Comparative Use of Hydrologic Indicators to Determine the Effects of Flow Regimes on Water Quality in Three Channels across Southern Florida, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Locations
2.2. Data Collection
2.3. Data Analysis
2.3.1. Flow Regime Characterization
2.3.2. Concentration–Discharge (C–Q) Relationships
3. Results
3.1. Flow Regime Characterization
3.2. Concentration–Discharge (C–Q) Relationships across the Channels
4. Discussion
4.1. Impacts of Flow Regime Characteristics on Water Quality in the Channels
4.2. Behavior of Water Quality Constituents at Low and High Flow Conditions across the Channels
4.3. Limitations on the Use of C–Q Relationship Models of Man-Made and Regulated Channels
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schoof, R. Environmental impact of channel modification. J. Am. Water Resour. Assoc. 1980, 16, 697–701. [Google Scholar] [CrossRef]
- Brooker, M.P. The ecological effects of channelization. Geogr. J. 1985, 151, 63–69. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime: A paradigm for river conservation and restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Sklar, F.; McVoy, C.; Van Zee, R.; Gawlik, D.; Swift, D.; Park, W.; Fitz, C.; Wu, Y.; Rudnick, D.; Fontaine, T.; et al. Hydrologic needs: The effects of altered hydrology on the Everglades. Everglades Interim Rep. 1999, 2, 1–68. [Google Scholar]
- Carter, K.; Redfield, G.; Ansar, M.; Glenn, L.; Huebner, R.; Maxted, J.; Pettit, C.; VanArman, J. Canals in South Florida: A Technical Support Document. 2010. Available online: https://www.researchgate.net/publication/305316875_Canals_in_South_Florida_A_Technical_Support_Document (accessed on 8 May 2021). [CrossRef]
- Schmutz, S.; Sendzimir, J. Riverine Ecosystem Management: Science for Governing towards a Sustainable Future; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Wohl, E. Legacy effects on sediments in river corridors. Earth Sci. Rev. 2015, 147, 30–53. [Google Scholar] [CrossRef]
- SWFMD. Canals in South Florida: A Technical Support Document. Appendix A. Basic Concepts, Hydrologic Terminology. Glossary of Terms and Abbreviations. 2010; pp. A1–A22. Available online: https://www.sfwmd.gov/sites/default/files/documents/canalssfl_appendixa-c.pdf (accessed on 8 May 2021).
- Richter, B.D.; Baumgartner, J.V.; Braun, D.P.; Powell, J. A spatial assessment of hydrologic alteration within a river network. Regul. Rivers Res. Manag. 1998, 14, 329–340. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; McMillan, S. Urbanization effects on watershed hydrology and in-stream processes in the southern United States. Water 2010, 13, 605–648. [Google Scholar] [CrossRef]
- Moatar, F.; Abbott, B.W.; Minaudo, C.; Curie, F.; Pinay, G. Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, and major ions. Water Resour. Res. 2017, 53, 1270–1287. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Jarvie, H.P. Delivery and cycling of phosphorus in rivers: A review. Sci. Total Environ. 2008, 400, 379–395. [Google Scholar] [CrossRef]
- Nilsson, C.; Renöfält, B.M. Linking flow regime and water quality in rivers: A challenge to adaptive catchment management. Ecol. Soc. 2008, 13, 18. [Google Scholar] [CrossRef] [Green Version]
- Underwood, K.L.; Rizzo, D.M.; Schroth, A.W.; Dewoolkar, M.M. Evaluating Spatial Variability in Sediment and Phosphorus Concentration-Discharge Relationships Using Bayesian Inference and Self-Organizing Maps. Water Resour. Res. 2017, 53, 10293–10316. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q. Synthesis of nutrient and sediment export patterns in the Chesapeake Bay watershed: Complex and non-stationary concentration-discharge relationships. Sci. Total Environ. 2018, 618, 1268–1283. [Google Scholar] [CrossRef] [PubMed]
- Malan, H.L.; Day, J.A. Linking flow, water quality and potential effects on aquatic biota within the Reserve determination process. Water SA 2003, 29, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Godsey, S.E.; Kirchner, J.W.; Clow, D.W. Concentration–discharge relationships reflect chemostatic characteristics of US catchments. Hydrol. Process. 2009, 23, 1844–1864. [Google Scholar] [CrossRef]
- Diamond, J.S.; Cohen, M.J. Complex patterns of catchment solute-discharge relationships for coastal plain rivers. Hydrol. Process. 2018, 32, 388–401. [Google Scholar] [CrossRef]
- Rose, L.A.; Karwan, D.L.; Godsey, S.E. Concentration-discharge relationships describe solute and sediment mobilization, reaction, and transport at event and longer timescales. Hydrol. Process. 2018, 32, 2829–2844. [Google Scholar] [CrossRef]
- Thompson, S.E.; Basu, N.B.; Lascurain, J.; Aubeneau, A.; Rao, P.S.C. Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resour. Res. 2011, 47, 1–20. [Google Scholar] [CrossRef]
- Basu, N.B.; Thompson, S.E.; Rao, P.S.C. Hydrologic and biogeochemical functioning of intensively managed catchments: A synthesis of top-down analyses. Water Resour. Res. 2011, 47, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D.S.; Brändle, J.M.; Seliger, C.; Zeiringer, B.; Ferreira, T.; Schmutz, S. Advancing towards functional environmental flows for temperate floodplain rivers. Sci. Total Environ. 2018, 633, 1089–1104. [Google Scholar] [CrossRef]
- Graf, W.L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 2006, 79, 336–360. [Google Scholar] [CrossRef]
- Shields, F.D.; Lizotte, R.E.; Knight, S.S.; Cooper, C.M.; Wilcox, D. The stream channel incision syndrome and water quality. Ecol. Eng. 2010, 36, 78–90. [Google Scholar] [CrossRef]
- Lodge, T.E. The Everglades Handbook: Understanding the Ecosystem, 3rd ed.; CRC Press: Cleveland, OH, USA, 2010; 424p. [Google Scholar]
- Metz, P.A.; Lewelling, B.R. Hydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida. Sci. Investig. Rep. 2009, 5140. [Google Scholar] [CrossRef]
- Bolster, C.H.; Saiers, J.E. Development and evaluation of a mathematical model for surface-water flow within the Shark River Slough of the Florida Everglades. J. Hydrol. 2002, 259, 221–235. [Google Scholar] [CrossRef]
- Everglades National Park (U.S. National Park Service). Available online: https://www.nps.gov/ever/learn/nature/evergeology.htm (accessed on 31 July 2021).
- Daroub, S.H.; Van Horn, S.; Lang, T.A.; Diaz, O.A. Best management practices and long-term water quality trends in the everglades agricultural area. Crit. Rev. Environ. Sci. Technol. 2011, 41, 608–632. [Google Scholar] [CrossRef]
- SWFWMD. Upper Peace River: An Analysis of Minimum Flows and Levels. Volume 2: Technical Appendices. 2002, pp. 1–294. Available online: https://www.researchgate.net/profile/Clifford-Dahm/publication/267260603_A_Review_of_Upper_Peace_River_An_Analysis_of_Minimum_Flows_and_Levels_Prepared_by/links/549b39730cf2b803713719ea/A-Review-of-Upper-Peace-River-An-Analysis-of-Minimum-Flows-and-Levels-Prepared-by.pdf (accessed on 8 May 2021).
- Kelly, M. Peace River Comprehensive Watershed Management Plan Draft. I. Brooksville, FL: N.p. Print. 2001. Available online: http://www.polk.wateratlas.usf.edu/upload/documents/PEACE%20RIVER%20CWM%20PART1.pdf (accessed on 8 May 2021).
- Gaiser, E.; Childers, D. Water Quality Data (Grab Samples) from the Shark River Slough, Everglades National Park (FCE), from May 2001 to Present. Environmental Data Initiative. 2019. Available online: https://agris.fao.org/agris-search/search.do?recordID=QN2019001307404 (accessed on 12 December 2019).
- Conservancy, N. Indicators of Hydrologic Alteration (IHA) Software Version 7.1 User’s Manual; The Nature Conservancy: Charlottesville, VA, USA, 2009. [Google Scholar] [CrossRef]
- Baker, D.B.; Richards, R.P.; Loftus, T.T.; Kramer, J.W. A new flashiness index: Characteristics and applications to Midwestern rivers and streams. J. Am. Water Resour. Assoc. 2004, 40, 503–522. [Google Scholar] [CrossRef]
- Oueslati, O.; De Girolamo, A.M.; Abouabdillah, A.; Kjeldsen, T.R.; Lo Porto, A. Classifying the flow regimes of Mediterranean streams using multivariate analysis. Hydrol. Process. 2015, 29, 4666–4682. [Google Scholar] [CrossRef]
- Sârbu, C.; Pop, H.F. Principal component analysis versus fuzzy principal component analysis: A case study: The quality of danube water (1985–1996). Talanta 2005, 65, 1215–1220. [Google Scholar] [CrossRef]
- PCA basics in #Rstats. Available online: https://swampthingecology.org/blog/pca-basics-in-rstats/ (accessed on 8 May 2021).
- O’Donnell, B.; Hotchkiss, E.R. Coupling Concentration and Process-Discharge Relationships Integrates Water Chemistry and Metabolism in Streams. Water Resour. Res. 2019, 55, 10179–10190. [Google Scholar] [CrossRef]
- Botter, M.; Burlando, P.; Fatichi, S. Anthropogenic and catchment characteristic signatures in the water quality of Swiss rivers: A quantitative assessment. Hydrol. Earth Syst. Sci. 2019, 23, 1885–1904. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. Available online: https://www.R-project.org/ (accessed on 8 May 2021).
- Muggeo, V.M.R. Testing with a nuisance parameter present only under the alternative: A score-based approach with application to segmented modelling. J. Stat. Comput. Simul. 2016, 86, 3059–3067. [Google Scholar] [CrossRef]
- Muggeo, M.V.M.R. Package ‘segmented’. Biometrika 2017, 58, 525–534. [Google Scholar]
- Musolff, A.; Schmidt, C.; Selle, B.; Fleckenstein, J.H. Catchment controls on solute export. Adv. Water Resour. 2015, 86, 133–146. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Sharpley, A.N.; Scott, J.T.; Haggard, B.E.; Bowes, M.J.; Massey, L.B. Within-river phosphorus retention: Accounting for a missing piece in the watershed phosphorus puzzle. Environ. Sci. Technol. 2012, 46, 13284–13292. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Daroub, S.H.; Lang, T.A.; Diaz, O.A. Specific Conductance and Ionic Characteristics of Farm Canals in the Everglades Agricultural Area. J. Environ. Qual. 2006, 35, 141–150. [Google Scholar] [CrossRef]
- Diaz, O.A.; Daroub, S.H.; Stuck, J.D.; Clark, M.W.; Lang, T.A.; Reddy, K.R. Sediment Inventory and Phosphorus Fractions for Water Conservation Area Canals in the Everglades. Soil Sci. Soc. Am. J. 2006, 70, 863–871. [Google Scholar] [CrossRef] [Green Version]
- Daroub, S.H.; Stuck, J.D.; Lang, T.A.; Diaz, O.A. Particulate Phosphorus in the Everglades Agricultural Area: I--Introduction and Sources. EDIS 2002, 1, 1–8. [Google Scholar] [CrossRef]
- Das, J. Characterization of Physicochemical Properties, Phosphorus (P) Fractions and P Release of the Everglades Agricultural Area (EAA) Canal Sediments. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2010. [Google Scholar]
Channel | Basin Size (sq. km) | Geology | Dominant Land Use |
---|---|---|---|
Shark River Slough | 1034 | Miami Limestone | Wetland (100%) |
Peace River | 6086 | Undifferentiated sand, shell and clay, underlain by carbonates, e.g., Suwannee Limestone and Hawthorn Group | Agriculture (40%) |
Hillsboro Canal | 479 | Fort Thompson Formation | Agriculture (62%) |
Flow Regime Characteristics | Description | Hydrologic Indices | Unit | SRS | PRB | HC6 |
---|---|---|---|---|---|---|
Magnitude | The mean (moving average) magnitude of minimum and maximum yearly flow conditions of various durations (daily to seasonal) | 1-day minimum | m3s−1 | 0.002 | 0.052 | 0.000 |
90-day minimum | m3s−1 | 0.111 | 0.580 | 1.538 | ||
1-day maximum | m3s−1 | 0.878 | 27.160 | 76.780 | ||
90-day maximum | m3s−1 | 0.782 | 7.147 | 22.980 | ||
Frequency | Number of yearly occurrences during which the magnitude of the water conditions exceeds an upper threshold (75%) or remains below a lower threshold (25%) of the long-term daily mean flows | Low pulse count | Count | 2 | 6 | 0 |
High pulse count | Count | 4 | 4 | 20 | ||
Duration | Yearly duration of low and high flow pulses | Low pulse duration | Days | 31.00 | 6.00 | |
High pulse duration | Days | 6.25 | 12.00 | 3.00 | ||
Rate of change | The rate of both positive (rise) and negative (fall) changes in the daily hydrographs during a year | Rise rate | m3s−1 day−1 | 0.03 | 0.12 | 6.31 |
Fall rate | m3s−1 day−1 | −0.03 | −0.10 | −6.95 | ||
Flashiness | Measurement of oscillations in discharge (day to day changes) relative to total discharge during a year | R-B Index | Unitless | 0.04 | 0.09 | 0.47 |
Constituent | Channel | Data Pairs (n) | Slope (b) |
---|---|---|---|
TP | SRS | 155 | −0.23 * |
PRB | 173 | −0.06 * | |
HC6 | 382 | 0.22 * | |
NN | SRS | 157 | −0.38 * |
PRB | 166 | −0.24 * | |
HC6 | 302 | 0.20 * | |
Turbidity | PRB | 177 | 0.08 * |
HC6 | 64 | 0.30 * | |
TSS | PRB | 151 | 0.21 * |
HC6 | 42 | 0.06 | |
SC | SRS | 4666 | −0.28 * |
PRB | 177 | −0.15 * | |
HC6 | 380 | 0.01 | |
Cl | PRB | 179 | −0.26 * |
HC6 | 302 | −0.02 |
Channel | Constituent | Davies’ Test | Discharge Threshold (m3s−1) | Exceedance Probability of Discharge Threshold | Piecewise Regression Slopes (b) | Archetype | |
---|---|---|---|---|---|---|---|
Low | High | ||||||
SRS | NN | p = 0.0008 | 0.46 | 0.56 | −0.01 | −1.81 * | CA |
SpC | p < 0.0001 | 0.74 | 0.22 | −0.28 * | −0.20 * | AA | |
PRB | NN | p < 0.0001 | 1.05 | 0.58 | 0.51 * | −0.60 * | BA |
Turbidity | p = 0.0004 | 7.24 | 0.20 | 0.2 * | −0.32 * | BA | |
TSS | p = 0.0004 | 8.91 | 0.17 | 0.36 * | −0.38 * | BA | |
SpC | p < 0.0001 | 0.35 | 0.84 | 0.25 * | −0.19 * | BA | |
Cl | p < 0.0001 | 1.74 | 0.43 | −0.36 * | −0.19 * | AA | |
HC6 | TP | p < 0.0001 | 23.82 | 0.15 | 0.12 * | 0.87 * | BB |
NN | p < 0.0001 | 21.72 | 0.17 | 0.08 | 0.97 * | CB | |
Turbidity | p = 0.05 | 4.39 | 0.40 | 0.12 | 0.59 * | CB | |
SpC | p = 0.04 | 70.96 | 0.015 | 0.02 | −4.73 | CA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onwuka, I.S.; Scinto, L.J.; Mahdavi Mazdeh, A. Comparative Use of Hydrologic Indicators to Determine the Effects of Flow Regimes on Water Quality in Three Channels across Southern Florida, USA. Water 2021, 13, 2184. https://doi.org/10.3390/w13162184
Onwuka IS, Scinto LJ, Mahdavi Mazdeh A. Comparative Use of Hydrologic Indicators to Determine the Effects of Flow Regimes on Water Quality in Three Channels across Southern Florida, USA. Water. 2021; 13(16):2184. https://doi.org/10.3390/w13162184
Chicago/Turabian StyleOnwuka, Ikechukwu S., Leonard J. Scinto, and Ali Mahdavi Mazdeh. 2021. "Comparative Use of Hydrologic Indicators to Determine the Effects of Flow Regimes on Water Quality in Three Channels across Southern Florida, USA" Water 13, no. 16: 2184. https://doi.org/10.3390/w13162184
APA StyleOnwuka, I. S., Scinto, L. J., & Mahdavi Mazdeh, A. (2021). Comparative Use of Hydrologic Indicators to Determine the Effects of Flow Regimes on Water Quality in Three Channels across Southern Florida, USA. Water, 13(16), 2184. https://doi.org/10.3390/w13162184