Seed Halo-Priming Improves Seedling Vigor, Grain Yield, and Water Use Efficiency of Maize under Varying Irrigation Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Experiment
2.2. Field Trial
2.2.1. Description of Experimental Site
2.2.2. Experimental Design and Studied Treatments
2.2.3. Field Measurements
2.3. Statistical Analysis
3. Results
3.1. Laboratory Experiment
3.2. Field Trial
3.2.1. Response of Grain Yield to Irrigation Regimes
3.2.2. Interrelationship among Studied Traits and Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Xu, X.; Jiang, Y.; Huang, Q.; Huo, Z.; Liu, L.; Huang, G. Responses of crop growth and water productivity to climate change and agricultural water-saving in arid region. Sci. Total Environ. 2020, 703, 134621. [Google Scholar] [CrossRef] [PubMed]
- Lawin, A.E.; Niyongendako, M.; Manirakiza, C. Solar irradiance and temperature variability and projected trends analysis in Burundi. Climate 2019, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Shahid, S. Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh. Clim. Chang. 2011, 105, 433–453. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.; Qabil, N.; Abdelsalam, A.; Wafa, H.A.; El Kenawy, A.; Casas, A.M.; Igartua, E. Assessing different barley growth habits under Egyptian conditions for enhancing resilience to climate change. Field Crop. Res. 2018, 224, 67–75. [Google Scholar] [CrossRef]
- Meza, I.; Siebert, S.; Döll, P.; Kusche, J.; Herbert, C.; Eyshi Rezaei, E.; Nouri, H.; Gerdener, H.; Popat, E.; Frischen, J. Global-scale drought risk assessment for agricultural systems. Nat. Hazards Earth Syst. Sci. 2020, 20, 695–712. [Google Scholar] [CrossRef] [Green Version]
- Mansour, E.; Desoky, E.M.; Ali, M.M.A.; Abdul-Hamid, M.I.; Ullah, H.; Attia, A.; Datta, A. Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment. Agric. Water Manag. 2021, 247, 106754. [Google Scholar] [CrossRef]
- Tabak, M.; Lepiarczyk, A.; Filipek-Mazur, B.; Lisowska, A. Efficiency of nitrogen fertilization of winter wheat depending on sulfur fertilization. Agronomy 2020, 10, 1304. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Statistical Database. 2021. Available online: http://www.fao.org/faostat/en/#data (accessed on 26 June 2021).
- Kuscu, H.; Karasu, A.; Mehmet, O.; Demir, A.O.; Turgut, I. Effect of irrigation amounts applied with drip irrigation on maize evapotranspiration, yield, water use efficiency, and net return in a suba" humid climate. Turkish J. Field Crop. 2013, 18, 13–19. [Google Scholar]
- Jia, Q.; Sun, L.; Ali, S.; Liu, D.; Zhang, Y.; Ren, X.; Zhang, P.; Jia, Z. Deficit irrigation and planting patterns strategies to improve maize yield and water productivity at different plant densities in semi-arid regions. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prăvălie, R.; Patriche, C.V.; Sirodoev, I.; Bandoc, G.; Dumitraşcu, M.; Peptenatu, D. Water deficit and corn productivity during the post-socialist period. Case study: Southern Oltenia drylands, Romania. Arid. Land Res. Manag. 2016, 30, 239–257. [Google Scholar] [CrossRef]
- Karasu, A.; Kușcu, H.; Mehmet, Ö.; Bayram, G. The effect of different irrigation water levels on grain yield, yield components and some quality parameters of silage Maize (Zea mays indentata Sturt.). Not. Bot. Horti. Agrobot. Cluj Napoca 2015, 43, 138–145. [Google Scholar] [CrossRef]
- Ran, H.; Kang, S.; Li, F.; Du, T.; Ding, R.; Li, S.; Tong, L. Responses of water productivity to irrigation and N supply for hybrid maize seed production in an arid region of Northwest China. J. Arid Land 2017, 9, 504–514. [Google Scholar] [CrossRef]
- Jha, P.K.; Ines, A.V.; Singh, M.P. A multiple and ensembling approach for calibration and evaluation of genetic coefficients of CERES-maize to simulate maize phenology and yield in Michigan. Environ. Model. Softw. 2021, 135, 104901. [Google Scholar] [CrossRef]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, P.; Mohammadkhani, N. Effects of drought stress on photosynthesis factors in wheat genotypes during anthesis. Cereal Res. Commun. 2016, 44, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Ostrowska, A.; Grzesiak, M.T.; Hura, T. Exogenous application of growth stimulators improves the condition of maize exposed to soil drought. Acta Physiol. Plant 2021, 43, 1–9. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Elrys, A.S.; Mansour, E.; Eid, R.S.; Selem, E.; Rady, M.M.; Ali, E.F.; Mersal, G.A.; Semida, W.M. Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Sci. Hortic. 2021, 288, 110340. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Mansour, E.; Ali, M.; Yasin, M.A.; Abdul-Hamid, M.I.; Rady, M.M.; Ali, E.F. Exogenously used 24-epibrassinolide promotes drought tolerance in maize hybrids by improving plant and water productivity in an arid environment. Plants 2021, 10, 354. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Gimeno, L.; Eklundh, L.; Giuliani, G.; Weston, D.; El Kenawy, A.; López-Moreno, J.I.; Nieto, R.; Ayenew, T. Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Appl. Geogr. 2012, 34, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Desoky, E.-S.M.; Mansour, E.; Yasin, M.A.; El Sobky, E.-S.E.; Rady, M.M. Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon. Span. J. Agric. Res. 2020, 18, 16. [Google Scholar] [CrossRef]
- El-Sanatawy, A.M.; El-Kholy, A.S.; Ali, M.; Awad, M.F.; Mansour, E. Maize seedling establishment, grain yield and crop water productivity response to seed priming and irrigation management in a Mediterranean arid environment. Agronomy 2021, 11, 756. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Marthandan, V.; Geetha, R.; Kumutha, K.; Renganathan, V.G.; Karthikeyan, A.; Ramalingam, J. Seed priming: A feasible strategy to enhance drought tolerance in crop plants. Int. J. Mol. Sci. 2020, 21, 8258. [Google Scholar] [CrossRef]
- Qin, F.; Xu, H.-l.; Ci, D. Drought stimulation by hypocotyl exposure altered physiological responses to subsequent drought stress in peanut seedlings. Acta Physiol. Plant 2017, 39, 1–15. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Khaliq, A.; Ali, S.; Khan, I. Physiological, Biochemical, and Molecular Aspects of Seed Priming. In Priming and Pretreatment of Seeds and Seedlings; Springer: Berlin/Heidelberg, Germany, 2019; pp. 43–62. [Google Scholar]
- Rhaman, M.S.; Rauf, F.; Tania, S.S.; Khatun, M. Seed priming methods: Application in field crops and future perspectives. Asian J. Crop Sci. 2020, 5, 8–19. [Google Scholar] [CrossRef]
- Jisha, K.; Vijayakumari, K.; Puthur, J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- Jisha, K.; Puthur, J.T. Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties. Physiol. Mol. Biol. Plants. 2014, 20, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzal, I.; Rauf, S.; Basra, S.; Murtaza, G. Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil Environ. 2008, 54, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Kumari, N.; Rai, P.K.; Bara, B.M.; Singh, I. Effect of halo priming and hormonal priming on seed germination and seedling vigour in maize (Zea mays L.) seeds. J. Pharmacogn. Phytochem. 2017, 6, 27–30. [Google Scholar]
- Patade, V.Y.; Bhargava, S.; Suprasanna, P. Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric. Ecosyst. Environ. 2009, 134, 24–28. [Google Scholar] [CrossRef]
- Llorens, E.; González-Hernández, A.I.; Scalschi, L.; Fernández-Crespo, E.; Camañes, G.; Vicedo, B.; García-Agustín, P. Priming mediated stress and cross-stress tolerance in plants: Concepts and opportunities. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–20. [Google Scholar]
- Iqbal, H.; Yaning, C.; Waqas, M.; Ahmed, Z.; Raza, S.T.; Shareef, M. Improving heat stress tolerance in late planted spring maize by using different exogenous elicitors. Chil. J. Agric. Res. 2020, 80, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Khaing, M.; Ultra Jr, V.; Chul Lee, S. Seed priming influence on growth, yield, and grain biochemical composition of two wheat cultivars. J. Agric. Sci. Technol. 2020, 22, 875–888. [Google Scholar]
- Bajehbaj, A.A. The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. Afr. J. Biotechnol. 2010, 9, 1764–1770. [Google Scholar]
- El-Sanatawy, A.M.; Zedan, A.T.M. Seed treatment for improving wheat productivity under deficit irrigation conditions in arid environment. Soil Environ. 2020, 39, 38–49. [Google Scholar] [CrossRef]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor determination in soybean seed by multiple criteria 1. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Ellis, R.; Roberts, E. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 1981, 9, 377–409. [Google Scholar]
- Maguire, J.D. Speed of germination—Aid in selection and evaluation for seedling emergence and vigor 1. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Barrs, H.; Weatherley, P. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Greaves, G.E.; Wang, Y.-M. Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment. Agric. Water Manag. 2017, 188, 115–125. [Google Scholar] [CrossRef]
- De Mendiburu, F. Agricolae: Statistical procedures for agricultural research. R Packag. Version 2014, 1, 1–4. [Google Scholar]
- Kassambara, A.; Mundt, F. Factoextra: Extract and visualize the results of multivariate data analyses. R Packag. Version 2017, 1, 337–354. [Google Scholar]
- Cammarano, D.; Ronga, D.; Di Mola, I.; Mori, M.; Parisi, M. Impact of climate change on water and nitrogen use efficiencies of processing tomato cultivated in Italy. Agric. Water Manag. 2020, 241, 106336. [Google Scholar] [CrossRef]
- Uçak, A.B. Identification of water usage efficiency for corn (Zea mays l.) lines irrigated with drip irrigation under green house conditions as per plant water stress index evaluations. Turk. J. Agric. Res. 2017, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, S.; Yazar, A.; Mansuroglu, G.S. Effects of different drip irrigation levels on yield and some agronomic characteristics of raised bed planted corn. Afr. J. Agric. Res. 2011, 6, 5291–5300. [Google Scholar]
- Zou, H.; Fan, J.; Zhang, F.; Xiang, Y.; Wu, L.; Yan, S. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 2020, 230, 105986. [Google Scholar] [CrossRef]
- Irmak, S.; Djaman, K.; Rudnick, D.R. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrig. Sci. 2016, 34, 271–286. [Google Scholar] [CrossRef]
- El-Mageed, A.; Taia, A.; Belal, E.E.; Rady, M.O.; El-Mageed, A.; Shimaa, A.; Mansour, E.; Awad, M.F.; Semida, W.M. Acidified biochar as a soil amendment to drought stressed (Vicia faba L.) plants: Influences on growth and productivity, nutrient status, and water use efficiency. Agronomy 2021, 11, 1290. [Google Scholar] [CrossRef]
- Shemi, R.; Wang, R.; Gheith, E.-S.M.; Hussain, H.A.; Hussain, S.; Irfan, M.; Cholidah, L.; Zhang, K.; Zhang, S.; Wang, L. Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Chávez-Arias, C.C.; Ligarreto-Moreno, G.A.; Ramírez-Godoy, A.; Restrepo-Díaz, H. Maize responses challenged by drought, elevated daytime temperature and arthropod herbivory stresses: A physiological, biochemical and molecular view. Front. Plant Sci. 2021, 12, 702841. [Google Scholar] [CrossRef]
- Tsukaya, H. Does ploidy level directly control cell size? Counterevidence from Arabidopsis genetics. PLoS ONE 2013, 8, e83729. [Google Scholar] [CrossRef] [PubMed]
- Efeoğlu, B.; Ekmekçi, Y.; Çiçek, N. Physiological responses of three maize cultivars to drought stress and recovery. S. Afr. J. Bot. 2009, 75, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Avramova, V.; AbdElgawad, H.; Zhang, Z.; Fotschki, B.; Casadevall, R.; Vergauwen, L.; Knapen, D.; Taleisnik, E.; Guisez, Y.; Asard, H. Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol. 2015, 169, 1382–1396. [Google Scholar] [CrossRef]
- Badr, A.; Brueggemann, W. Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica 2020, 58, 638–645. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tong, L.; Kang, S.; Li, F.; Zhang, X.; Ding, R.; Du, T.; Li, S. Flowering characteristics and yield of maize inbreds grown for hybrid seed production under deficit irrigation. Crop Sci. 2017, 57, 2238–2250. [Google Scholar] [CrossRef]
- Hammad, H.M.; Ahmad, A.; Abbas, F.; Farhad, W.; Cordoba, B.C.; Hoogenboom, G. Water and nitrogen productivity of maize under semiarid environments. Crop Sci. 2015, 55, 877–888. [Google Scholar] [CrossRef]
- NeSmith, D.; Ritchie, J. Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays). Field Crop. Res. 1992, 28, 251–256. [Google Scholar] [CrossRef]
- Rafiee, M.; Kalhor, M. Economic water use efficiency of corn (Zea mays L.) hybrids as affected by irrigation regimes: A case study in West Iran. Arch. Agron. Soil Sci. 2016, 62, 781–789. [Google Scholar] [CrossRef]
- Comas, L.H.; Trout, T.J.; DeJonge, K.C.; Zhang, H.; Gleason, S.M. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric. Water Manag. 2019, 212, 433–440. [Google Scholar] [CrossRef]
- Tan, F.Y.; Li, H.; Wang, J.L.; Wang, Z.W. Response of dry matter partitioning coefficient of summer maize to drought stress in North China. J. Appl. Ecol. 2019, 30, 217–223. [Google Scholar]
- Zhang, H.; Han, M.; Comas, L.H.; DeJonge, K.C.; Gleason, S.M.; Trout, T.J.; Ma, L. Response of maize yield components to growth stage-based deficit irrigation. Agron. J. 2019, 111, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bharathi, A.; Ragavan, T.; Geethalakshmi, V.; Rathinasamy, A.; Amutha, R. Influence of deficit irrigation schedules on nutrient uptake of maize hybrid under drip system. J. Pharmacogn. Phytochem. 2018, 7, 272–275. [Google Scholar]
- Siyami, R.; Mirshekari, B.; Farahvash, F.; Rashidi, V.; Tarinejad, A. The effect of physical priming of seed on traits and yield of corn (Zea mays L.) under water deficit conditions in Iran. Appl. Ecol. Environ. Res. 2018, 16, 617–627. [Google Scholar] [CrossRef]
- Jiang, P.; Cai, F.; Zhao, Z.-Q.; Meng, Y.; Gao, L.-Y.; Zhao, T.-H. Physiological and dry matter characteristics of spring maize in northeast china under drought stress. Water 2018, 10, 1561. [Google Scholar] [CrossRef] [Green Version]
- Mansour, E.; Abdul-Hamid, M.I.; Yasin, M.T.; Qabil, N.; Attia, A. Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment. Agric. Water Manag. 2017, 194, 58–67. [Google Scholar] [CrossRef]
- Sohail, A.; Anwar, S.; Khan, M.O.; Nawaz, S.; Shah, F.A.; Ali, I.; Iqbal, J.; Ahmad, J.; Ahmad, F.; Nawaz, H. Response of planting methods and deficit irrigation on growth and yield attributes of maize under semi-arid conditions. Pure Appl. Biol. 2019, 8, 706–717. [Google Scholar]
- Nawaz, H.; Hussain, N.; Jamil, M.; Yasmeen, A.; Bukhari, A.; Auringzaib, M.; Usman, M. Seed biopriming mitigates terminal drought stress at reproductive stage of maize by enhancing gas exchange attributes and nutrient uptake. Turk. J. Agric. For. 2020, 44, 250–261. [Google Scholar] [CrossRef]
- Attia, A.; El-Hendawy, S.; Al-Suhaibani, N.; Tahir, M.U.; Mubushar, M.; dos Santos Vianna, M.; Ullah, H.; Mansour, E.; Datta, A. Sensitivity of the DSSAT model in simulating maize yield and soil carbon dynamics in arid Mediterranean climate: Effect of soil, genotype and crop management. Field Crops Res. 2021, 260, 107981. [Google Scholar] [CrossRef]
- Khan, A.; Shah, T.; Khan, S.; Rehman, A.; Akbar, H.; Muhammad, A.; Khalil, S. Influence of seed invigoration techniques on germination and seedling vigor of maize (Zea mays L.). Cercet. Agron. Mold. 2017, 50, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Bakht, J.; Shafik, M.; Jamal, Y.; Sher, H. Response of maize (Zea mays L.) to seed priming with NaCl and salinity stress. Span. J. Agric. Res. 2011, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Farajollahi, Z.; Eisvand, H.R. Storage duration and temperature of hydroprimed seeds affects some growth indices and yield of wheat. Plant Physiol. 2016, 7, 1909–1917. [Google Scholar]
- Carter, D.; Harris, D.; Youngquist, J.; Persaud, N. Soil properties, crop water use and cereal yields in Botswana after additions of mulch and manure. Field Crop. Res. 1992, 30, 97–109. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D.; Fotiadis, S. Hydro-priming effects on seed germination and field performance of faba bean in spring sowing. Agriculture 2019, 9, 201. [Google Scholar] [CrossRef] [Green Version]
- Gholami, M.; Mokhtarian, F.; Baninasab, B. Seed halopriming improves the germination performance of black seed (Nigella sativa) under salinity stress conditions. J. Crop Sci. Biotechnol. 2015, 18, 21–26. [Google Scholar] [CrossRef]
- Eskandari, H.; Kazemi, K. Effect of seed priming on germination properties and seedling establishment of cowpea (Vigna sinensis). Not. Sci. Biol. 2011, 3, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.; Pradhan, S.; Shrestha, J.; Subedi, M. Role of seed priming in improving seed germination and seedling growth of maize (Zea mays L.) under rain fed condition. J. Agric. Nat. Resour. 2019, 2, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.-P.; Young, L.; Bonham-Smith, P.; Gusta, L.V. Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol. Biol. 1999, 40, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.W.; Tschaplinski, T.J.; Wang, L.; Glazebrook, J.; Greenberg, J.T. Priming in systemic plant immunity. Science 2009, 324, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Gamir, J.; Sánchez-Bel, P.; Flors, V. Molecular and physiological stages of priming: How plants prepare for environmental challenges. Plant Cell Rep. 2014, 33, 1935–1949. [Google Scholar] [CrossRef]
- Conrath, U.; Beckers, G.J.; Flors, V.; García-Agustín, P.; Jakab, G.; Mauch, F.; Newman, M.-A.; Pieterse, C.M.; Poinssot, B.; Pozo, M.J. Priming: Getting ready for battle. Mol. Plant Microbe Interact. 2006, 19, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Langeroodi, A.; Noora, R. Seed priming improves the germination and field performance of soybean under drought stress. J. Anim. Plant Sci. 2017, 27, 1611–1621. [Google Scholar]
- Serraj, R.; Sinclair, T. Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ. 2002, 25, 333–341. [Google Scholar] [CrossRef] [PubMed]
Month | Min (°C) | Max (°C) | Prec (mm) | RH (%) | GDD (°C) |
---|---|---|---|---|---|
First season (2018) | |||||
May | 19.9 | 32.2 | 0 | 43 | 497.6 |
June | 22.1 | 34.2 | 0 | 45 | 544.5 |
July | 24.2 | 34.7 | 0 | 56 | 602.9 |
August | 24.8 | 35.3 | 0 | 56 | 521.3 |
Second season (2019) | |||||
May | 20.8 | 34.3 | 0 | 42 | 544.1 |
June | 23.3 | 35.3 | 0 | 49 | 579.0 |
July | 24.8 | 35.9 | 0 | 54 | 630.9 |
August | 25.4 | 35.6 | 0 | 56 | 508.0 |
22-yr average | |||||
May | 19.0 | 32.4 | 0 | 45 | |
June | 21.4 | 34.4 | 0 | 47 | |
July | 23.3 | 35.0 | 0 | 57 | |
August | 20.5 | 31.9 | 0 | 61 |
Soil Depth (cm) | Soil Bulk Density (g cm −3) | Field Capacity (%) | Wilting Point (%) | Available Moisture (%) | pH | Organic Matter (%) |
0–30 | 1.45 | 12.73 | 6.36 | 6.72 | 7.93 | 0.44 |
30–60 | 1.47 | 12.42 | 6.21 | 6.10 | 7.91 | 0.40 |
60–90 | 1.49 | 11.87 | 5.94 | 6.03 | 7.91 | 0.32 |
EC (dS m−1) | Nitrogen (mg kg−1 soil) | Sand (%) | Silt (%) | Clay (%) | Texture | |
0–30 | 1.60 | 19.12 | 47.52 | 14.12 | 38.36 | Sandy clay |
30–60 | 1.56 | 16.91 | 47.71 | 14.05 | 38.24 | Sandy clay |
60–90 | 1.54 | 15.37 | 48.08 | 13.99 | 37.93 | Sandy clay |
Parameter | Unprimed | Halo-Priming with 4000 ppm | Halo-Priming with 8000 ppm | p-Value | |||
---|---|---|---|---|---|---|---|
Germination percentage (%) | 80.00 | b | 93.33 | a | 74.67 | c | 0.001 |
Mean germination time (day) | 7.24 | a | 6.42 | b | 6.48 | b | <0.001 |
Germination coefficient of velocity (seed day−1) | 13.79 | b | 15.56 | a | 15.41 | a | <0.001 |
Germination index (seed day−1) | 8.62 | b | 18.06 | a | 13.88 | c | <0.001 |
Root length (cm) | 14.28 | 14.79 | 14.80 | 0.511 | |||
Shoot length (cm) | 5.02 | b | 5.87 | a | 5.48 | a | 0.048 |
Seedling fresh weight (mg) | 660.25 | b | 732.68 | a | 684.82 | b | 0.018 |
Seedling dry weight (mg) | 216.07 | c | 273.62 | a | 250.50 | b | 0.001 |
Seedling vigor index (unitless) | 17.28 | b | 25.53 | a | 18.70 | b | <0.001 |
Factor | RWC (%) | Cob Height (cm) | Plant Height (cm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||||||||
Irrigation regimes (I) | |||||||||||||
120% ETc | 77.24 | A | 76.31 | A | 140.95 | A | 142.16 | A | 300.51 | A | 297.80 | A | |
100% ETc | 75.89 | A | 75.34 | A | 137.11 | A | 138.52 | A | 296.55 | A | 294.05 | A | |
80% ETc | 61.92 | B | 64.49 | B | 126.64 | B | 122.20 | B | 258.28 | B | 261.65 | B | |
60% ETc | 54.52 | C | 54.67 | C | 116.72 | C | 114.31 | C | 217.42 | C | 219.46 | C | |
Seed halo-priming (H) | |||||||||||||
Unprimed | 64.80 | b | 65.18 | b | 134.99 | 136.22 | 264.62 | b | 265.19 | b | |||
Halo-priming with 4000 ppm | 68.53 | a | 68.75 | a | 133.35 | 132.68 | 268.86 | ab | 268.42 | ab | |||
Halo-priming with 8000 ppm | 68.86 | a | 69.18 | a | 131.44 | 131.81 | 270.09 | a | 270.11 | a | |||
ANOVA | df | p-Value | |||||||||||
Irrigation regime (I) | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
Seed halo-priming (H) | 2 | <0.001 | 0.002 | 0.615 | <0.324 | 0.048 | 0.047 | ||||||
I × H | 6 | <0.001 | 0.031 | 0.038 | <0.001 | 0.040 | 0.035 | ||||||
Studied Factors | Cob Length (cm) | Number of Grains Row−1 | Number of Rows Cob−1 | ||||||||||
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||||||||
Irrigation regimes (I) | |||||||||||||
120% ETc | 20.36 | A | 21.12 | A | 36.38 | A | 38.37 | A | 13.52 | A | 13.44 | A | |
100% ETc | 19.90 | A | 20.79 | A | 36.22 | A | 38.36 | A | 13.13 | A | 13.27 | A | |
80% ETc | 17.86 | B | 17.59 | B | 28.62 | B | 32.91 | B | 12.54 | B | 11.63 | B | |
60% ETc | 14.98 | C | 14.10 | C | 24.69 | C | 26.00 | C | 11.08 | C | 10.77 | C | |
Seed halo-priming (H) | |||||||||||||
Unprimed | 17.67 | b | 18.05 | b | 30.03 | b | 32.50 | b | 12.46 | 12.09 | |||
Halo-priming with 4000 ppm | 18.51 | a | 18.46 | a | 32.43 | a | 34.80 | a | 12.61 | 12.34 | |||
Halo-priming with 8000 ppm | 18.65 | a | 18.69 | a | 31.96 | a | 34.44 | a | 12.64 | 12.41 | |||
ANOVA | df | p-Value | |||||||||||
Irrigation regime (I) | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
Seed halo-priming (H) | 2 | 0.007 | 0.005 | <0.001 | <0.001 | 0.818 | 0.370 | ||||||
I × H | 6 | 0.039 | 0.021 | <0.001 | 0.017 | 0.029 | 0.047 |
Factor | Grain Weight Cob−1 | 100-Grain Weight (g) | Shelling Percentage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||||||||
Irrigation regimes (I) | |||||||||||||
120% ETc | 137.14 | A | 128.48 | A | 27.85 | A | 27.55 | A | 75.76 | A | 74.18 | A | |
100% ETc | 135.42 | A | 126.05 | A | 27.35 | A | 27.17 | A | 74.65 | A | 73.82 | A | |
80% ETc | 105.56 | B | 101.09 | B | 23.54 | B | 23.97 | B | 72.07 | B | 71.69 | B | |
60% ETc | 86.60 | C | 79.50 | C | 21.30 | C | 21.68 | C | 68.64 | B | 69.05 | B | |
Seed halo-priming (H) | |||||||||||||
Unprimed | 110.47 | c | 102.80 | c | 23.59 | c | 23.59 | c | 72.26 | b | 71.27 | b | |
Halo-priming with 4000 ppm | 121.89 | a | 113.85 | a | 26.29 | a | 26.29 | a | 74.08 | a | 73.78 | a | |
Halo-priming with 8000 ppm | 116.18 | b | 109.70 | b | 25.4 | b | 25.4 | b | 73.51 | a | 73.01 | a | |
ANOVA | df | p-Value | |||||||||||
Irrigation regime (I) | 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | 0.003 | ||||||
Seed halo-priming (H) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
I × H | 6 | <0.001 | <0.001 | <0.001 | <0.001 | 0.008 | 0.029 | ||||||
Studied Factors | Grain Yield (kg ha−1) | Harvest Index (%) | WUE (kg ha−1 mm−1) | ||||||||||
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||||||||
Irrigation regimes (I) | |||||||||||||
120% ETc | 7305 | A | 7348 | A | 37.23 | A | 36.62 | A | 9.49 | C | 9.37 | C | |
100% ETc | 7271 | A | 7288 | A | 37.66 | A | 37.60 | A | 11.34 | B | 11.15 | B | |
80% ETc | 6145 | B | 6185 | B | 32.47 | B | 32.16 | B | 11.98 | A | 11.83 | A | |
60% ETc | 4723 | C | 4532 | C | 29.32 | C | 30.61 | C | 12.28 | A | 11.55 | A | |
Seed halo-priming (H) | |||||||||||||
Unprimed | 6141 | c | 6131 | c | 32.35 | b | 32.87 | b | 10.78 | c | 10.53 | c | |
Halo-priming with 4000 ppm | 6560 | a | 6538 | a | 35.50 | a | 35.23 | a | 11.71 | a | 11.41 | a | |
Halo-priming with 8000 ppm | 6381 | b | 6346 | b | 34.66 | a | 34.65 | a | 11.34 | b | 10.99 | b | |
ANOVA | df | p-Value | |||||||||||
Irrigation regime (I) | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
Seed halo-priming (H) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
I × H | 6 | 0.005 | 0.007 | 0.002 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sanatawy, A.M.; Ash-Shormillesy, S.M.A.I.; Qabil, N.; Awad, M.F.; Mansour, E. Seed Halo-Priming Improves Seedling Vigor, Grain Yield, and Water Use Efficiency of Maize under Varying Irrigation Regimes. Water 2021, 13, 2115. https://doi.org/10.3390/w13152115
El-Sanatawy AM, Ash-Shormillesy SMAI, Qabil N, Awad MF, Mansour E. Seed Halo-Priming Improves Seedling Vigor, Grain Yield, and Water Use Efficiency of Maize under Varying Irrigation Regimes. Water. 2021; 13(15):2115. https://doi.org/10.3390/w13152115
Chicago/Turabian StyleEl-Sanatawy, AbdAllah M., Salwa M.A.I. Ash-Shormillesy, Naglaa Qabil, Mohamed F. Awad, and Elsayed Mansour. 2021. "Seed Halo-Priming Improves Seedling Vigor, Grain Yield, and Water Use Efficiency of Maize under Varying Irrigation Regimes" Water 13, no. 15: 2115. https://doi.org/10.3390/w13152115
APA StyleEl-Sanatawy, A. M., Ash-Shormillesy, S. M. A. I., Qabil, N., Awad, M. F., & Mansour, E. (2021). Seed Halo-Priming Improves Seedling Vigor, Grain Yield, and Water Use Efficiency of Maize under Varying Irrigation Regimes. Water, 13(15), 2115. https://doi.org/10.3390/w13152115