Evaluation of Past and Future Climate Trends under CMIP6 Scenarios for the UBNB (Abay), Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Set
2.3. Baseline Period Reanalysis and Monthly Observation Validation
2.4. Climate Models Bias Correction
2.5. Evaluations of CMIP6 Models
2.6. Future Climate Projection and Trend Analysis
3. Results
3.1. Data Checking
3.2. CMIP6 Climate Models Bias Correction
3.3. Performance Evaluation of CMIP6 Models at Regional Scale
3.4. Future Precipitation and Temperature Trend Analysis
3.5. Spacial Distribution of Future Precipitation and Temperature
4. Discussions
4.1. Baseline Validation and Bias Correction
4.2. Model Selection and Future Climate Projection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model PRECP | RQUANT (NSE) | QUANT (NSE) | SSPLIN (NSE) | RQUANT (MAE) | QUANT (MAE) | SSPLIN (MAE) |
---|---|---|---|---|---|---|
BCC-CSM2-MR | 0.756 | 0.755 | 0.734 | 40.402 | 40.464 | 41.168 |
CAMS-CSM1-0 | 0.603 | 0.599 | 0.600 | 26.400 | 26.521 | 26.469 |
CanESM5p1 | 0.758 | 0.758 | 0.754 | 39.235 | 39.332 | 39.514 |
CanESM5p2 | 0.735 | 0.731 | 0.728 | 41.812 | 42.017 | 42.183 |
CESM2 | 0.748 | 0.748 | 0.740 | 46.733 | 46.741 | 47.307 |
CESM2-WACCM | 0.739 | 0.738 | 0.732 | 48.354 | 48.436 | 48.790 |
FGOALS-g3 | 0.704 | 0.703 | 0.702 | 48.700 | 48.716 | 48.831 |
MCM-UA-1-0f2 | 0.148 | 0.110 | 0.104 | 103.444 | 104.401 | 104.562 |
MIROC6 | 0.797 | 0.796 | 0.794 | 52.094 | 52.162 | 52.512 |
MIROC-ES2L | 0.695 | 0.694 | 0.693 | 48.041 | 48.068 | 48.261 |
MRI-ESM2-0 | 0.699 | 0.698 | 0.693 | 45.319 | 45.407 | 45.611 |
UKESM1-0-LL | 0.766 | 0.764 | 0.751 | 775.618 | 780.088 | 793.310 |
Model TEMP | ||||||
BCC-CSM2-MR | 0.797 | 0.796 | 0.794 | 1.498 | 1.509 | 1.508 |
CanESM5p1 | 0.695 | 0.694 | 0.693 | 1.036 | 1.044 | 1.042 |
CanESM5p2 | 0.699 | 0.698 | 0.695 | 1.035 | 1.039 | 1.039 |
FGOALS-g3 | 0.766 | 0.764 | 0.751 | 1.005 | 1.009 | 1.007 |
MIROC6 | 0.797 | 0.796 | 0.794 | 1.498 | 1.509 | 1.508 |
MIROC-ES2L | 0.695 | 0.694 | 0.693 | 1.036 | 1.044 | 1.042 |
MRI-ESM2-0 | 0.699 | 0.698 | 0.695 | 1.035 | 1.039 | 1.039 |
UKESM1-0-LL | 0.766 | 0.764 | 0.751 | 1.005 | 1.009 | 1.007 |
References
- Collier, P.; Conway, G.; Venables, T. Climate change and Africa. Oxf. Rev. Econ. Policy 2008, 24, 337–353. [Google Scholar] [CrossRef]
- IPCC. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergov-ernmental Panel on Climate Change. Climate Change 2014. Impacts, Adaptation, and Vulnerability. 2014. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartA_FINAL.pdf (accessed on 24 July 2021).
- Sutton, S.G.; Tobin, R. Constraints on community engagement with Great Barrier Reef climate change reduction and mitigation. Glob. Environ. Chang. 2011, 21, 894–905. [Google Scholar] [CrossRef]
- Birch, E.L. A Review of “Climate Change 2014: Impacts, Adaptation, and Vulnerability” and “Climate Change 2014: Mitigation of Climate Change”. J. Am. Plan. Assoc. 2014, 80, 184–185. [Google Scholar] [CrossRef]
- Tesemma, Z.K.; Mohamed, Y.A.; Steenhuis, T.S. Trends in rainfall and runoff in the Blue Nile Basin: 1964–2003. Hydrol. Process. 2010, 24, 3747–3758. [Google Scholar] [CrossRef] [Green Version]
- Dile, Y.T.; Tekleab, S.; Ayana, E.K.; Gebrehiwot, S.G.; Worqlul, A.W.; Bayabil, H.K.; Yimam, Y.T.; Tilahun, S.A.; Daggupati, P.; Karlberg, L.; et al. Advances in water resources research in the Upper Blue Nile basin and the way forward: A review. J. Hydrol. 2018, 560, 407–423. [Google Scholar] [CrossRef]
- Addisu, S.; Selassie, Y.G.; Fissha, G.; Gedif, B. Time series trend analysis of temperature and rainfall in lake Tana Sub-basin. Ethiopia. Environ. Syst. Res. 2015, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Conway, D.; Hulme, M. Recent fluctuations in precipitation and runoff over the Nile sub-basins and their impact on main Nile discharge. Clim. Chang. 1993, 25, 127–151. [Google Scholar] [CrossRef]
- Strzepek, K.; Yates, D.; El Quosy, D. Vulnerability assessment of water resources in Egypt to climatic change in the Nile Basin. Clim. Res. 1996, 6, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Conway, D. The Climate and Hydrology of the Upper Blue Nile River. Geogr. J. 2000, 166, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Elshamy, M.; Seierstad, I.A.; Sorteberg, A. Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrol. Earth Syst. Sci. 2009, 13, 551–565. [Google Scholar] [CrossRef] [Green Version]
- Jury, M.R.; Funk, C. Climatic trends over Ethiopia: Regional signals and drivers. Int. J. Clim. 2012, 33, 1924–1935. [Google Scholar] [CrossRef]
- Samy, A.; Ibrahim, M.G.; Mahmod, W.; Fujii, M.; Eltawil, A.; Daoud, W. Statistical Assessment of Rainfall Characteristics in Upper Blue Nile Basin over the Period from 1953 to 2014. Water 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Abtew, W.; Dessu, S.B. Grand Ethiopian Renaissance Dam Analysis. In The Grand Ethiopian Renaissance Dam on the Blue Nile. Springer Geography; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Chen, H.; Swain, A. The Grand Ethiopian Renaissance Dam: Evaluating Its Sustainability Standard and Geopolitical Signifi-cance. Energy Dev. Front. 2014, 3, 11–19. [Google Scholar]
- Soliman, G.; Soussa, H.; El-Sayed, S. Assessment of Grand Ethiopian Renaissance Dam impacts using Decision Support System. IOSR J. Comput. Eng. 2015, 18, 2278–2661. [Google Scholar] [CrossRef]
- Roth, V.; Lemann, T.; Zeleke, G.; Subhatu, A.T.; Nigussie, T.K.; Hurni, H. Effects of climate change on water resources in the upper Blue Nile Basin of Ethiopia. Heliyon 2018, 4, e00771. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds.) AR4 Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Gebre, S.L.; Ludwig, F. Hydrological Response to Climate Change of the Upper Blue Nile River Basin: Based on IPCC Fifth Assessment Report (AR5). J. Clim. Weather. Forecast. 2015, 3. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Rana, A.; Moradkhani, H.; Sharma, A. Multicriteria evaluation of CMIP5 GCMs for climate change impact analysis. Theor. Appl. Climatol. 2017, 128, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Duan, X.; Chen, D.; Hao, Z.; Cuo, L. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Clim. 2013, 26, 3187–3208. [Google Scholar] [CrossRef] [Green Version]
- O′Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Flato, G.; Lamarque, J.-F.; Meehl, J.; Senior, C.; Stouffer, R.; Taylor, K. Status of the Coupled Model Intercomparison Project Phase 6 (CMIP6) and Goals of the Workshop. In Proceedings of the CMIP6 Analysis Workshop, Barcelona, Spain, 25 March 2019. [Google Scholar]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; Van Vuuren, D.P.; Berg, M.V.D.; Feng, L.; Klein, D.; et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.; Edmonds, J.; O’Neill, B.; Moss, R.; Weyant, J.; Riahi, K. SSP/RCP-Based Scenarios for CMIP6. Available online: https://www.wcrp-climate.org/images/modelling/WGCM/WGCM17/8a_vanvuuren.pdf (accessed on 24 July 2021).
- Almazroui, M.; Saeed, F.; Saeed, S.; Islam, M.N.; Ismail, M.; Klutse, N.A.B.; Siddiqui, M.H. Projected Change in Temperature and Precipitation Over Africa from CMIP6. Earth Syst. Environ. 2020, 4, 455–475. [Google Scholar] [CrossRef]
- Kawai, H.; Yukimoto, S.; Koshiro, T.; Oshima, N.; Tanaka, T.; Yoshimura, H.; Nagasawa, R. Significant improvement of cloud representation in the global climate model MRI-ESM2. Geosci. Model Dev. 2019, 12, 2875–2897. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, N.R.; Bellerby, T.; Sayed, M.; Elshamy, M. Blue Nile Runoff Sensitivity to Climate Change. Open Hydrol. 2010, 4, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Zerfu, S.A.; Moges, T. Low flow analysis and regionalization of the Blue Nile River basin. Master Thesis, Arbaminch University, Arbaminch, Ethiopia, 2009. [Google Scholar]
- Tabari, H.; Taye, M.T.; Willems, P. Water availability change in central Belgium for the late 21st century. Glob. Planet. Chang. 2015, 131, 115–123. [Google Scholar] [CrossRef]
- McCartney, M.P.; Girma, M.M. Evaluating the downstream implications of planned water resource development in the Ethiopian portion of the Blue Nile River. Water Int. 2012, 37, 362–379. [Google Scholar] [CrossRef]
- Kim, U.; Kaluarachchi, J.J. Climate Change Impacts on Water Resources in the Upper Blue Nile River Basin, Ethiopia. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1361–1378. [Google Scholar] [CrossRef]
- Tafesse, T. The Hydropolitical Assessment of the Nile Question: An Ethiopian Perspective. Water Int. 2001, 26, 1–11. [Google Scholar] [CrossRef]
- Kim, U.; Kaluarachchi, J.J. Application of parameter estimation and regionalization methodologies to ungauged basins of the Upper Blue Nile River Basin, Ethiopia. J. Hydrol. 2008, 362, 39–56. [Google Scholar] [CrossRef]
- Harris, I.R.; Jones, P.; Osborn, T.; Lister, D. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Clim. 2013, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, B.; Beck, C.; Grieser, J.; Schneider, U. Global Precipitation Analysis Products of the GPCC. 2005. Available online: https://www.researchgate.net/publication/266219519_Global_Precipitation_Analysis_Products_of_the_GPCC (accessed on 24 July 2021).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Randles, C.; Da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef] [Green Version]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef] [Green Version]
- Lauritzen, P.H.; Nair, R.D.; Herrington, A.R.; Callaghan, P.; Goldhaber, S.; Dennis, J.M.; Bacmeister, J.T.; Eaton, B.E.; Zarzycki, C.M.; Taylor, M.A.; et al. NCAR Release of CAM-SE in CESM2.0: A Reformulation of the Spectral Element Dynamical Core in Dry-Mass Vertical Coordinates with Comprehensive Treatment of Condensates and Energy. J. Adv. Model. Earth Syst. 2018, 10, 1537–1570. [Google Scholar] [CrossRef]
- Liu, S.-M.; Chen, Y.-H.; Rao, J.; Cao, C.; Li, S.-Y.; Ma, M.-H.; Wang, Y.-B. Parallel Comparison of Major Sudden Stratospheric Warming Events in CESM1-WACCM and CESM2-WACCM. Atmosphere 2019, 10, 679. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yu, Z.; Lin, P.; Liu, H.; Jin, J.; Li, L.; Tang, Y.; Dong, L.; Chen, K.; Li, Y.; et al. FGOALS-g3 model datasets for CMIP6 flux-anomaly-forced model intercomparison project. Adv. Atmos. Sci. 2020, 37, 1093–1101. [Google Scholar] [CrossRef]
- Fenta Mekonnen, D.; Disse, M. Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques. Hydrol. Earth Syst. Sci. 2018, 22, 2391–2408. [Google Scholar] [CrossRef] [Green Version]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Kimoto, M. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Sellar, A.A.; Walton, J.; Jones, C.G.; Wood, R.; Abraham, N.L.; Andrejczuk, M.; Andrews, M.B.; Andrews, T.; Archibald, A.T.; De Mora, L.; et al. Implementation of U.K. Earth System Models for CMIP6. J. Adv. Model. Earth Syst. 2020, 12. [Google Scholar] [CrossRef]
- Stern, R.; Rijks, D.; Dale, I.; Knock, J. INSTAT Climatic Guide; Statistical Services Centre, University of Reading: Reading, UK, 2006; pp. 247–281. [Google Scholar]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Clim. 2009, 99, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Ringard, J.; Seyler, F.; Linguet, L. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield. Sensors 2017, 17, 1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engenskaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, L. Statistical Transformations for Post-Processing Climate Model Output. 2016. Available online: https://hess.copernicus.org/articles/16/3383/2012/ (accessed on 24 July 2021).
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Khambhammettu, P. Mann-Kendall analysis for the Fort Ord Site; Hydrogeol. Inc.: Austin, TX, USA, 2005; pp. 1–7. [Google Scholar]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Egeru, A.; Barasa, B.; Nampijja, J.; Siya, A.; Makooma, M.T.; Majaliwa, M.G.J. Past, present and future climate trends under varied representative concentration pathways for a sub-humid region in Uganda. Climate 2019, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Zambrano-Bigiarini, M.; Nauditt, A.; Birkel, C.; Verbist, K.; Ribbe, L. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295–1320. [Google Scholar] [CrossRef] [Green Version]
- Beyene, T.; Lettenmaier, D.P.; Kabat, P. Hydrologic impacts of climate change on the Nile River Basin: Implications of the 2007 IPCC scenarios. Clim. Chang. 2009, 100, 433–461. [Google Scholar] [CrossRef]
- Mengistu, D.; Bewket, W.; Dosio, A.; Panitz, H.-J. Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. J. Hydrol. 2021, 592, 125614. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2011, 112, 449–468. [Google Scholar] [CrossRef]
- Dosio, A.; Jones, R.G.; Jack, C.; Lennard, C.; Nikulin, G.; Hewitson, B. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 2019, 53, 5833–5858. [Google Scholar] [CrossRef] [Green Version]
- Aich, V.; Liersch, S.; Vetter, T.; Huang, S.; Tecklenburg, J.; Hoffmann, P.; Koch, H.E.; Fournet, S.; Krysanova, V.; Müller, E.N.; et al. Comparing impacts of climate change on streamflow in four large African river basins. Hydrol. Earth Syst. Sci. 2014, 18, 1305–1321. [Google Scholar] [CrossRef] [Green Version]
- Legesse, S.A. The outlook of Ethiopian long rain season from the global circulation model. Environ. Syst. Res. 2016, 5, 577. [Google Scholar] [CrossRef] [Green Version]
- Haile, A.T.; Akawka, A.L.; Berhanu, B.; Rientjes, T. Changes in water availability in the Upper Blue Nile basin under the representative concentration pathways scenario. Hydrol. Sci. J. 2017, 62, 2139–2149. [Google Scholar] [CrossRef]
- Girma, M.M. Potential Impact of Climate and Land Use Changes on the Water Resources of the Upper Blue Nile Basin. Master Thesis, Freie University of Berlin, Berlin, Germany, 2013; pp. 1–103. [Google Scholar]
- Cherie, N.Z. Downscaling and Modeling the Effects of Climate Change on Hydrology and Water Resources in the Upper Blue Nile River Basin, Ethiopia. Ph.D. Thesis, University of Kassel, Kassel, Germany, 2013; pp. 1–329. [Google Scholar]
- Wagena, M.B.; Sommerlot, A.; Abiy, A.Z.; Collick, A.S.; Langan, S.; Fuka, D.R.; Easton, Z.M. Climate change in the Blue Nile Basin Ethiopia: Implications for water resources and sediment transport. Clim. Chang. 2016, 139, 229–243. [Google Scholar] [CrossRef]
- Getachew, B.; Manjunatha, B.; Bhat, H.G. Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the Lake Tana Basin, upper Blue Nile River Basin, Ethiopia. J. Hydrol. 2021, 595, 125974. [Google Scholar] [CrossRef]
- Dosio, A.; Turner, A.G.; Tamoffo, A.T.; Sylla, M.B.; Lennard, C.; Jones, R.G.; Terray, L.; Nikulin, G.; Hewitson, B. A tale of two futures: Contrasting scenarios of future precipitation for West Africa from an ensemble of regional climate models. Environ. Res. Lett. 2020, 15, 064007. [Google Scholar] [CrossRef]
- Dosio, A.; Panitz, H.-J.; Schubert-Frisius, M.; Lüthi, D. Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: Evaluation over the present climate and analysis of the added value. Clim. Dyn. 2014, 44, 2637–2661. [Google Scholar] [CrossRef] [Green Version]
- Yimer, G.; Jonoski, A.; Van Griensven, A. Hydrological response of a catchment to climate change, case study on Upper Beles Sub-Basin, Upper Blue Nile, Ethiopia. Nile Basin Water Eng. Sci. Mag. 2009, 2, 49–59. [Google Scholar]
- Cherinet, A.A.; Yan, D.; Wang, H.; Song, X.; Qin, T.; Kassa, M.T.; Girma, A.; Dorjsuren, B.; Gedefaw, M.; Wang, H.; et al. Climate trends of temperature, precipitation and river discharge in the Abbay river basin in Ethiopia. J. Water Resour. Prot. 2019, 11, 1292. [Google Scholar] [CrossRef] [Green Version]
- Iturbide, M.; Gutiérrez, J.M.; Alves, L.M.; Bedia, J.; Cerezo-Mota, R.; Cimadevilla, E.; Cofiño, A.S.; Di Luca, A.; Faria, S.H.; Gorodetskaya, I.V.; et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data 2020, 12, 2959–2970. [Google Scholar] [CrossRef]
No. | CMIP6 Model Name | Country | Horizontal Res (lon. × lat. deg) | Key References |
---|---|---|---|---|
1. | BCC-CSM2-MR | China | 1.1° × 1.1° | [40] |
2. | CAMS-CSM1-0 | China | 1.1° × 1.1° | [40] |
3. | CanESM5p1 | Canada | 2.8° × 2.8° | [41] |
4. | CanESM5p2 | Canada | 2.8° × 2.8° | [41] |
5. | CESM2 | USA | 1.3° × 0.9° | [42] |
6. | CESM2-WACCM | USA | 1.3° × 0.9° | [43] |
7. | FGOALS-g3 | China | 2° × 2.3° | [44] |
8. | MCM-UA-1-Of2 | USA | 2.5° × 2.5° | [45] |
9. | MIROC6 | Japan | 1.4° × 1.4° | [46] |
10. | MIROC-ES2L | Japan | 2.8° × 2.8° | [46] |
11. | MRI-ESM2-0 | Japan | 1.1° × 1.1° | [27] |
12. | UKESM1-0-LL | UK | 1.9° × 1.3° | [47] |
Monthly Observations and Reanalysis | ERA 5 | CRU TS4.04 | MERRA | CFSR | GPCC.25 |
---|---|---|---|---|---|
Temperature (°C) | |||||
RMSE | 1.14 | 1.19 | 6.10 | 2.82 | |
Corr. Coeff (r2) | 0.88 | 0.86 | 0.62 | 0.85 | |
NSE | 0.70 | 0.67 | −7.50 | −2.28 | |
Precipitation (mm/Month) | |||||
RMSE | 80.34 | 79.09 | 117.84 | 116.34 | 76.21 |
Corr. Coeff (r2) | 0.86 | 0.88 | 0.85 | 0.49 | 0.92 |
NSE | 0.73 | 0.76 | 0.18 | 0.40 | 0.76 |
Models | RMSE | PBIAS % | NSE | R2 |
---|---|---|---|---|
Precipitation (mm/month) | ||||
BCC-CSM-2MR | 25.66 | 16.4 | 0.93 | 0.98 |
CAMS-CSM1-0 | 57.66 | −39.4 | 0.63 | 0.96 |
CanESM5p1 | 32.51 | 10.5 | 0.88 | 0.98 |
CanESM5p2 | 32.97 | 9.8 | 0.88 | 0.98 |
CESM2 C | 56.01 | 38.4 | 0.65 | 0.98 |
ESM2-WACCM | 64.02 | 42.1 | 0.54 | 0.96 |
FGOALS-g3 | 49.8 | 22.2 | 0.72 | 0.96 |
MCM-UA-1-0f2 | 96.38 | 49 | −0.04 | 0.85 |
MIROC6 | 113.2 | 83.5 | −0.43 | 0.96 |
MIROC-ES2L | 48.77 | 37.9 | 0.73 | 0.96 |
MRI-ESM2-0 | 35.26 | 26.4 | 0.86 | 0.98 |
UKESM1-0-LL | 3236.65 | 1919.8 | −1168.9 | 0.90 |
Temperature (°C) | ||||
BCC-CSM2MR | 1.54 | 5 | 0.55 | 0.92 |
CanESM5p1 | 2.21 | 8.1 | 0.08 | 0.94 |
CanESM5p2 | 1.79 | 6.4 | 0.4 | 0.90 |
FGOALS-g3 | 0.81 | 0.9 | 0.88 | 0.92 |
MIROC6 | 1.48 | 5.1 | 0.59 | 0.94 |
MIROC-ES2L | 1.82 | −6.1 | 0.38 | 0.86 |
MRI-ESM2-0 | 0.74 | −0.9 | 0.9 | 0.92 |
UKESM1-0-LL | 3.06 | 11.6 | −0.76 | 0.98 |
RCM Runs | Time | Scenarios | |||
---|---|---|---|---|---|
BCC-CSM-2MR Mean Precipitation (mm/Month) | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | |
Baseline | 261.8 | 261.8 | 262.9 | 261.8 | |
2031–2060 | 277.13 | 295.4 | 287.87 | 306.55 | |
2071–2100 | 277.79 | 297.60 | 286.89 | 308.26 | |
2031–2100 | 276.19 | 292.33 | 294.71 | 308.23 | |
Change of 21th Century (%) | 5.5 | 11.7 | 12.1 | 17.7 | |
Change of Near-term (%) | 5.9 | 12.8 | 9.5 | 17.1 | |
Change of Long-term (%) | 6.1 | 13.7 | 9.1 | 17.7 | |
MRI-ESM2-0 Max. Temperature (°C) | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | |
Baseline | 26.5 | 26.5 | 26.5 | 26.5 | |
2031–2060 | 27.6 | 27.8 | 27.7 | 28 | |
2071–2100 | 28.0 | 28.7 | 29.3 | 30.3 | |
2031–2100 | 27.8 | 28.2 | 28.5 | 29.1 | |
Change of 21th Century (°C) | 1.3 | 1.7 | 2.0 | 2.6 | |
Change of Near-term (°C) | 1.1 | 1.3 | 1.2 | 1.5 | |
Change of Long-term (°C) | 1.5 | 2.2 | 2.8 | 3.8 |
No. | Region/Basin/Watershed | Area (km2) | Model Runs | Time | Scenarios | Change in Max. Temp. (°C) | Change in Precip. (%) | Source |
---|---|---|---|---|---|---|---|---|
1 | East Africa | 23 CMIP5 | 1981–2010 | RCP8.5 | Increasing | [62] | ||
2006–2100 | ||||||||
2 | East Africa | - | COSMO-CLM | 1950–2005 | RCP4.5 | 3 | [63] | |
2006–2100 | RCP8.5 | 6 | ||||||
3 | East Africa | - | 27 CMIP6 | 1981–2010 | SSP1-2.6 | 1.2 (1.3) | 14.2 (12.3) | [26] |
2030–2059 | SSP2-4.5 | 1.3 (2.3) | 16.9 (18.4) | |||||
2070–2099 | SSP5-8.5 | 1.7 (4.1) | 24.5 (51) | |||||
4 | Ethiopia | 1.29 million | 6 CMIP 5 | 1971–1990 1991–2010 2035–2054 | −10.6 −17.5 | [64] | ||
5 | Ethiopia | 1.29 million | GFDL- GCM | 1948–2006 2001–2050 | A1B | 4 | −3 | [12] |
6 | Blue Nile | 3.35 million | 19 CMIP5 | 2006–2100 | RCP2.6 | 3 | −20 | [63] |
RCP8.5 | 6 | −20 | ||||||
7 | Blue Nile | 3.35 million | 11 GCMs | 1950–1999 2010–2099 | A2 (B1) | 1.5 (1.3) | 115 (117)mm | [59] |
8 | Blue Nile | 3.35 million | 17 GCMs | 2081–2098 | A1 | 5.00 | No change | [11] |
9 | Blue Nile | 3.35 million | 11 GCMs | 1950–1999 | [59] | |||
10 | Blue Nile UBNB | 3.35 million | 11 GCMs 3 GCM | 2010–2039 | A2 (B1) | 1.5(1.3) | 115 (117)mm | |
2040–2069 | 3.2(2.8) | 98 (104) mm | ||||||
2070–2099 | 4.4(3.6) | 93 (96) mm | ||||||
2010–2039 | A2 | −8.8 | ||||||
176,000 | 2040–2069 | B2 | 23.30 | [28] | ||||
2070–2099 | 54.60 | |||||||
11 | UBNB | 176,000 | COSMO-CLM | 1981–2010 | RCP4.5 | 2.48 | −10.8 | [60] |
2070–2099 | RCP8.5 | 4.89 | −19.0 | |||||
12 | UBNB | 176,000 | 11 GCMs | 2070–2099 | −24.0 | [59] | ||
13 | UBNB | 176,000 | 3 CMIP3 | 1979–2013 | A1B | 2–2.7 | 17.42–46.12 | [17] |
2046–2064 2081–2099 | 2.7–3.7 | 7.73- 48.44 | ||||||
14 | UBNB | 176,000 | 5 CMIP 5 | 1971–2000 | RCP4.5 | Decreasing | [65] | |
2041–2070 | ||||||||
15 | UBNB | 176,000 | ECHAM5 GCM | 1961–1990 | [66] | |||
2011–2040 | A1B | 8% | 1.8 | |||||
2015–2030 | 13.80% | −6.6 | ||||||
2041–2070 | 23.90% | −6.4 | ||||||
16 | UBNB | 176,000 | 3 GCMs | 1970–2000 | [67] | |||
2046–2065 | A1B | 0.6–2.7 | −36 to 1 | |||||
2081–2100 | A2 | 0.9–4.63 | ||||||
17 | UBNB | 176,000 | 6 GCMs | 1961–1990 | A2 | 2.3 | 11 | [32] |
2011–2040 | ||||||||
18 | UBNB | 176,000 | COSMO-CLM | 1983–2100 | [31] | |||
1971–2000 | A1B | Increasing | Decreasing | |||||
19 | Tana and Belse | 28,549 | 6 CMIP5 | 1979–2010 | [68] | |||
2041–2065 | RCP2.6, RCP4.5 | 8.6% (15.7%) | 11.0(17.6) | |||||
2075–2099 | RCP6.0, RCP8.5 | 2.4% (21.2%) | 11.7(18.4) | |||||
20 | Tana Basin | 15,000 | CanESM2 GCM | 2011–2040, | RCP2.6 | 2.14 | 25 | [69] |
2041–2070 | RCP8.5 | |||||||
2071–2100 | RCP4.5 | |||||||
21 | Tana basin | 15,000 | 5 CMIP5 | 2035–2064 | RCP 4.5 | 3.9 | −8.9 to 25.2 | [19] |
2071–2100 | RCP 8.5 | 7.1 | −10.8 to 34.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaminie, A.A.; Tilahun, S.A.; Legesse, S.A.; Zimale, F.A.; Tarkegn, G.B.; Jury, M.R. Evaluation of Past and Future Climate Trends under CMIP6 Scenarios for the UBNB (Abay), Ethiopia. Water 2021, 13, 2110. https://doi.org/10.3390/w13152110
Alaminie AA, Tilahun SA, Legesse SA, Zimale FA, Tarkegn GB, Jury MR. Evaluation of Past and Future Climate Trends under CMIP6 Scenarios for the UBNB (Abay), Ethiopia. Water. 2021; 13(15):2110. https://doi.org/10.3390/w13152110
Chicago/Turabian StyleAlaminie, Addis A., Seifu A. Tilahun, Solomon A. Legesse, Fasikaw A. Zimale, Gashaw Bimrew Tarkegn, and Mark R. Jury. 2021. "Evaluation of Past and Future Climate Trends under CMIP6 Scenarios for the UBNB (Abay), Ethiopia" Water 13, no. 15: 2110. https://doi.org/10.3390/w13152110
APA StyleAlaminie, A. A., Tilahun, S. A., Legesse, S. A., Zimale, F. A., Tarkegn, G. B., & Jury, M. R. (2021). Evaluation of Past and Future Climate Trends under CMIP6 Scenarios for the UBNB (Abay), Ethiopia. Water, 13(15), 2110. https://doi.org/10.3390/w13152110