Storage-Discharge Relationships under Forest Cover Change in Ethiopian Highlands
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Hydro-Climatic Data
2.3. Remote Sensing and Forest Cover Change
2.4. Watershed Storage–Discharge Analysis
2.4.1. Recession Curve Analysis
2.4.2. Linear Reservoir Concept
3. Results
3.1. Hydroclimatic Data and Forest Cover Change
3.2. Recession Curve Analysis
3.3. Linear Reservoir Concept
4. Discussion
4.1. Implications of Forest Cover Change on Storage–Discharge Relationship
4.2. On the Utility of Storage–Discharge Relationships to Assess Forest Cover Change Impacts on Water Resources
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Gebrehiwot, S.G. Forests, water and food security in the Nothwestern Highlands of Ethiopia: Knowledge synthesis. Environ. Sci. Policy 2015, 48, 128–136. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agricult. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Scott, D.F.; Lesch, W. Streamflow responses to afforestation with eucalyptus grandis and pinus patula and to felling in the mokobulaan experimental catchments, South Africa. J. Hydrol. 1997, 199, 360–377. [Google Scholar] [CrossRef]
- Lyon, S.W.; King, K.; Polpanich, O.; Lacombe, G. Assessing hydrologic changes across the lower mekong basin. J. Hydrol. Reg. Stud. 2017, 12, 303–314. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, C.; Xu, Z.; Wang, Y.; Peng, H. Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment. J. Arid Land 2013, 5, 207–219. [Google Scholar] [CrossRef]
- Jaramillo, F.; Cory, N.; Arheimer, B.; Laudon, H.; van der Velde, Y.; Hasper, T.B.; Teutschbein, C.; Uddling, J. Dominant effect of increasing forest biomass on evapotranspiration: Interpretations of movement in budyko space. Hydrol. Earth Syst. Sci. 2018, 22, 567–580. [Google Scholar] [CrossRef] [Green Version]
- Birkel, C.; Soulsby, C.; Tetzlaff, D. Modelling the impacts of land-cover change on streamflow dynamics of a tropical rainforest headwater catchment. Hydrol. Sci. J. 2012, 57, 1543–1561. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Andreassian, V.; Parent, E.; Michel, C. A distribution-free test to detect gradual changes in watershed behavior. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Zhang, L.; Chiew, F.H.S.; Canadell, J.G.; Zhao, F.; Wang, Y.-P.; Hu, X.; Lin, K. Quantifying the impacts of vegetation changes on catchment storage-discharge dynamics using paired-catchment data. Water Resour. Res. 2017, 53, 5963–5979. [Google Scholar] [CrossRef]
- Kirchner, J.W. Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Jehn, F.U.; Breuer, L.; Kraft, P.; Bestian, K.; Houska, T. Simple catchments and where to find them: The storage-discharge relationship as a proxy for catchment complexity. Front. Water 2021, 3, 631651. [Google Scholar] [CrossRef]
- Tallaksen, L.M. A review of baseflow recession analysis. J. Hydrol. 1995, 165, 349–370. [Google Scholar] [CrossRef]
- Brutsaert, W. Long-term groundwater storage trends estimated from streamflow records: Climatic perspective. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Ploum, S.W.; Lyon, S.W.; Teuling, A.J.; Laudon, H.; van der Velde, Y. Soil frost effects on streamflow recessions in a subarctic catchment. Hydrol. Process. 2019, 33, 1304–1316. [Google Scholar] [CrossRef] [Green Version]
- Brutsaert, W.; Nieber, J.L. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res. 1977, 13, 637–643. [Google Scholar] [CrossRef]
- Bogaart, P.W.; van der Velde, Y.; Lyon, S.W.; Dekker, S.C. Streamflow recession patterns can help unravel the role of climate and humans in landscape co-evolution. Hydrol. Earth Syst. Sci. 2016, 20, 1413–1432. [Google Scholar] [CrossRef] [Green Version]
- Brutsaert, W. Annual drought flow and groundwater storage trends in the eastern half of the United States during the past two-third century. Theor. Appl. Climatol. 2010, 100, 93–103. [Google Scholar] [CrossRef]
- Brauer, C.C.; Teuling, A.J.; Torfs, P.J.J.F.; Uijlenhoet, R. Investigating storage-discharge relations in a lowland catchment using hydrograph fitting, recession analysis, and soil moisture data. Water Resour. Res. 2013, 49, 4257–4264. [Google Scholar] [CrossRef]
- Shaw, S.B.; Riha, S.J. Examining individual recession events instead of a data cloud: Using a modified interpretation of DQ/Dt–Q streamflow recession in glaciated watersheds to better inform models of low flow. J. Hydrol. 2012, 434, 46–54. [Google Scholar] [CrossRef]
- Jachens, E.R.; Roques, C.; Rupp, D.E.; Selker, J.S. Streamflow recession analysis using water height. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Smakhtin, V.U. Low flow hydrology: A review. J. Hydrol. 2001, 240, 147–186. [Google Scholar] [CrossRef]
- Dralle, D.N.; Karst, N.J.; Thompson, S.E. Dry season streamflow persistence in seasonal climates. Water Resour. Res. 2016, 52, 90–107. [Google Scholar] [CrossRef] [Green Version]
- Sikka, A.K.; Samra, J.S.; Sharda, V.N.; Samraj, P.; Lakshmanan, V. Low flow and high flow responses to converting natural grassland into Bluegum (Eucalyptus globulus) in Nilgiris Watersheds of South India. J. Hydrol. 2003, 270, 12–26. [Google Scholar] [CrossRef]
- Regasa, M.S.; Nones, M.; Adeba, D. A review on land use and land cover change in Ethiopian basins. Land 2021, 10, 585. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2015; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Gebrehiwot, S.G.; Bewket, W.; Gardenas, A.I.; Bishop, K. Forest cover change over four decades in the Blue Nile Basin, Ethiopia: Comparison of three watersheds. Reg. Environ. Change 2014, 14, 253–266. [Google Scholar] [CrossRef]
- Gebrehiwot, S.G.; Di Baldassarre, G.; Bishop, K.; Halldin, S.; Breuer, L. Is observation uncertainty masking the signal of land use change impacts on hydrology? J. Hydrol. 2019, 570, 393–400. [Google Scholar] [CrossRef]
- Gebrehiwot, S.G.; Seibert, J.; Gärdenäs, A.I.; Mellander, P.-E.; Bishop, K. Hydrological change detection using modeling: Half a century of runoff from four rivers in the Blue Nile Basin. Water Resour. Res. 2013, 49, 3842–3851. [Google Scholar] [CrossRef] [Green Version]
- Dile, Y.T.; Tekleab, S.; Ayana, E.K.; Gebrehiwot, S.G.; Worqlul, A.W.; Bayabil, H.K.; Yimam, Y.T.; Tilahun, S.A.; Daggupati, P.; Karlberg, L.; et al. Advances in water resources research in the upper Blue Nile Basin and the way forward: A review. J. Hydrol. 2018, 560, 407–423. [Google Scholar] [CrossRef]
- Gebrehiwot, S.G.; Gardenas, A.I.; Bewket, W.; Seibert, J.; Ilstedt, U.; Bishop, K. The long-term hydrology of East Africa’s water tower: Statistical change detection in the watersheds of the Abbay Basin. Reg. Environ. Change 2014, 14, 321–331. [Google Scholar] [CrossRef]
- Sutcliffe, J.V.; Parks, Y.P. The Hydrology of the Nile; IAHS Special Publication; International Association of Hydrological Sciences: Oxford, UK, 1999. [Google Scholar]
- Ayenew, T.; Demlie, M.; Wohnlich, S. Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers. J. Afr. Earth Sci. 2008, 52, 97–113. [Google Scholar] [CrossRef]
- Rupp, D.E.; Selker, J.S. On the use of the boussinesq equation for interpreting recession hydrographs from sloping aquifers. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Troch, P.A.; Berne, A.; Bogaart, P.; Harman, C.; Hilberts, A.G.J.; Lyon, S.W.; Paniconi, C.; Pauwels, V.R.N.; Rupp, D.E.; Selker, J.S.; et al. The importance of hydraulic groundwater theory in catchment hydrology: The legacy of wilfried brutsaert and Jean-Yves Parlange. Water Resour. Res. 2013, 49, 5099–5116. [Google Scholar] [CrossRef] [Green Version]
- Lyon, S.W.; Koutsouris, A.; Scheibler, F.; Jarsjö, J.; Mbanguka, R.; Tumbo, M.; Robert, K.K.; Sharma, A.N.; van der Velde, Y. Interpreting characteristic drainage timescale variability across Kilombero Valley, Tanzania. Hydrol. Process. 2015, 29, 1912–1924. [Google Scholar] [CrossRef]
- Dralle, D.N.; Karst, N.J.; Charalampous, K.; Veenstra, A.; Thompson, S.E. Event-scale power law recession analysis: Quantifying methodological uncertainty. Hydrol. Earth Syst. Sci. 2017, 21, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Wrona, F.J.; Johansson, M.; Culp, J.M.; Jenkins, A.; Mård, J.; Myers-Smith, I.H.; Prowse, T.D.; Vincent, W.F.; Wookey, P.A. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. J. Geophys. Res. Biogeosci. 2016, 121, 650–674. [Google Scholar] [CrossRef] [Green Version]
- Buytaert, W.; De Bievre, B.; Wyseure, G.; Deckers, J. The use of the linear reservoir concept to quantify the impact of changes in land use on the hydrology of catchments in the Andes. Hydrol. Earth Syst. Sci. 2004, 8, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Krakauer, N.Y.; Temimi, M. Stream recession curves and storage variability in Small WATERSHEDS. Hydrol. Earth Syst. Sci. 2011, 15, 2377–2389. [Google Scholar] [CrossRef] [Green Version]
- Lyon, S.W.; Destouni, G.; Giesler, R.; Humborg, C.; Mörth, M.; Seibert, J.; Karlsson, J.; Troch, P.A. Estimation of permafrost thawing rates in a Sub-Arctic catchment using recession flow analysis. Hydrol. Earth Syst. Sci. 2009, 13, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Koutsouris, A.J.; Lyon, S.W. Advancing understanding in data-limited conditions: Estimating contributions to streamflow across Tanzania’s rapidly developing Kilombero Valley. Hydrol. Sci. J. 2018, 63, 197–209. [Google Scholar] [CrossRef]
- Rivera-Ramirez, H.D.; Warner, G.S.; Scatena, F.N. Prediction of master recession curves and baseflow recessions in the Luquillo Mountains of Puerto Rico1. JAWRA J. Am. Water Resour. Assoc. 2002, 38, 693–704. [Google Scholar] [CrossRef]
- Lamb, R.; Beven, K. Using interactive recession curve analysis to specify a general catchment storage model. Hydrol. Earth Syst. Sci. 1997, 1, 101–113. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef] [PubMed]
- Ogden, F.L.; Crouch, T.D.; Stallard, R.F.; Hall, J.S. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resour. Res. 2013, 49, 8443–8462. [Google Scholar] [CrossRef] [Green Version]
- Nyssen, J.; Poesen, J.; Lanckriet, S.; Jacob, M.; Moeyersons, J.; Haile, M.; Haregeweyn, N.; Munro, R.N.; Descheemaeker, K.; Adgo, E.; et al. Land degradation in the Ethiopian highlands. In Landscapes and Landforms of Ethiopia; Billi, P., Ed.; World Geomorphological Landscapes; Springer: Dordrecht, The Netherlands, 2015; pp. 369–385. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; See, L.; Carlson, T.; Haklay, M.; Oliver, J.L.; Fraisl, D.; Mondardini, R.; Brocklehurst, M.; Shanley, L.A.; Schade, S.; et al. Citizen science and the United Nations sustainable development goals. Nat. Sustain. 2019, 2, 922–930. [Google Scholar] [CrossRef]
- Cosgrove, W.J.; Loucks, P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef] [Green Version]
Watershed | Area (km2) | Elevation (m a.s.l.) | Average Annual Rainfall (mm) | Average Annual Runoff (mm) | Average Annual Temperature (°C) |
---|---|---|---|---|---|
Sokoru | 41 | 1810–2535 | 1372 | 305 | 19.6 |
Woshi-Dimbira | 273 | 1780–2350 | 1732 | 734 | 19.5 |
Upper-Didesa | 1890 | 1515–2930 | 2066 | 736 | 19.5 |
Watershed | Period | α | β |
---|---|---|---|
Sokoru | 1983–1992 | 0.16 | 1.31 |
1993–2003 | 0.20 | 1.11 | |
2004–2014 | 0.27 | 1.30 | |
Woshi-Dimbira | 1984–1993 | 0.20 | 0.36 |
1994–2003 | 0.14 | 1.01 | |
2004–2014 | 0.08 | 1.27 | |
Upper-Didesa | 1986–1994 | 0.10 | 0.86 |
1995–2003 | 0.06 | 1.40 | |
2004–2013 | 0.03 | 2.21 |
Watershed | Q0 (mm) | Q30 (mm) | k (1/d) |
---|---|---|---|
Sokoru | 2.55 (1.14) | 0.37 (0.25) | 0.03 (0.01) |
Woshi-Dimbira | 7.91 (3.48) | 0.88 (0.42) | 0.03 (0.01) |
Upper-Didesa | 6.91 (2.19) | 0.85 (0.39) | 0.03 (0.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebrehiwot, S.G.; Breuer, L.; Lyon, S.W. Storage-Discharge Relationships under Forest Cover Change in Ethiopian Highlands. Water 2021, 13, 2310. https://doi.org/10.3390/w13162310
Gebrehiwot SG, Breuer L, Lyon SW. Storage-Discharge Relationships under Forest Cover Change in Ethiopian Highlands. Water. 2021; 13(16):2310. https://doi.org/10.3390/w13162310
Chicago/Turabian StyleGebrehiwot, Solomon Gebreyohannis, Lutz Breuer, and Steve W. Lyon. 2021. "Storage-Discharge Relationships under Forest Cover Change in Ethiopian Highlands" Water 13, no. 16: 2310. https://doi.org/10.3390/w13162310
APA StyleGebrehiwot, S. G., Breuer, L., & Lyon, S. W. (2021). Storage-Discharge Relationships under Forest Cover Change in Ethiopian Highlands. Water, 13(16), 2310. https://doi.org/10.3390/w13162310