Variation Characteristics and Influencing Factors of Soil Moisture Content in the Lime Concretion Black Soil Region in Northern Anhui
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Soil Physical Properties
2.3. Experimental Design
2.4. Analytical Methods
3. Results and Discussion
3.1. Statistical Analysis of Soil Hydraulic Parameters and SMC
3.2. Soil Water Deficit Status of Different Vegetation Types
3.3. Effect of Different Growth Periods on SMC
3.4. The Relationship between SMC and Influencing Factors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil moisture for hydrological applications: Open questions and new opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Mccoll, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- Queiroz, M.G.D.; Silva, T.G.F.D.; Zolnier, S.; Jardim, A.M.D.R.; Souza, S.B.D. Spatial and temporal dynamics of soil moisture for surfaces with a change in land use in the semi–arid region of Brazil. Catena 2020, 188, 104457. [Google Scholar] [CrossRef]
- Ghajarnia, N.; Kalantari, Z.; Orth, R.E.; Destouni, G. Close co–variation between soil moisture and runoff emerging from multi–catchment data across Europe. Sci. Rep.–UK 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol. 2019, 575, 432–441. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44, W00D06. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, W.; Wang, K.; Al, E. Soil moisture dynamics under different land uses on karst hillslope in northwest Guangxi, China. Environ. Earth Sci. 2010, 61, 1105–1111. [Google Scholar] [CrossRef]
- Gwak, Y.; Kim, S. Factors affecting soil moisture spatial variability for a humid forest hillslope. Hydrol. Process. 2017, 31, 431–445. [Google Scholar] [CrossRef]
- Penna, D.; Brocca, L.; Borga, M.; Fontana, G.D. Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods. J. Hydrol. 2013, 477, 55–71. [Google Scholar] [CrossRef]
- Chaney, N.W.; Roundy, J.K.; Herrera–Estrada, J.E.; Wood, E.F. High–resolution modeling of the spatial heterogeneity of soil moisture: Applications in network design. Water Resour. Res. 2015, 51, 619–638. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.N.; Zhao, W.W.; Wang, L.X.; Feng, Q.; Ding, J.Y.; Liu, Y.X.; Zhao, X. Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2016, 20, 3309–3323. [Google Scholar] [CrossRef] [Green Version]
- Oldak, A.; Jackson, T.J.; Pachepsky, Y. Using GIS in passive microwave soil moisture mapping and geostatistical analysis. Int. J. Geogr. Inf. Sci. 2002, 16, 681–698. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.; Vereecken, H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res. 2012, 48, W10544. [Google Scholar] [CrossRef] [Green Version]
- Coenders–Gerrits, A.; Hopp, L.; Savenije, H.; Pfister, L. The effect of spatial throughfall patterns on soil moisture patterns at the hillslope scale. Hydrol. Earth Syst. Sci. 2013, 17, 1749–1763. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wei, W.; Chen, L.; Chen, W.; Wang, J. Response of temporal variation of soil moisture to vegetation restoration in semi–arid Loess Plateau, China. Catena 2014, 115, 123–133. [Google Scholar] [CrossRef]
- Sur, C.Y.; Jung, Y.; Choi, M. Temporal stability and variability of field scale soil moisture on mountainous hillslopes in Northeast Asia. Geoderma 2013, 207, 234–243. [Google Scholar] [CrossRef]
- Cho, E.; Choi, M. Regional scale spatio–temporal variability of soil moisture and its relationship with meteorological factors over the Korean peninsula. J. Hydrol. 2014, 516, 317–329. [Google Scholar] [CrossRef]
- Thierfelder, T.K.; Grayson, R.B.; Rosen, D.V.; Western, A.W. Inferring the location of catchment characteristic soil moisture monitoring sites. Covariance structures in the temporal domain. J. Hydrol. 2003, 280, 13–32. [Google Scholar] [CrossRef]
- Dong, J.N.; Ochsner, T.E. Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns. Water Resour. Res. 2018, 54, 2199–2211. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H. Stochastic analysis of soil moisture to understand spatial and temporal variations of soil wetness at a steep hillside. J. Hydrol. 2007, 341, 1–11. [Google Scholar] [CrossRef]
- Chang, Q.Q.; He, H.L.; Niu, Z.E.; Ren, X.L.; Zhang, L.; Sun, W.X.; Zhu, X.B. Spatio–temporal variation of soil moisture and its influencing factors in Chinese typical forest ecosystems. Acta Ecologica Sinica 2021, 41, 490–502, (In Chinese with English abstract). [Google Scholar]
- Mei, X.M.; Zhu, Q.K.; Ma, L.; Zhang, D.; Liu, H.F.; Xue, M.J. The spatial variability of soil water storage and its controlling factors during dry and wet periods on loess hillslopes. Catena 2018, 162, 333–344. [Google Scholar] [CrossRef]
- Genuchten, M.T.V.; Wierenga, P.J. Mass Transfer Studies in Sorbing Porous Media I. Analytical Solutions. Soil Sci. Soc. Am. J. 1976, 40, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Gregory, A.S.; Bird, N.R.; Whalley, W.R.; Matthews, G.P.; Young, I.M. Deformation and shrinkage effects on the soil water release characteristic. Soil Sci. Soc. Am. J. 2010, 74, 1104–1112. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Properties of Porous Media Affecting Fluid Flow. J. Irrig. Drain. 1964, 92, 61–88. [Google Scholar] [CrossRef]
- Sun, M.; Ren, A.; Gao, Z.; Wang, P.; Mo, F.; Xue, L.; Lei, M. Long–term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field Crop. Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Si, M.K.; Cao, J.S.; Yang, H.; Zhu, C.Y. Soil water variation of different vegetation community in Taihang Mountain Area. Chin. J. Eco-Agric. 2020, 28, 1766–1777, (In Chinese with English abstract). [Google Scholar]
- Huang, Z.; Liu, Y.; Cui, Z.; Fang, Y.; He, H.; Liu, B.; Wu, G. Soil water storage deficit of alfalfa (Medicago sativa) grasslands along ages in arid area (China). Field Crop. Res. 2018, 221, 1–6. [Google Scholar] [CrossRef]
- Gu, F.; Ren, T.S.; Li, B.G.; Li, L.J. Accounting for calcareous concretions in calcic vertisols improves the accuracy of soil hydraulic property estimations. Soil Sci. Soc. Am. J. 2017, 81, 1296–1302. [Google Scholar] [CrossRef]
- Savva, Y.; Szlavecz, K.; Carlson, D.; Gupchup, J.; Szalay, A.; Terzis, A. Spatial patterns of soil moisture under forest and grass land cover in a suburban area, in Maryland, USA. Geoderma 2013, 192, 202–210. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Z.Y.; Zhang, S.W.; Wang, H.M. Analysis of soil moisture variation and its influencing factors in semi–arid steppe watershed. Trans. Chin. Soc. Agric. Eng. 2020, 36, 124–132, (In Chinese with English abstract). [Google Scholar]
- Giraldo, M.A.; Madden, M.; Bosch, D. Land use/land cover and soil type covariation in a heterogeneous landscape for soil moisture studies using point data. GIsci. Remote Sens. 2009, 46, 77–100. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.S.; Nie, Y.P.; Wang, K.L. Dynamic variations in profile soil water on karst hillslopes in Southwest China. Catena 2019, 172, 655–663. [Google Scholar] [CrossRef]
- Liu, R.H.; Zhu, Z.X.; Fang, W.S.; Deng, T.H.; Zhao, G.Q. Distribution pattern of winter wheat root system. Chin. J. Ecol. 2008, 27, 2024–2027, (In Chinese with English abstract). [Google Scholar]
- Wei, L.R.; Miao, L.J.; Ming, B.Y.; Qing, A.S.; Liang, H.; Lu, J.L.; Le, Z.Y.; Cao, Y.J. Spatial distribution and temporal variation of maize root in the soil under field conditions. Chin. J. Eco-Agric. 2014, 22, 284–291, (In Chinese with English abstract). [Google Scholar]
- Zhang, M.; Liu, S.; Liu, Y.; Zhang, H. Soil moisture variation characteristics of different land use types in the moderate slope sandy area of loess hilly region. J. Soil Water Conserv. 2019, 33, 115–120+128, (In Chinese with English abstract). [Google Scholar]
- Guderlea, M.; Bachmann, D.; Milcu, A.; Gockele, A. Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Funct. Ecol. 2018, 32, 214–227. [Google Scholar] [CrossRef]
- Zhen, Z.; Yi, L.Y.; Jun, G.J.; Jing, W.; Hao, D.G.; Hui, G.Z.; Cheng, P.H. Effect of tillage depth on soil physical properties and yield of winter wheat–summer maize. Trans. Chin. Soc. Agric. Eng. 2017, 33, 115–123, (In Chinese with English abstract). [Google Scholar]
- Svetlitchnyi, A.A.; Plotnitskiy, S.V.; Stepovaya, O.Y. Spatial distribution of soil moisture content within catchments and its modelling on the basis of topographic data. J. Hydrol. 2003, 277, 50–60. [Google Scholar] [CrossRef]
- Broedel, E.; Tomasella, J.; Candido, L.A.; Von Randow, C. Deep soil water dynamics in an undisturbed primary forest in central Amazonia: Differences between normal years and the 2005 drought. Hydrol. Process. 2017, 31, 1749–1759. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Q. Groundwater influences on soil moisture and surface evaporation. J. Hydrol. 2004, 297, 285–300. [Google Scholar] [CrossRef] [Green Version]
- Han, X.S.; Wang, Y.H.; Yu, P.T.; Xiong, W.; Li, Z.H.; Cai, J.J.; Xu, H. Temporal and spatial variation and influencing factors of soil moisture in larix principis–rupprechtii plantation in Semiarid Liupan Mountains, Northwest China. J. Soil Water Conserv. 2019, 33, 111–117, (In Chinese with English abstract). [Google Scholar]
- Li, X.Y.; Liu, L.; Li, H.; Wang, S.P.; Heng, J. Spatiotemporal soil moisture variations associated with hydro–meteorological factors over the Yarlung Zangbo River basin in Southeast Tibetan Plateau. Int. J. Climatol. 2019, 40, 188–206. [Google Scholar] [CrossRef]
- Wang, T.J.; Franz, T.E. Field observations of regional controls of soil hydraulic properties on soil moisture spatial variability in different climate zones. Vadose Zone J. 2015, 14, 1–8. [Google Scholar] [CrossRef]
- Biswas, A.; Si, B.C. Revealing the Controls of Soil Water Storage at Different Scales in a Hummocky Landscape. Soil Sci. Soc. Am. J. 2011, 75, 1295–1306. [Google Scholar] [CrossRef]
- Joshi, C.; Mohanty, B.P.; Jacobs, J.M.; Ines, A.V.M. Spatiotemporal analyses of soil moisture from point to footprint scale in two different hydroclimatic regions. Water Resour. Res. 2011, 47, 1–20. [Google Scholar] [CrossRef]
Soil Depth/cm | Bulk Density/(g·cm−3) | Clay/% (0–0.002 mm) | Silt/% (0.002–0.02 mm) | Sand/% (0.02–2 mm) |
---|---|---|---|---|
0–20 | 1.49 | 11.9 | 51.3 | 36.8 |
20–40 | 1.52 | 19.5 | 47.9 | 32.6 |
40–60 | 1.49 | 17.9 | 49.4 | 32.7 |
60–80 | 1.52 | |||
80–100 | 1.57 | 21.1 | 46.3 | 32.6 |
Soil Depth/cm | Residual Water Content/% | Saturated Water Content/% | b | n | R2 |
---|---|---|---|---|---|
0–10 | 1.9 | 45.2 | 5.4837 | 1.045 | 0.997 |
10–20 | 8.7 | 42.5 | 0.0012 | 1.031 | 0.994 |
20–30 | 10.5 | 50.7 | 0.0002 | 1.025 | 0.985 |
30–40 | 10.0 | 51.0 | 0.0001 | 1.022 | 0.989 |
40–50 | 10.3 | 47.6 | 0.0001 | 1.022 | 0.993 |
50–60 | 11.0 | 44.8 | 0.0847 | 1.021 | 0.972 |
60–80 | 8.3 | 42.5 | 0.7835 | 1.021 | 0.995 |
80–100 | 4.3 | 41.5 | 5.7281 | 1.024 | 0.988 |
Crop Type | Soil Depth/cm | Statistical Variables/% | ||||||
---|---|---|---|---|---|---|---|---|
Minimum Value | Maximum Value | Mean Value | Standard Deviation | Skewness | Kurtosis | Coefficient of Variation | ||
Wheat | 0–10 | 4.1 | 38.4 | 19.6Ae | 4.90 | 0.00 | 0.78 | 25.1 |
10–20 | 7.8 | 31.7 | 19.9Ae | 4.07 | –0.32 | 0.01 | 20.5 | |
20–30 | 9.0 | 33.6 | 21.6Ad | 4.59 | –0.13 | –0.27 | 21.2 | |
30–40 | 11.1 | 35.6 | 24.7Aa | 4.12 | –0.48 | –0.21 | 16.7 | |
40–50 | 13.1 | 35 | 24.9Aa | 3.62 | –0.56 | 0.11 | 14.6 | |
50–60 | 11.9 | 32.7 | 23.9Ab | 3.23 | 0.21 | 0.23 | 13.5 | |
60–80 | 12.2 | 30.9 | 22.8Ac | 2.93 | –0.60 | 0.16 | 12.9 | |
80–100 | 12.2 | 31.7 | 22.0Ad | 2.71 | –0.64 | 0.31 | 12.3 | |
Maize | 0–10 | 2.7 | 39.0 | 18.3Be | 5.18 | –0.26 | 0.71 | 28.4 |
10–20 | 4.9 | 30.0 | 18.8Be | 3.89 | –0.47 | 0.81 | 20.7 | |
20–30 | 6.1 | 33.1 | 20.9Bc | 4.27 | –0.37 | 0.58 | 20.4 | |
30–40 | 11.1 | 32.3 | 23.5Ba | 3.81 | –0.61 | 0.09 | 16.3 | |
40–50 | 12.5 | 31.8 | 23.1Ba | 3.55 | 0.46 | 5.46 | 15.3 | |
50–60 | 10.8 | 30.7 | 22.2Bb | 3.37 | –0.27 | 0.16 | 15.2 | |
60–80 | 11.6 | 31.7 | 21.0Bc | 3.17 | 0.58 | 5.46 | 15.1 | |
80–100 | 12.0 | 30.3 | 20.2Bd | 2.88 | –0.02 | 0.01 | 14.3 |
Crop Type | Growth Period | Average Soil Moisture Content/% | Average Daily Water Storage/mm | Average Daily Deficit/mm | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0–60 cm | 60–100 cm | 0–100 cm | 0–60 cm | 60–100 cm | 0–100 cm | 0–60 cm | 60–100 cm | 0–100 cm | ||
Wheat | Emergence–tillering period | 23.0 ± 2.86 | 23.1 ± 2.38 | 23.0 ± 2.57 | 207.8 ± 20.50 | 142.4 ± 11.67 | 350.2 ± 29.36 | 45.5 | 16.9 | 62.4 |
Tillering–wintering period | 23.8 ± 2.45 | 23.5 ± 2.13 | 23.7 ± 2.16 | 216.2 ± 15.40 | 145.9 ± 9.17 | 362.1 ± 22.46 | 37.1 | 13.4 | 50.5 | |
Regreening–jointing period | 22.4 ± 2.90 | 23.0 ± 2.17 | 22.6 ± 2.55 | 203.2 ± 18.21 | 143.0 ± 10.15 | 346.2 ± 27.00 | 50.1 | 16.3 | 66.4 | |
Heading–mature period | 19.1 ± 3.43 | 19.3 ± 2.82 | 19.2 ± 3.12 | 173.8 ± 21.94 | 120.7 ± 12.75 | 294.5 ± 33.52 | 79.5 | 38.6 | 118.1 | |
Whole growth period | 22.4 ± 4.67 | 22.4 ± 2.85 | 22.4 ± 4.30 | 202.2 ± 27.80 | 139.2 ± 17.51 | 341.4 ± 43.96 | 51.1 | 20.1 | 71.2 | |
Maize | Seeding–emergence period | 21.2 ± 3.29 | 20.0 ± 3.12 | 20.9 ± 3.08 | 190.3 ± 20.14 | 126.8 ± 16.13 | 317.1 ± 32.27 | 63.0 | 32.5 | 95.5 |
Jointing–booting period | 20.9 ± 3.36 | 21.0 ± 2.94 | 20.9 ± 3.12 | 193.6 ± 21.57 | 135.1 ± 15.72 | 328.6 ± 35.93 | 59.7 | 24.2 | 83.9 | |
Heading–flowering period | 21.5 ± 2.75 | 20.7 ± 2.71 | 21.3 ± 2.65 | 195.4 ± 20.24 | 130.0 ± 16.12 | 325.4 ± 35.04 | 57.9 | 29.3 | 87.2 | |
Grouting–mature period | 21.1 ± 3.39 | 21.5 ± 2.89 | 21.2 ± 3.02 | 191.4 ± 24.68 | 135.5 ± 14.99 | 327.0 ± 35.91 | 61.9 | 23.8 | 85.7 | |
Whole growth period | 21.1 ± 4.53 | 20.7 ± 3.07 | 21.0 ± 4.23 | 190.6 ± 29.18 | 129.9 ± 19.28 | 320.4 ± 44.67 | 62.8 | 29.4 | 92.2 |
Influencing Factors | Wheat RDA Analysis Sorting Axis | Maize RDA Analysis Sorting Axis | ||
---|---|---|---|---|
Axis1 | Axis2 | Axis1 | Axis2 | |
Growth period | –0.423 | –0.148 | –0.012 | –0.211 |
Groundwater depth | –0.347 | –0.045 | 0.470 | 0.198 |
Rainfall | 0.126 | –0.193 | –0.226 | 0.147 |
Evaporation | –0.249 | 0.061 | 0.008 | 0.042 |
Wind speed | –0.066 | –0.008 | 0.084 | –0.042 |
Sunshine time | –0.118 | 0.160 | –0.051 | –0.200 |
Water vapor pressure difference | –0.499 | 0.002 | 0.137 | –0.163 |
Relative humidity | 0.207 | –0.339 | –0.372 | 0.164 |
Ground temperature | –0.510 | –0.127 | 0.075 | –0.113 |
Cumulative rate of change of soil moisture–influence factor correlation/% | 91.1 | 98.4 | 83.1 | 96.6 |
Influencing Factors | Wheat | Influencing Factors | Maize | ||||
---|---|---|---|---|---|---|---|
Interpretation Rate/% | Contribution Rate/% | p | Interpretation Rate/% | Contribution Rate/% | p | ||
Ground temperature | 16.7 | 54.5 | 0.001 | Groundwater depth | 14.1 | 59.6 | 0.001 |
Groundwater depth | 5.3 | 17.3 | 0.001 | Sunshine time | 0.8 | 3.4 | 0.005 |
Relative humidity | 3.4 | 11.1 | 0.001 | Rainfall | 1 | 4.1 | 0.005 |
Growth period | 2.7 | 8.7 | 0.001 | Relative humidity | 4.7 | 19.8 | 0.001 |
Rainfall | 1.1 | 3.7 | 0.001 | Water vapor pressure difference | 1.3 | 5.7 | 0.001 |
Evaporation | 0.6 | 2.1 | 0.001 | Ground temperature | 0.7 | 2.8 | 0.01 |
Water vapor pressure difference | 0.5 | 1.6 | 0.001 | Growth period | 0.8 | 3.4 | 0.009 |
Sunshine time | 0.3 | 0.9 | 0.009 | Evaporation | 0.1 | 0.6 | 0.434 |
Wind speed | <0.1 | 0.2 | 0.531 | Wind speed | 0.1 | 0.5 | 0.529 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, M.; Zhang, J.; Elmahdi, A.; Wang, Z.; Yang, Q.; Liu, H.; Liu, C.; Hu, Y.; Gu, N.; Bao, Z.; et al. Variation Characteristics and Influencing Factors of Soil Moisture Content in the Lime Concretion Black Soil Region in Northern Anhui. Water 2021, 13, 2251. https://doi.org/10.3390/w13162251
Du M, Zhang J, Elmahdi A, Wang Z, Yang Q, Liu H, Liu C, Hu Y, Gu N, Bao Z, et al. Variation Characteristics and Influencing Factors of Soil Moisture Content in the Lime Concretion Black Soil Region in Northern Anhui. Water. 2021; 13(16):2251. https://doi.org/10.3390/w13162251
Chicago/Turabian StyleDu, Mingcheng, Jianyun Zhang, Amgad Elmahdi, Zhenlong Wang, Qinli Yang, Haowen Liu, Cuishan Liu, Yongsheng Hu, Nan Gu, Zhenxin Bao, and et al. 2021. "Variation Characteristics and Influencing Factors of Soil Moisture Content in the Lime Concretion Black Soil Region in Northern Anhui" Water 13, no. 16: 2251. https://doi.org/10.3390/w13162251
APA StyleDu, M., Zhang, J., Elmahdi, A., Wang, Z., Yang, Q., Liu, H., Liu, C., Hu, Y., Gu, N., Bao, Z., Liu, Y., Jin, J., & Wang, G. (2021). Variation Characteristics and Influencing Factors of Soil Moisture Content in the Lime Concretion Black Soil Region in Northern Anhui. Water, 13(16), 2251. https://doi.org/10.3390/w13162251