Multi-Step Calibration Approach for SWAT Model Using Soil Moisture and Crop Yields in a Small Agricultural Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil and Water Assessment Tool (SWAT) Model Description
2.3. Input Data
2.4. Model Setup
2.5. Model Evaluation
2.6. Sensitivity Analysis
2.7. Model Calibration and Validation
2.7.1. Step-Wise Model Calibration
Surface Runoff and Groundwater Flow Calibration
Crop Yields Calibration
Soil Moisture Calibration
2.8. Uncertainty Analysis
3. Results and Discussion
3.1. Sensitivity Analysis
3.2. Step-Wise Calibration and Validation
3.2.1. Surface Runoff and Groundwater Flow Calibration
3.2.2. Crop Yields Calibration
3.2.3. Soil Moisture Calibration
3.2.4. Streamflow Calibration
3.2.5. Flow Validation
3.2.6. Sediment Yield Calibration and Validation
3.2.7. Effect of Calibration Steps on Hydrological Components
3.3. Simultaneous Calibration and Validation
3.4. Comparison between Step-Wise and Simultaneous Calibration and Validation Methods
3.4.1. Flow Calibration and Validation
3.4.2. Sediment Yield Calibration and Validation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dakhlalla, A.O.; Parajuli, P.B. Assessing model parameters sensitivity and uncertainty of streamflow, sediment, and nutrient transport using SWAT. Inf. Process. Agric. 2019, 6, 61–72. [Google Scholar] [CrossRef]
- Sivakumar, B.; Berndtsson, R. Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting; World Scientific Publishing: Davis, CA, USA, 2010; ISBN 9789814307970. [Google Scholar] [CrossRef] [Green Version]
- Fulton, E.A.; Boschetti, F.; Sporcic, M.; Jones, T.; Little, L.R.; Dambacher, J.M.; Gray, R.; Scott, R.; Gorton, R. A multi-model approach to engaging stakeholder and modellers in complex environmental problems. Environ. Sci. Policy 2015, 48, 44–56. [Google Scholar] [CrossRef]
- Busico, G.; Colombani, N.; Fronzi, D.; Pellegrini, M.; Tazioli, A.; Mastrocicco, M. Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanized basin. J. Environ. Manag. 2020, 266, 110625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Y.; Wang, T. How land use change contributes to reducing soil erosion in the Jialing River Basin, China. Agric. Water Manag. 2014, 133, 65–73. [Google Scholar] [CrossRef]
- Op de Hipt, F.; Diekkrüger, B.; Steup, G.; Yira, Y.; Hoffmann, T.; Rode, M.; Näschen, K. Modeling the effect of land use and climate change on water resources and soil erosion in a tropical West African catch-ment (Dano, Burkina Faso) using SHETRAN. Sci. Total Environ. 2019, 653, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, D.C.; Ascough, J.C.; Nearing, M.A.; Laflen, J.M. The Water Erosion Prediction Project (WEPP) Model. Landsc. Eros. Evol. Model. 2001, 2001, 145–199. [Google Scholar] [CrossRef]
- Bingner, R.L.; Theurer, F.D.; Yuan, Y.; Taguas, E.V. AnnAGNPS Technical Process; Version 5.5; 2018. Available online: https://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/AGNPS/downloads/AnnAGNPS_Technical_Documentation.pdf (accessed on 18 May 2021).
- Beasley, D.B.; Huggins, L.F.; Monke, E.J. ANSWERS: A model for watershed planning. Trans. Am. Soc. Agric. Eng. 1980, 23, 938–944. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Jaber, F.H.; Shukla, S. MIKE SHE: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1479–1489. [Google Scholar] [CrossRef]
- Duda, P.B.; Hummel, P.R.; Imhoff, J.C. BASINS/HSPF: Model use, Calibration, and Validation. Trans. ASABE 2012, 55, 1523–1547. [Google Scholar] [CrossRef]
- Malagó, A.; Bouraoui, F.; Vigiak, O.; Grizzetti, B.; Pastori, M. Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 603–604, 196–218. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Tischbein, B.; Kusche, J.; Beg, M.K.; Bogardi, J.J. Impact of land-use change on the water resources of the Upper Kharun Catchment, Chhattisgarh, India. Reg. Environ. Chang. 2017, 17, 2373–2385. [Google Scholar] [CrossRef]
- Green, C.H.; van Griensven, A. Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale watersheds. Environ. Model. Softw. 2008, 23, 422–434. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Mapfumo, E.; Chanasyk, D.S.; Willms, W.D. Simulating daily soil water under foothills fescue grazing with the soil and water assessment tool model (Alberta, Canada). Hydrol. Process. 2004, 18, 2787–2800. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Sinnathamby, S.; Douglas-Mankin, K.R.; Craige, C. Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT). Agric. Water Manag. 2017, 180, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Luan, X.; Wu, P.; Sun, S.; Wang, Y.; Gao, X. Quantitative study of the crop production water footprint using the SWAT model. Ecol. Indic. 2018, 89, 1–10. [Google Scholar] [CrossRef]
- Fukunaga, D.C.; Cecílio, R.A.; Zanetti, S.S.; Oliveira, L.T.; Caiado, M.A.C. Application of the SWAT hydrologic model to a tropical watershed at Brazil. Catena 2015, 125, 206–213. [Google Scholar] [CrossRef]
- Shi, P.; Hou, Y.; Xie, Y.; Chen, C.; Chen, X.; Li, Q.; Qu, S.; Fang, X.; Srinivasan, R. Application of a SWAT Model for Hydrological Modeling in the Xixian Watershed, China. J. Hydrol. Eng. 2013, 18, 1522–1529. [Google Scholar] [CrossRef]
- Vigiak, O.; Malagó, A.; Bouraoui, F.; Vanmaercke, M.; Obreja, F.; Poesen, J.; Habersack, H.; Fehér, J.; Grošelj, S. Modelling sediment fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 599–600, 992–1012. [Google Scholar] [CrossRef] [PubMed]
- Yesuf, H.M.; Assen, M.; Alamirew, T.; Melesse, A.M. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena 2015, 127, 191–205. [Google Scholar] [CrossRef]
- Sun, C.; Ren, L. Assessing crop yield and crop water productivity and optimizing irrigation scheduling of winter wheat and summer maize in the Haihe plain using SWAT model. Hydrol. Process. 2014, 28, 2478–2498. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Brighenti, T.M.; Bonumá, N.B.; Grison, F.; de Mota, A.A.; Kobiyama, M.; Chaffe, P.L.B. Two calibration methods for modeling streamflow and suspended sediment with the swat model. Ecol. Eng. 2019, 127, 103–113. [Google Scholar] [CrossRef]
- Abbasi, Y.; Mannaerts, C.M.; Makau, W. Modeling pesticide and sediment transport in the Malewa River Basin (Kenya) using SWAT. Water 2019, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Briak, H.; Mrabet, R.; Moussadek, R.; Aboumaria, K. Use of a calibrated SWAT model to evaluate the effects of agricultural BMPs on sediments of the Kalaya river basin (North of Morocco). Int. Soil Water Conserv. Res. 2019, 7, 176–183. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Baumgart, P. Source Allocation of Suspended Sediment and Phosphorus Loads to Green Bay from the Lower Fox River Subbasin Using the Soil and Water Assessment Tool (SWAT)—Lower Green Bay and Lower Fox Tributary Modeling Report. [Oneida, Wisconsin]: Oneida Tribe of Indians of Wisconsin. 2005. Available online: https://books.google.at/books/about/Lower_Green_Bay_and_Lower_Fox_Tributary.html?id=CnuBzQEACAAJ (accessed on 18 May 2021).
- Nair, S.S.; King, K.W.; Witter, J.D.; Sohngen, B.L.; Fausey, N.R. Importance of crop yield in calibrating watershed water quality simulation tools. J. Am. Water Resour. Assoc. 2011, 47, 1285–1297. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Rajib, M.A.; Merwade, V.; Yu, Z. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. J. Hydrol. 2016, 536, 192–207. [Google Scholar] [CrossRef] [Green Version]
- Vrugt, J.A.; ter Braak, C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 2008, 44, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Széles, B.; Parajka, J.; Hogan, P.; Silasari, R.; Pavlin, L.; Strauss, P.; Blöschl, G. The Added Value of Different Data Types for Calibrating and Testing a Hydrologic Model in a Small Catchment. Water Resour. Res. 2020, 56, e2019WR026153. [Google Scholar] [CrossRef] [PubMed]
- Picciafuoco, T.; Morbidelli, R.; Flammini, A.; Saltalippi, C.; Corradini, C.; Strauss, P.; Blöschl, G. On the estimation of spatially representative plot scale saturated hydraulic conductivity in an agricultural setting. J. Hydrol. 2019, 570, 106–117. [Google Scholar] [CrossRef]
- Strauss, P.; Leone, A.; Ripa, M.N.; Turpin, N.; Lescot, J.M.; Laplana, R. Using critical source areas for targeting cost-effective best management practices to mitigate phosphorus and sediment transfer at the watershed scale. Soil Use Manag. 2007, 23, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.R.; Berndt, H.D. Sediment Yield Prediction Based on Watershed Hydrology. Pap. Am. Soc. Agric. Eng. 1977, 20, 1100–1104. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Vigiak, O.; Malagó, A.; Bouraoui, F.; Vanmaercke, M.; Poesen, J. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Sci. Total Environ. 2015, 538, 855–875. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. EPIC crop growth model. Trans. Am. Soc. Agric. Eng. 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Williams, J.R. Chapter 25: The EPIC Model. In Computer Models of Watershed Hydrology; Water Resources Publications: Littleton, CO, USA, 1995; pp. 909–1000. ISBN 0022-1694. [Google Scholar]
- Baumer, O.W. Prediction of soil hydraulic parameters. In Hydrological Processes; SCS National Soil Survey Laboratory: Lincoln, NE, USA, 1990. [Google Scholar]
- Perez-Valdivia, C.; Cade-Menun, B.; McMartin, D.W. Hydrological modeling of the pipestone creek watershed using the Soil Water Assessment Tool (SWAT): Assessing impacts of wetland drainage on hydrology. J. Hydrol. Reg. Stud. 2017, 14, 109–129. [Google Scholar] [CrossRef]
- Bormann, H. Analysis of the suitability of the German soil texture classification for the regional scale application of physical based hydrological model. Adv. Geosci. 2007, 11, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Dwevedi, A.; Kumar, P.; Kumar, P.; Kumar, Y.; Sharma, Y.K.; Kayastha, A.M. Soil Sensors: Detailed Insight into Research Updates, Significance, and Future Prospects; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128042991. [Google Scholar]
- Hargreaves, H.G.; Allen, G.R. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Daggupati, P.; Pai, N.; Ale, S.; Douglas-Mankin, K.R.; Zeckoski, R.W.; Jeong, J.; Parajuli, P.B.; Saraswat, D.; Youssef, M.A. A recommended calibration and validation strategy for hydrologic and water quality models. Trans. ASABE 2015, 58, 1705–1719. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, A.G.; van Rensburg, L.D.; Woyessa, Y.E. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. J. Hydrol. Reg. Stud. 2019, 25, 100621. [Google Scholar] [CrossRef]
- Schürz, C. SWATplusR: Running SWAT2012 and SWAT+ Projects in R. R Package Version 0.2.7. 2019, Volume 4, pp. 1–3. Available online: https://github.com/chrisschuerz/SWATplusR (accessed on 17 May 2021).
- Nash, J.E.; Sutcliffe, J. V River Flow Forecasting Through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Faramarzi, M.; Yang, H.; Schulin, R.; Abbaspour, K.C. Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production. Agric. Water Manag. 2010, 97, 1861–1875. [Google Scholar] [CrossRef]
- Wallace, C.W.; Flanagan, D.C.; Engel, B.A. Evaluating the effects ofwatershed size on SWAT calibration. Water 2018, 10, 898. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Zambresky, L. A Verification Study of the Global WAM Model 1989; ECMWF: Reading, UK, 1989. [Google Scholar]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Holvoet, K.; van Griensven, A.; Seuntjens, P.; Vanrolleghem, P.A. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Phys. Chem. Earth 2005, 30, 518–526. [Google Scholar] [CrossRef]
- Sohoulande Djebou, D.C. Assessment of sediment inflow to a reservoir using the SWAT model under undammed conditions: A case study for the Somerville reservoir, Texas, USA. Int. Soil Water Conserv. Res. 2018, 6, 222–229. [Google Scholar] [CrossRef]
- Schaibly, J.H.; Shuler, K.E. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. II Applications. J. Chem. Phys. 1973, 59, 3879–3888. [Google Scholar] [CrossRef]
- Cukier, R.I.; Fortuin, C.M.; Shuler, K.E.; Petschek, A.G.; Schaibly, J.H. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. J. Chem. Phys. 1973, 59, 3873–3878. [Google Scholar] [CrossRef]
- Cukier, R.I.; Schaibly, J.H.; Shuler, K.E. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations. J. Chem. Phys. 1975, 63, 1140–1149. [Google Scholar] [CrossRef]
- Cukier, R.I.; Levine, H.B.; Shuler, K.E. Nonlinear sensitivity analysis of multiparameter model systems. J. Phys. Chem. 1977, 81, 2365–2366. [Google Scholar] [CrossRef]
- Xu, C.; Gertner, G. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST). Bone 2008, 23, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Reusser, D. Fast: Implementation of the Fourier Amplitude Sensitivity Test (FAST). Available online: https://rdrr.io/cran/fast/ (accessed on 25 November 2020).
- Grusson, Y.; Sun, X.; Gascoin, S.; Sauvage, S.; Raghavan, S.; Anctil, F.; Sáchez-Pérez, J.M. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. J. Hydrol. 2015, 531, 574–588. [Google Scholar] [CrossRef]
- Hu, X.; McIsaac, G.F.; David, M.B.; Louwers, C.A.L. Modeling Riverine Nitrate Export from an East-Central Illinois Watershed Using SWAT. J. Environ. Qual. 2007, 36, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Brodie, R.S.; Hostetler, S. A review of techniques for analysing baseflow from stream hydrographs. In Proceedings of the NZHS-IAH-NZSSS 2005 Conference, Auckland, New Zealand, 28 November–2 December 2005. [Google Scholar]
- Lyne, V.; Hollick, M. Stochastic Time-Variable Rainfall-Runoff Modeling. Proc. Hydrol. Water Resour. Symp. 1979, 79, 89–92. [Google Scholar]
- Abbaspour, K.C. SWAT Calibration and Uncertainty Programs—A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Eawag, Switzerland, 2014; p. 970. [Google Scholar]
- Anaba, L.A.; Banadda, N.; Kiggundu, N.; Wanyama, J.; Engel, B.; Moriasi, D. Application of SWAT to Assess the Effects of Land Use Change in the Murchison Bay Catchment in Uganda. Comput. Water Energy Environ. Eng. 2016, 6, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Biru, Z.; Kumar, D. Calibration and validation of SWAT model using stream flow and sediment load for Mojo watershed, Ethiopia. Sustain. Water Resour. Manag. 2018, 4, 937–949. [Google Scholar] [CrossRef]
- Mulungu, D.M.M.; Munishi, S.E. Simiyu River catchment parameterization using SWAT model. Phys. Chem. Earth 2007, 32, 1032–1039. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Garbrecht, J. Hydrologic simulation of the Little Washita River experimental watershed using SWAT. J. Am. Water Resour. Assoc. 2003, 39, 413–426. [Google Scholar] [CrossRef]
- Strauch, M.; Bernhofer, C.; Koide, S.; Volk, M.; Lorz, C.; Makeschin, F. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J. Hydrol. 2012, 414–415, 413–424. [Google Scholar] [CrossRef]
- Pinto, D.B.F.; Beskow, S.; De Mello, C.R.; Coelho, G. Application of the Soil and Water Assessment Tool (SWAT) for Sediment Transport Simulation at a Headwater Watershed in Minas Gerais State, Brazil. Trans. ASABE 2013, 56, 697–709. [Google Scholar]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT ungauged: Hydrological budget and crop yield predictions in the upper Mississippi River basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W.; Hasenauer, S.; Hahn, S. Assimilation of surface- and root-zone ASCAT soil moisture products into rainfall-runoff modeling. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2542–2555. [Google Scholar] [CrossRef]
- Uniyal, B.; Dietrich, J.; Vasilakos, C.; Tzoraki, O. Evaluation of SWAT simulated soil moisture at catchment scale by field measurements and Landsat derived indices. Agric. Water Manag. 2017, 193, 55–70. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Bergström, S. Development and Application of a Conceptual Runoff Model for Scandinavian Catchments. Smhi 1976, RHO 7, 134. [Google Scholar]
- Azimi, S.; Dariane, A.B.; Modanesi, S.; Bauer-Marschallinger, B.; Bindlish, R.; Wagner, W.; Massari, C. Assimilation of Sentinel 1 and SMAP—Based satellite soil moisture retrievals into SWAT hydrological model: The impact of satellite revisit time and product spatial resolution on flood simulations in small basins. J. Hydrol. 2020, 581, 124367. [Google Scholar] [CrossRef] [PubMed]
- Arias, R.; Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Nunes, J.P.; Keizer, J.J.; Taboada-Castro, M.T. Water resources response to changes in temperature, rainfall and CO2 concentration: A first approach in NW Spain. Water 2014, 6, 3049–3067. [Google Scholar] [CrossRef] [Green Version]
- Shivhare, N.; Dikshit, P.K.S.; Dwivedi, S.B. A Comparison of SWAT Model Calibration Techniques for Hydrological Modeling in the Ganga River Watershed. Engineering 2018, 4, 643–652. [Google Scholar] [CrossRef]
- Rasoulzadeh, S.; Corresp, G.; Kharel, G.; Stoecker, A. Modeling the impacts of agricultural best management practices on runoff, sediment, and crop yield in an agriculture-pasture intensive watershed. PeerJ 2010, 7, e7093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spruill, C.A.; Workman, S.R.; Taraba, J.L. Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Trans. Am. Soc. Agric. Eng. 2000, 43, 1431–1439. [Google Scholar] [CrossRef]
- Rivas-Tabares, D.; Tarquis, A.M.; Willaarts, B.; De Miguel, Á. An accurate evaluation of water availability in sub-arid Mediterranean watersheds through SWAT: Cega-Eresma-Adaja. Agric. Water Manag. 2019, 212, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Alibuyog, N.R.; Ella, V.B.; Reyes, M.R.; Srinivasan, R.; Heatwole, C.; Dillaha, T. Predicting the effects of land use change on runoff and sediment yield in manupali river subwatersheds using the swat model. Int. Agric. Eng. J. 2009, 18, 15. [Google Scholar]
Performance Rating | R² | NSE | PBIAS | RMSE |
---|---|---|---|---|
Very good | >0.85 | >0.80 | <± 5% | - |
Good | 0.75 < NSE ≤ 0.85 | 0.70 < NSE ≤ 0.80 | ±5% ≤ PBIAS ≤ ±10% | - |
Satisfactory | 0.60 < NSE ≤ 0.75 | 0.5 < NSE ≤ 0.70 | ±10% ≤ PBIAS ≤ ±15% | SI < 1 |
Unsatisfactory | ≤0.60 | ≤0.5 | >±15% | SI > 1 |
Acceptable | >0.60 | 0 < NSE ≤ 1 | <±15% | - |
Unacceptable | ≤0.60 | <0 | >±15% | - |
Parameter | Definition | Simultaneous | Step-Wise | ||
---|---|---|---|---|---|
Final Range | Value | Final Range | Value | ||
Surface runoff | |||||
CN2 p | Initial soil conservation service (SCS) curve number for moisture condition II | −10–10 | −3 | −10–0 | −1.2 |
CANMX a | Maximum Canopy Storage (mm) | 0–5 | 4 | 0–5 | 2 |
SURLAG a | Surface runoff lag coefficient | 0–10 | 0–10 | 0.9 | |
CH_N2 a | Manning’s ‘n’ value | 0.01–0.15 | 0.06 | 0.01–0.15 | 0.01 |
Groundwater flow | |||||
ESCO a | Soil evaporation compensation factor | 0.5–1 | 0.86 | 0.5–1 | 0.88 |
GW_REVAP a | Groundwater ‘revap’ coefficient | 0.02–0.2 | 0.15 | 0.02–0.2 | 0.15 |
GWQMN a | Threshold water level in shallow aquifer for baseflow (mm) | 100–1500 | 478 | 100–800 | 369 |
EPCO a | Plant uptake compensation factor | 0.5–1 | 0.9 | 0–0.5 | 0.3 |
SOL_K p | Saturated hydraulic conductivity (mm/hr) | −20–20 | 12 | −20–20 | 5 |
RCHRG_DP a | Deep aquifer percolation fraction | 0–1 | 0.69 | 0.05–0.25 | 0.05 |
Soil Moisture | |||||
SOL_AWC p | Available water capacity | −20–20 | 15 | −30–0 | −2/−24 |
Sediment | |||||
SPCON a | Linear parameter for calculating the maximum amount of sediment that can be reentrained during channel sediment routing | 0.001–0.01 | 0.005 | 0.001–0.01 | 0.006 |
PRF a | Exponent parameter for calculating sediment reentrained in channel sediment routing | 0–2 | 1.5 | 0–2 | 1.5 |
SPEXP a | Peak adjustment factor | 1–1.5 | 1 | 1–1.5 | 1.2 |
Plant growth | |||||
Corn | W. wheat | Rapeseed | |||
HVST I a | Harvest index [(kg/ha)/(kg/ha)] | 0.4–0.7 | 0.35–0.5 | 0.2–0.5 | |
BIO_E a | Radiation use efficiency [(kg/ha/(MJ/m2)] | 35–45 | 25–35 | 30–45 | |
BLAI a | Maximum potential leaf area index [(kg/ha)/(kg/ha)] | 5–8 | 3.5–7 | 3–5 |
NSE | R2 | RMSE (L/s) | PBIAS (%) | |
---|---|---|---|---|
Surface runoff | 0.79 | 0.79 | 2.87 | −12.50 |
Groundwater flow | 0.82 | 0.82 | 0.85 | −0.3 |
Calibration (S1) | ||||
---|---|---|---|---|
Crop | Default Model (t/ha) | Observed (t/ha) | Simulated (t/ha) | PBIAS (%) |
Winter wheat | 4.8 | 6.25 | 6.1 | −2.4 |
Winter barley | 6.2 | 5.4 | 6.2 | 14 |
Corn | 8.9 | 10.8 | 11.2 | 3.7 |
Rapeseed | 1.9 | 4.6 | 3.8 | −17 |
Validation (S2) | ||||
Winter wheat | 6.4 | 6.2 | −3 | |
Winter barley | 5.7 | 5.8 | 2 | |
Corn | 11 | 11 | 0 | |
Rapeseed | 3.7 | 3.6 | −3 | |
Validation (S3) | ||||
Winter wheat | 7.1 | 6.5 | −8 | |
Winter barley | 6.1 | 6.2 | 2 | |
Corn | 9.4 | 7.4 | −21 | |
Rapeseed | 4.9 | 6.6 | 35 |
Streamflow (L/s) | ||||||
---|---|---|---|---|---|---|
Calibration Step | Mean | s.d | NSE | R2 | RMSE (L/s) | PBIAS |
OBS | 4.1 | 6.8 | ||||
DM | 4.7 | 9.2 | 0.39 | 0.69 | 5.24 | 16.3 |
ARC | 3.1 | 6.8 | 0.77 | 0.80 | 3.25 | −31.40 |
AGC | 4.0 | 5.1 | 0.78 | 0.80 | 3.15 | −2.70 |
ACC | 4.2 | 6.0 | 0.79 | 0.81 | 3.10 | −4.40 |
ASC | 4.2 | 6.0 | 0.79 | 0.81 | 3.10 | −4.40 |
ASEC | 4.2 | 6.0 | 0.79 | 0.81 | 3.10 | −4.40 |
Profile soil water content (mm) | ||||||
OBS | 23 | |||||
DM | 181 | 29 | 0.69 | 0.83 | 12.89 | −1.8 |
ARC | 188 | 35 | 0.48 | 0.87 | 16.81 | 1.7 |
AGC | 187 | 34 | 0.51 | 0.85 | 16.36 | 1.0 |
ACC | 187 | 34 | 0.51 | 0.85 | 16.36 | 1.0 |
ASC | 183 | 26 | 0.86 | 0.87 | 8.72 | 0.3 |
ASEC | 183 | 26 | 0.86 | 0.87 | 8.72 | 0.3 |
Sediment yield (t/ha) | ||||||
OBS | 0.01 | 0.08 | ||||
DM | 0.01 | 0.08 | 0.82 | 0.84 | 0.03 | 25 |
ARC | 0.008 | 0.03 | 0.55 | 0.87 | 0.05 | −24.8 |
AGC | 0.005 | 0.02 | 0.35 | 0.89 | 0.06 | −55.6 |
ACC | 0.005 | 0.02 | 0.35 | 0.89 | 0.06 | −55.6 |
ASC | 0.004 | 0.02 | 0.45 | 0.89 | 0.06 | −60.5 |
ASEC | 0.010 | 0.07 | 0.88 | 0.89 | 0.03 | −1.9 |
Method | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|
NSE | R2 | RMSE | PBIAS | NSE | R2 | RMSE | PBIAS | |
Sediment yield | ||||||||
Step-wise | 0.89 | 0.89 | 0.03 | 5.50 | 0.79 | 0.79 | 0.01 | 12.40 |
Simultaneous | 0.87 | 0.88 | 0.03 | 18.60 | 0.83 | 0.84 | 0.01 | −7.90 |
Streamflow | ||||||||
Step-wise | 0.83 | 0.83 | 6.5 | 2.80 | 0.74 | 0.75 | −4.4 | 1.38 |
Simultaneous | 0.78 | 0.79 | −1.5 | 3.20 | 0.62 | 0.64 | −5.6 | 1.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musyoka, F.K.; Strauss, P.; Zhao, G.; Srinivasan, R.; Klik, A. Multi-Step Calibration Approach for SWAT Model Using Soil Moisture and Crop Yields in a Small Agricultural Catchment. Water 2021, 13, 2238. https://doi.org/10.3390/w13162238
Musyoka FK, Strauss P, Zhao G, Srinivasan R, Klik A. Multi-Step Calibration Approach for SWAT Model Using Soil Moisture and Crop Yields in a Small Agricultural Catchment. Water. 2021; 13(16):2238. https://doi.org/10.3390/w13162238
Chicago/Turabian StyleMusyoka, Francis Kilundu, Peter Strauss, Guangju Zhao, Raghavan Srinivasan, and Andreas Klik. 2021. "Multi-Step Calibration Approach for SWAT Model Using Soil Moisture and Crop Yields in a Small Agricultural Catchment" Water 13, no. 16: 2238. https://doi.org/10.3390/w13162238
APA StyleMusyoka, F. K., Strauss, P., Zhao, G., Srinivasan, R., & Klik, A. (2021). Multi-Step Calibration Approach for SWAT Model Using Soil Moisture and Crop Yields in a Small Agricultural Catchment. Water, 13(16), 2238. https://doi.org/10.3390/w13162238