian and the Polish Carpathian Mountains in the period from 1984 to 2013. Theor. Appl. Climatol. 2019, 138, 1615–1628. [Google Scholar] [CrossRef]
- Huang, Y.H.; Xu, C.; Yang, H.; Wang, J.; Jiang, D.; Zhao, C. Temporal and spatial variability of droughts in southwest china from 1961 to 2012. Sustainability 2015, 7, 13597–13609. [Google Scholar] [CrossRef] [Green Version]
- Raziei, T.; Saghafian, B.; Paulo, A.A.; Pereira, L.S.; Bordi, I. Spatial patterns and temporal variability of drought in western Iran. Water Resour. Manag. 2009, 23, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Guo, Q.; Xiao, T. Research on distribution characteristics of natural hazards along ‘the belt and road’. J. Saf. Sci. Technol. 2016, 12, 165–171. [Google Scholar]
- Suriya, S.; Mudgal, B.V. Impact of urbanization on flooding: The thirusoolam sub watershed—A case study. J. Hydrol. 2012, 412, 210–219. [Google Scholar] [CrossRef]
- Wheater, H.; Evans, E. Land use, water management and future flood risk. Land Use Policy 2009, 26, S251–S264. [Google Scholar] [CrossRef]
- Beighley, R.E.; Melack, J.M.; Dunne, T. Impacts of California’s climatic regimes and coastal land use change on streamflow characteristics. J. Am. Water Resour. Assoc. 2003, 39, 1419–1433. [Google Scholar] [CrossRef]
- Hu, X.; Hall, J.W.; Shi, P.; Lim, W.H. The spatial exposure of the chinese infrastructure system to flooding and drought hazards. Nat. Hazards 2016, 80, 1083–1118. [Google Scholar] [CrossRef]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martellp, M.L.; et al. A Framework for Vulnerability Analysis in Sustainability Science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherly, M.A.; Karmakar, S.; Parthasarathy, D.; Chan, T.; Rau, C. Disaster Vulnerability Mapping for a Densely Populated Coastal Urban Area: An Application to Mumbai, India. Ann. Assoc. Am. Geogr. 2015, 105, 1198–1220. [Google Scholar] [CrossRef]
- Tapsell, S.; McCarthy, S.; Faulkner, H.; Alexander, M. Social Vulnerability and Natural Hazards; CapHaz-Net WP4 Report; Flood Hazard Research Centre—FHRC, Middlesex University: London, UK, 2010; Available online: http://caphaz-net.org/outcomes-results/CapHaz-Net_WP4_Social-Vulnerability.pdf (accessed on 10 July 2020).
- Neshat, A.; Pradhan, B.; Dadras, M. Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resour. Conserv. Recycl. 2014, 86, 74–86. [Google Scholar] [CrossRef]
- Huang, Y.H.; Zhao, C.P.; Song, X.Y.; Chen, J.; Li, Z.H. A semi-parametric geographically weighted (S-GWR) approach for modeling spatial distribution of population. Ecol. Indic. 2018, 85, 1022–1029. [Google Scholar] [CrossRef]
Item | Spatial Resolution | Temporal Resolution | Format | Time | Source |
---|---|---|---|---|---|
Precipitation | 0.5° × 0.5° | 1 day | tif | 1985–2016 | National Oceanic and Atmospheric Administration |
Drought | 0.5° × 0.5° | 1 month | tif | 1985–2016 | National Oceanic and Atmospheric Administration |
Flood | 0.5° × 0.5° | 1 year | tif | 1985–2016 | Dartmouth Flood Observatory, University of Colorado |
Population | 30″ × 30″ | / | tif | 2015 | Socioeconomic Data and Applications Center, NASA |
Cropland | 30 m × 30 m | / | tif | 2015 | U.S. Geological Survey |
Railway | / | / | shp | 2016 | Resource and Environment Data Cloud Platform |
Highway | / | / | shp | 2016 | Environment Data Cloud Platform |
Zone | Minimum (mm) | Maximum (mm) | Mean (mm) | Std. Dev. |
---|---|---|---|---|
China | 0 | 2573 | 549 | 466 |
South-Eastern Asia | 0 | 4578 | 1867 | 900 |
MRCA | 0 | 1396 | 351 | 156 |
Southern Asia | 0 | 4059 | 778 | 618 |
WANA | 0 | 1552 | 142 | 190 |
CE Europe | 0 | 1448 | 603 | 146 |
Belt and Road | 0 | 4578 | 497 | 531 |
Zone | Low Drought Risk | Low to Medium Drought Risk | Medium Drought Risk | Medium to High Drought Risk | High Drought Risk | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (104 km²) | Percentage | Area (104 km²) | Percentage | Area (104 km²) | Percentage | Area (104 km²) | Percentage | Area (104 km²) | Percentage | |
China | 50 | 5% | 130 | 13% | 248 | 26% | 257 | 27% | 276 | 29% |
South-Eastern Asia | 35 | 8% | 98 | 22% | 137 | 30% | 140 | 31% | 38 | 9% |
Southern Asia | 70 | 14% | 111 | 22% | 111 | 22% | 103 | 21% | 105 | 21% |
MRCA | 662 | 29% | 522 | 23% | 414 | 19% | 412 | 18% | 246 | 11% |
WANA | 30 | 4% | 55 | 7% | 66 | 9% | 98 | 13% | 509 | 67% |
CE Europe | 39 | 18% | 68 | 31% | 65 | 30% | 41 | 18% | 6 | 3% |
Belt and Road | 886 | 17% | 984 | 19% | 1041 | 20% | 1051 | 20% | 1180 | 23% |
Zone | Low Flood Risk | Low to Medium Flood Risk | Medium Flood Risk | Medium to High Flood Risk | High Flood Risk | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (104 km2) | Percentage | Area (104 km2) | Percentage | Area (104 km2) | Percentage | Area (104 km2) | Percentage | Area (104 km2) | Percentage | |
China | 138 | 14% | 133 | 14% | 182 | 19% | 188 | 20% | 319 | 33% |
South-Eastern Asia | 106 | 24% | 31 | 7% | 52 | 12% | 87 | 19% | 171 | 38% |
Southern Asia | 5 | 1% | 5 | 1% | 22 | 5% | 131 | 26% | 336 | 67% |
MRCA | 977 | 43% | 417 | 18% | 515 | 23% | 336 | 15% | 11 | 1% |
WANA | 179 | 24% | 124 | 16% | 182 | 24% | 218 | 29% | 56 | 7% |
CE Europe | 30 | 14% | 23 | 11% | 71 | 32% | 59 | 27% | 34 | 16% |
Belt and Road | 1435 | 28% | 733 | 14% | 1024 | 20% | 1019 | 20% | 927 | 18% |
Zone | Flood Area (104 km²) | Cropland (104 km²) | Highway (104 km) | Railway (103 km) |
---|---|---|---|---|
China | 105 | 92 | 7 | 10 |
South-Eastern Asia | 76 | 46 | 3 | 8 |
Southern Asia | 117 | 93 | 9 | 22 |
MRCA | 195 | 21 | 7 | 30 |
WANA | 28 | 7 | 2 | 2 |
CE Europe | 10 | 9 | 1 | 4 |
Belt and Road | 531 | 268 | 29 | 76 |
Region | Low Risk | Low to Medium Risk | Medium Risk | Medium to High Risk | High Risk | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (104 km2) | Percentage | Area (104 km2) | Percentage | Area (104 km2) | Percentage | Area (104 km2) | Percentage | Area (104 km2) | Percentage | |
China | 57 | 6% | 94 | 10% | 185 | 19% | 445 | 46% | 178 | 19% |
South-Eastern Asia | 63 | 14% | 62 | 14% | 71 | 16% | 175 | 39% | 77 | 17% |
Southern Asia | 5 | 1% | 12 | 2% | 86 | 17% | 228 | 46% | 168 | 34% |
MRCA | 927 | 41% | 652 | 30% | 486 | 21% | 190 | 8% | 2 | 0% |
WANA | 42 | 6% | 48 | 6% | 198 | 26% | 303 | 40% | 167 | 22% |
CE Europe | 60 | 27% | 41 | 19% | 37 | 17% | 66 | 30% | 15 | 7% |
Belt and Road | 1154 | 22% | 909 | 17% | 1063 | 20% | 1407 | 27% | 607 | 12% |
Region | Low Risk | Low to Medium Risk | Medium Risk | Medium to High Risk | High Risk | |||||
---|---|---|---|---|---|---|---|---|---|---|
Popu (million) | Percentage | Popu (million) | Percentage | Popu (million) | Percentage | Popu (million) | Percentage | Popu (million) | Percentage | |
China | 29 | 2% | 47 | 3% | 152 | 11% | 838 | 59% | 361 | 25% |
South-Eastern Asia | 22 | 4% | 35 | 6% | 66 | 11% | 327 | 56% | 132 | 23% |
Southern Asia | 0 | 0% | 17 | 1% | 278 | 17% | 742 | 45% | 609 | 37% |
MRCA | 80 | 43% | 63 | 34% | 26 | 14% | 14 | 8% | 1 | 1% |
WANA | 22 | 4% | 32 | 6% | 64 | 13% | 245 | 50% | 135 | 27% |
CE Europe | 38 | 21% | 34 | 18% | 27 | 15% | 70 | 38% | 15 | 8% |
Belt and Road | 191 | 4% | 228 | 5% | 613 | 14% | 2236 | 50% | 1253 | 28% |
Corridor | Low Risk | Low to Medium Risk | Medium Risk | Medium to High Risk | High Risk | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (104 km2) | Percentage | Area (104 km2) | Percentage | Area (104 km2) | Percentage | Area (104 km2) | Percentage | Area (104 km2) | Percentage | |
CMRC | 66 | 27% | 53 | 21% | 72 | 30% | 48 | 20% | 6 | 2% |
NECB | 61 | 35% | 37 | 21% | 28 | 16% | 35 | 20% | 15 | 8% |
CCAWAC | 27 | 28% | 26 | 27% | 11 | 11% | 23 | 24% | 10 | 10% |
CPC | 5 | 12% | 2 | 5% | 10 | 26% | 14 | 34% | 9 | 23% |
BCIBC | 1 | 1% | 1 | 1% | 7 | 13% | 31 | 60% | 13 | 25% |
CICPC | 1 | 1% | 5 | 7% | 16 | 20% | 36 | 46% | 20 | 26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, Z.; Chen, M.; Song, X.; Kang, P. Spatial Variability of Water Resources State of Regions around the “Belt and Road”. Water 2021, 13, 2102. https://doi.org/10.3390/w13152102
Huang Y, Li Z, Chen M, Song X, Kang P. Spatial Variability of Water Resources State of Regions around the “Belt and Road”. Water. 2021; 13(15):2102. https://doi.org/10.3390/w13152102
Chicago/Turabian StyleHuang, Yaohuan, Zhonghua Li, Mingxing Chen, Xiaoyang Song, and Ping Kang. 2021. "Spatial Variability of Water Resources State of Regions around the “Belt and Road”" Water 13, no. 15: 2102. https://doi.org/10.3390/w13152102