Constructed Wetlands to Face Water Scarcity and Water Pollution Risks: Learning from Farmers’ Perception in Alicante, Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Case Study: El Hondo Coastal Wetland and Santa Pola Saltmarshes
4. Results
4.1. Farmers Profile and Treated Wastewater Use
4.2. Climate Change Awareness
4.3. Climate Change Impacts
4.4. Main Adaptation Measures and Barriers
4.5. Sociodemographic Factors Influencing Treated Wastewater Use and CWs Promotion
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Findlater, K.M.; Satterfield, T.; Kandlikar, M.; Donner, D.D. Six languages for a risky climate: How farmers react to weather and climate change. Clim. Chang. 2018, 148, 451–465. [Google Scholar] [CrossRef]
- Kim, G.U.; Seo, K.H.; Chen, D. Climate change over the Mediterranean and current destruction of marine ecosystem. Sci. Rep. 2019, 9, 18813. [Google Scholar] [CrossRef]
- Estrela, T.; Pérez-Martin, M.A.; Vargas, E. Impacts of climate change on water resources in Spain. Hydrol. Sci. J. 2012, 57, 1154–1167. [Google Scholar] [CrossRef]
- Ff Cardoso-Pereira, S.; Marta-Almeida, M.; Carvalho, A.C. Extreme precipitacion events under climate change in the Iberian Peninsula. Int. J. Climatol. 2020, 40, 1255–1278. [Google Scholar] [CrossRef]
- Mestre, I.; Casado, M.J.; Rodríguez, J. Tendencias observadas y proyecciones de cambio climático sobre España. Capítulo 2. In Impactos, Vulnerabilidades y Adaptación de los Bosques y la Biodiversidad de España Frente al Cambio Climático; Herrero, A., Zavala, M.A., Eds.; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2015; pp. 87–98. [Google Scholar]
- Semenza, J.C. Cascading risks of waterborne diseases from climate change. Nat. Immunol. 2020, 21, 484–487. [Google Scholar] [CrossRef]
- Brouziyne, Y.; Abouabdillah, A.; Hirich, A.; Bouabid, R.; Zaaboul, R.; Bernaabidate, L. Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios. Agric. Syst. 2018, 162, 154–163. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Yang, H. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol. Indic. 2016, 60, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Falkenmark, M. Growing water scarcity in agriculture: Future challenge to global water security. Philos. Trans. R. Soc. A 2013, 371, 20120410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, A.E.V.; Mateo-Sagasta, J.; Qadir, M.; Boelee, E.; Ippolito, A. Agricultural water pollution: Key knowledge gaps and research needs. Curr. Opin. Sust. 2019, 36, 20–27. [Google Scholar] [CrossRef]
- Grizzetti, B.; Vigiak, O.; Udias, A.; Aloe, A.; Zanni, M.; Bouraoui, F.; Pistocchi, A.; Dorati, C.; Friedland, R.; de Roo, A.; et al. How EU policies could reduce nutrient pollution in European inland and coastal waters. Glob. Environ. Chang. 2021, 69, 102281. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Colon, Y.M.; Schaffner, F.C. Identifying nonpoint sources of phosphorus and nitrogen: A case study of pollution that enters a freshwater wetland (Laguna Cartagena, Puerto Rico). J. Water Res. Protect. 2021, 13, 8. [Google Scholar] [CrossRef]
- Mateo-Sagasta, J.; Marjani, S.; Turral, H. More people, more food, worse water? In A Global Review of Water Pollution from Agriculture; FAO: Rome, Italy; IWMI: Gujarat, India, 2018. [Google Scholar]
- Okumah, M.; Chapman, P.J.; Marin-Ortega, J.; Novo, P. Mitigating agricultural diffuse pollution: Uncovering the evidence base of the awareness-behaviour-water quality pathway. Water 2019, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Boesch, D.F. Barriers and bridges in abating coastal eutrophication. Front. Mar. Sci. 2019, 6, 123. [Google Scholar] [CrossRef] [Green Version]
- De Jalon, S.; Iglesias, A.; Cunningham, R.; Perez-Diaz, J.I. Building resilience to water scarcity in southern Spain: A case study of rice farming in Doñana protected wetlands. Reg. Environ. Chang. 2014, 14, 1229–1242. [Google Scholar] [CrossRef] [Green Version]
- Aleisa, E.; Al-Zubari, W. Wastewater reuse in the countries of the Gulf Cooperation Council (GCC): The lost opportunity. Environ. Monit. Assess. 2017, 189, 553. [Google Scholar] [CrossRef]
- Licciardello, F.; Milani, M.; Consoli, N.; Pappalardo, N.; Barbagallo, S.; Cirelli, G. Wastewater tertiary treatment options to match reuse standards in agriculture. Agric. Water Manag. 2018, 210, 232–242. [Google Scholar] [CrossRef]
- Thebo, A.L.; Drechsel, P.; Lambin, E.F.; Nelson, K.L. A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows. Environ. Res. Lett. 2017, 12, 074008. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Tahir, N.; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. Int. J. Environ. Res. Public. Health 2018, 15, 895. [Google Scholar] [CrossRef] [Green Version]
- Aziz, F.; Farissi, M. Reuse of treated wastewater in agriculture: Solving water deficit problems in arid areas. Ann. West Univ. Timisoara Ser. Biol. 2014, 17, 95. [Google Scholar]
- Tortajada, C.; Ong, C.N. Reused water policies for potable use. Int. J. Water Resour. Dev. 2016, 32, 500–502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shen, Y. Wastewater irrigation: Past, present, and future. WIREs Water 2019, 6, e1234. [Google Scholar] [CrossRef]
- Licata, M.; Gennaro, M.C.; Tuttolomondo, T.; Leto, C.; La Bella, S. Research focusing on plant performance in constructed wetlands and agronomic application of treated wastewater—A set of experimental studies in Sicily (Italy). PLoS ONE 2019, 14, e0219445. [Google Scholar] [CrossRef]
- Moazeni, M.; Nikaeen, M.; Hadi, M.; Moghim, S.; Mouhebat, L.; Hatamzadeh, M.; Hassanzadeh, A. Estimation of health risks caused by exposure to enteroviruses from agricultural application of wastewater effluents. Water Res. 2017, 125, 104–113. [Google Scholar] [CrossRef]
- Inyinbor, A.A.; Bello, O.S.; Oluyori, A.P.; Inyinbor, H.E.; Fadiji, A.E. Wastewater conservation and reuse in quality vegetable cultivation: Overview, challenges and future prospects. Food Control. 2019, 98, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.; Stotts, R.; Wutich, A.; White, D.; Maupin, J.; Brewis, A. Motivators for treated wastewater acceptance across developed and developing contexts. Water Sanit. Hyg. Dev. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Ricart, S.; Rico, A.M.; Ribas, A. Risk-yuck factor nexus in reclaimed wastewater for irrigation: Comparing farmers’ attitudes and public perception. Water 2019, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Nan, X.; Lavrnic, S.; Toscano, A. Potential of constructed wetland treatment systems for agricultural wastewater reuse under the EU framework. J. Environ. Manag. 2020, 275, 111219. [Google Scholar] [CrossRef]
- Garfi, M.; Pedescoll, A.; Becares, E.; Hijosa-Valsero, M.; Sidrach-Cardona, R.; Garcia, J. Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain. Sci. Total Environ. 2012, 437, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Resende, J.D.; Nolasco, M.A.; Pacca, S.A. Life cycle assessment and costing of wastewater treatment systems coupled to constructed wetlands. Resour. Conserv. Recycl. 2019, 148, 170–177. [Google Scholar] [CrossRef]
- Almuktar, S.; Abed, S.N.; Scholz, M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environ. Sci. Pollut. Res. 2018, 25, 23595–25623. [Google Scholar] [CrossRef] [Green Version]
- Calheiros, C.S.C.; Pereira, S.I.A.; Franco, A.R.; Castro, P.M.L. Spatial-temporal changes in removal of fecal indicators and diversity of bacterial communities in a constructed wetland with ornamental plants. Appl. Sci. 2021, 11, 3875. [Google Scholar] [CrossRef]
- Lamori, J.G.; Xue, J.; Rachmadi, A.T.; Lopez, G.U.; Kitajima, M.; Gherba, C.P.; Pepper, I.L.; Brooks, J.P.; Sherchan, S. Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands. Environ. Sci. Pollut. Res. 2019, 26, 10188–10197. [Google Scholar] [CrossRef]
- Vymazal, J.; Zhao, Y.; Mander, U. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2021, 169, 106318. [Google Scholar] [CrossRef]
- Dias, S.; Mucha, A.P.; Crespo, R.D.; Rodrigues, P.; Almeida, C.M.R. Livestock wastewater treatment in constructed wetlands for agriculture reuse. Int. J. Env. Res. Public Health 2020, 17, 8592. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, J.; Yang, X.; He, Q.; Ao, L.; Chen, Y. Impact of biochar on greenhouse gas emissions from constructed wetlands under various influent chemical oxygen demand to nitrogen ratios. Bioresour. Technol. 2020, 303, 122908. [Google Scholar] [CrossRef]
- Kochi, L.Y.; Freitas, P.L.; Maranho, L.T.; Juneau, P.; Gomes, M.P. Aquatic microphytes in constructed wetlands: A fight against water pollution. Sustainability 2020, 12, 9202. [Google Scholar] [CrossRef]
- Lavrnic, S.; Nan, X.; Blasioli, S.; Braschi, I.; Anconelli, S.; Toscano, A. Performance of a full scale constructed wetland as ecological practice for agricultural drainage water treatment in Northern Italy. Ecol. Eng. 2020, 154, 105927. [Google Scholar] [CrossRef]
- Guo, L.; Lv, T.; He, K.; Wu, S.; Dong, X.; Dong, R. Removal of organic matter, nitrogen and faecal indicators from diluted anaerobically digested slurry using tidal flow constructed wetlands. Environ. Sci. Pollut. Res. 2017, 24, 5486–5496. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef] [Green Version]
- Avila, C.; Bayona, J.M.; Martin, I.; Salas, J.J.; Garcia, J. Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse. Ecol. Eng. 2015, 80, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manag. 2018, 216, 275–284. [Google Scholar] [CrossRef]
- Khanpae, M.; Karami, E.; Maleksaeidi, H.; Keshavarz, M. Farmers’ attitude towards using treated wastewater for irrigation: The question of sustainability. J. Clean. Prod. 2020, 243, 118541. [Google Scholar] [CrossRef]
- Dou, Y.; Liu, M.; Bakker, M.; Yu, X.; Carsjens, G.J.; De Groot, R.; Liu, J. Influence of human interventions on local perceptions of cultural ecosystems services provided by coastal landscapes: Case study of the Huiwen wetland, southern China. Ecosyst. Serv. 2021, 50, 101311. [Google Scholar] [CrossRef]
- Michetti, M.; Raggi, M.; Guerra, E.; Viaggi, D. Interpreting farmers’ perceptions of risks and benefits concerning wastewater reuse for irrigation: A case study in Emilia-Romagna (Italy). Water 2019, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Saliba, R.; Callieris, R.; D’Agostino, D.; Roma, R.; Scardigno, A. Stakeholders’ attitude towards the reuse of treated wastewater for irrigation in Mediterranean agriculture. Agric. Water Manag. 2018, 204, 60–68. [Google Scholar] [CrossRef]
- Lahlou, F.-Z.; Mackey, H.R.; Al-Ansari, T. Wastewater reuse for livestock feed irrigation as a sustainable practice: A socio-environmental-economic review. J. Clean. Prod. 2021, 294, 126331. [Google Scholar] [CrossRef]
- Deh-Haghi, Z.; Bagheri, A.; Fotourehchi, Z.; Damalas, C.A. Farmers’ acceptance and willingness to pay for using treated wastewater in crop irrigation: A survey in western Iran. Agric. Water Manag. 2020, 239, 106262. [Google Scholar] [CrossRef]
- Garin, P.; Montginoul, M.; Noury, B. Waste water reuse in France—Social perception of an unfamiliar practice. Water Supply 2021, 21, 1913–1926. [Google Scholar] [CrossRef]
- Gardezi, M.; Arbuckle, J.G. Techno-optimism and farmers’ attitudes toward climate change adaptation. Environ. Behav. 2020, 52, 82–105. [Google Scholar] [CrossRef] [Green Version]
- Ado, A.M.; Leshan, J.; Savadogo, P.; Bo, L.; Shah, A.A. Farmers’ awareness and perception of climate change impacts: Case study of Aguie district in Niger. Environ. Dev. Sustain. 2019, 21, 2963–2977. [Google Scholar] [CrossRef]
- Jha, C.K.; Gupta, V. Farmer’s perception and factors determining the adaptation decisions to cope with climate change: An evidence from rural India. Environ. Sustain. Indic. 2021, 10, 100112. [Google Scholar] [CrossRef]
- Jucar River Basin Management Plan 2022–2027. Draft Proposal in Public Consultancy. Available online: https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Paginas/PHC-2022-2027-Plan-Hidrologico-cuenca.aspx (accessed on 16 July 2021). (In Spanish).
- Ricart, S.; Rico-Amorós, A.M. Water for food, water for birds: How to manage conflicting rural-natural interfaces? Deepening on the socio-ecological system of El Hondo Natural Park (Alicante, Spain). J. Rural. Stud. 2021, 86, 24–35. [Google Scholar] [CrossRef]
- Generalitat Valenciana. Memoria de Gestión 2019 Parque Natural El Hondo. Available online: https://parquesnaturales.gva.es/documents/80283153/172903970/Memoria+de+Gesti%C3%B3n+2019/0cdb44f9-46ee-4fb2-9ac1-5fc9fc8b3fd3 (accessed on 26 August 2021). (In Spanish).
- Generalitat Valenciana. Decreto 33/2020, de 6 de Marzo, del Consell, de Ampliacion de la Delimitación de la Zona Especial de Protección Para Las Aves (ZEPA) El Fondo d’Elx-Crevillent. DOCV 8734. Available online: https://noticias.juridicas.com/base_datos/CCAA/662022-d-33-2020-de-6-mar-ca-valenciana-ampliacion-de-la-delimitacion-de-la-zona.html (accessed on 26 August 2021). (In Spanish).
- Ricart, S.; Villar-Navascués, R.; Gil-Guirado, S.; Rico-Amorós, A.M.; Arahuetes, A. How to close the gap of desalinated seawater for agricultural irrigation? Confronting attitudes between managers and farmers in Alicante and Murcia (Spain). Water 2020, 12, 11–32. [Google Scholar] [CrossRef] [Green Version]
- Ricart, S.; Rico-Amorós, A.M. Gobernanza y ecología política en la gestión del regadío multifuncional. Aplicación al corredor agroecológico El Hondo-Los Carrizales (Alicante). Cuad. Geogr. 2019, 103, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Tuel, A.; Eltahir, A.B. Why is the Mediterranean a climate change hot spot? J. Clim. 2020, 33, 5829–5843. [Google Scholar] [CrossRef]
- Michaelides, S.; Karacostas, T.; Sanchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Buhl, J.; et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Abd-Elmabod, S.K.; Muñoz-Rojas, M.; Jordan, A.; Anaya-Romero, M.; Phillips, J.D.; Jones, L.; Zhang, Z.; Pereira, P.; Fleskens, L.; van der Ploeg, M.; et al. Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma 2020, 374, 114453. [Google Scholar] [CrossRef]
- Baiardi, D.; Morana, C. Climate change awareness: Empirical evidence for the European Union. Energ. Econ. 2021, 96, 105163. [Google Scholar] [CrossRef]
- Adshead, D.; Thacker, S.; Fuldauer, L.I.; Hall, J.W. Delivering on the Sustainable Development Goals through long-term infrastructure planning. Glob. Environ. Chang. 2019, 59, 101975. [Google Scholar] [CrossRef]
- Ricart, S.; Villar-Navascués, R.; Hernández-Hernández, M.; Rico-Amorós, A.M.; Olcina-Cantos, J.; Moltó-Mantero, E. Extending natural limits to address water scarcity? The role of non-conventional water fluxes in climate change adaptation capacity: A review. Sustainability 2021, 13, 2473. [Google Scholar] [CrossRef]
- Ricart, S. Water governance and social learning: Approaches, tools, and challenges. In Clean Water and Sanitation. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Arbuckle, J.G.; Prokopy, L.S.; Haigh, T.; Hobbs, J.; Knoot, T.; Knutson, C.; Loy, A.; Mase, A.S.; McGuire, J.; Morton, L.W.; et al. Climate change beliefs, concerns, and attitudes toward adaptation and mitigation among farmers in the Midwestern United States. Clim. Chang. 2013, 117, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, A.; Simane, B.; Bantider, A.; Hassen, A. Determinants in the adoption of climate change adaptation strategies: Evidence from rainfed-dependent smallholder in north-central Ethiopia (Woleka sub-basin). Environ. Dev. Sustain. 2019, 21, 2535–2565. [Google Scholar] [CrossRef]
- Amir, S.; Saqib, Z.; Khan, M.I.; Ali, A.; Khan, M.A.; Bokhari, S.A.; Haq, A. Determinants of farmers’ adaptation to climate change in rain-fed agriculture of Pakistan. Arab. J. Geosci. 2020, 13, 1025. [Google Scholar] [CrossRef]
- Fadina, A.M.R.; Barjolle, D. Farmers’ adaptation strategies to climate change and their implications in the Zou Department of South Benin. Environments 2018, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Adzawla, W.; Kudadze, S.; Mohammed, A.R.; Ibrahim, I.I. Climate perceptions, farmers’ willingness-to-insure farms and resilience to climate change in Northern region, Ghana. Environ. Dev. 2019, 32, 100466. [Google Scholar] [CrossRef]
- Akhtar, R.; Masud, M.M.; Afroz, R. Perception of climate change and the adaptation strategies and capacities of the rice farmers in Kedah, Malaysia. Environ. Urban 2019, 10, 99–115. [Google Scholar] [CrossRef]
- Afriyie-Kraft, L.; Zabel, A.; Damnyag, L. Adaptation strategies of Ghanaian cocoa farmers under a changing climate. For. Policy Econ. 2020, 113, 102115. [Google Scholar] [CrossRef]
- Abid, M.; Schneider, U.A.; Scheffran, J. Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan. J. Rural Stud. 2016, 47, 254–266. [Google Scholar] [CrossRef]
- Zhang, C.; Jin, J.; Kuang, F.; Ning, J.; Wan, X.; Guan, T. Farmers’ perception of climate change and adaptation behavior in Wushen Banner, China. Environ. Sci. Poll. Res. 2020, 27, 26484–26494. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Abbas, A.; Naqvi, S.A.A.; Rizwan, M.; Samie, A.; Ahmed, U.I. Drivers of farm households’ perceived risk sources and factors affecting uptake of mitigation strategies in Punjab Pakistan: Implications for sustainable agriculture. Sustainability 2020, 12, 9895. [Google Scholar] [CrossRef]
- Marie, M.; Yirga, F.; Haile, M.; Tquabo, F. Farmers’ choices and factors affecting adoption of climate change adaptation strategies: Evidence from northwestern Ethiopia. Heliyon 2020, 6, e03867. [Google Scholar] [CrossRef]
- Agyei, F.K. Sustainability of climate change adaptation strategies: Experiences from Eastern Ghana. Environ. Manag. Sustain. Dev. 2016, 5, 84. [Google Scholar] [CrossRef]
- Greenland-Smith, S.; Brazner, J.; Sherren, K. Farmer perceptions of wetlands and waterbodies: Using social metrics as an alternative to ecosystem service valuation. Ecol. Econ. 2016, 126, 58–69. [Google Scholar] [CrossRef]
- Oza, T.M.; Lane, R.; Adame, M.F.; Reef, R. Coastal wetland management in the Great Barrier Reef: Farmer perceptions. Geogr. Res. 2021. Early view. [Google Scholar] [CrossRef]
- Ricart, S.; Arahuetes, A.; Villar, R.; Rico-Amorós, A.M.; Berenguer, J. More water exchange, less water scarcity? Driving factors from conventional and reclaimed water swap between agricultural and urban-tourism activities in Alicante, Spain. Urban Water J. 2020, 16, 677–686. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.-H. Planning for a sustainable desert city: The potential water buffering capacity of urban green infrastructure. Landsc. Urban Plan. 2017, 167, 339–347. [Google Scholar] [CrossRef]
Irrigated Area (ha) | Irrigators (n) | Farm Size (ha, Mean) | Main Crops | Irrigation System | Water Sources | |
---|---|---|---|---|---|---|
Riegos de Levante | ≈24,000 | ≈22,000/800 * | ≥1 | Fruits, vegetables | Drip (45%) Flood (55%) | Tajo-Segura water transfer Segura River water rights |
Carrizales | ≈1300 | ≈400 | ≈1 | Fruits, vegetables, cereals | Flood (99%) Drip (1%) | Segura River Surplus waters from El Hondo and Santa Pola |
Variable | Definition | Mean | STD |
---|---|---|---|
Age | If age of the farmer is between: less than 40 years 1 (1.7%), 41–50 years 2 (18.6%), 51–60 years 3 (25.4%), more than 60 years 4 (27.7%), retired 5 (26.6%) | 3.59 | 1.12 |
Education | If the farmer is: illiterate 1 (9.6%), primary school graduate 2 (29.9%), secondary-high school graduate 3 (17.5%), professional studies 4 (30.5%), higher studies 5 (12.4%) | 3.06 | 1.22 |
Farming experience | If the farmers experience is: less than 5 years 1 (2.8%), 5–15 years 2 (19.2%), 16–29 years 3 (23.7%), 30–45 years 4 (26.6%), more than 45 years 5 (27.7%) | 3.57 | 1.17 |
Succession | If it is expected that someone (family member or outsider) will take care of the activity once the farmer was retired 1 (32.2%), if not 0 (42.4%) and unknown (25.4%) | 0.83 | 0.81 |
Union farm membership | If the farmer is member of a union farm 1 (50.8%), if not 0 (49.2%) | 0.51 | 0.50 |
Beneficiary of agricultural subsidy (e.g., CAP) | If the farmer receives any agricultural subsidy 1 (29.9%), if not 0 (70.1%) | 0.30 | 0.46 |
Farm size | If the farmer’s activity is developed in: Less than 1 ha 1 (16.9%), 1–5 ha 2 (45.8%), 6–10 ha 3 (23.2%), 11–20 ha 4 (6.2%), more than 20 ha 5 (7.9%) | 2.42 | 1.09 |
Main crop | If the farmer mainly produces: citrus 1 (27.7%), medlar 2 (1.1%), nuts-almonds 3 (3.4%), vegetables 4 (19.2%), oilseed-olives 5 (2.8%), ornamentals 6 (3.4%), pomegranate 7 (11.9%), melon 8 (9.6%), mixed 9 (20.9%) | 4.99 | 3.10 |
Irrigation method | If the farmer applies: surface irrigation 1 (63.3%), drip irrigation 2 (20.9%), sprinkler irrigation 3 (0%), mixed methods 4 (15.8%) | 1.68 | 1.08 |
Annual water consumption | If the farmer consumes (year): less than 1000 m3 1 (15.3%), 1001–2000 m3 2 (25.4%), 2001–5000 m3 3 (27.7%), 5001–10,000 m3 4 (17.5%), more than 10,000 m3 5 (9.6%), no data 0 (4.5%) | 2.94 | 1.36 |
Treated wastewater use | If the farmer uses treated wastewater 1 (51.4%), if not 0 (48.6%) | 0.51 | 0.50 |
Treated wastewater quality standards | If the farmer considers that treated wastewater quality standards are good 1 (31.1%), bad 0 (24.3%), or unknown 2 (44.6%) | 1.20 | 0.81 |
Variable | Mean | STD |
---|---|---|
Climate change is occurring | 1.19 | 0.43 |
Climate change is anthropogenic | 1.31 | 0.52 |
Climate change poses agriculture at risk | 1.20 | 0.49 |
Irrigated crops are exposed to climate change | 1.11 | 0.37 |
Awareness of warming | 1.02 | 0.25 |
Awareness of water shortage | 1.07 | 0.33 |
Awareness of extreme events (drought, floods, etc.) | 1.09 | 0.81 |
Variable | OCC | ANT | RISK | IRR | WAR | WAT | EXT |
---|---|---|---|---|---|---|---|
Age | 0.230 ** | 0.100 | 0.112 | 0.086 | −0.219 ** | −0.047 | −0.096 |
Education | −0.216 ** | −0.048 | −0.040 | −0.180 * | 0.108 | 0.074 | 0.086 |
Farming experience | 0.126 | 0.067 | 0.005 | 0.074 | −0.170 * | −0.057 | −0.115 |
Succession intention | −0.055 | −0.011 | −0.141 | −0.088 | 0.099 | 0.022 | −0.020 |
Union farm membership | −0.152 * | −0.075 | −0.122 | −0.098 | −0.160 * | −0.141 | −0.179 * |
Subsidy beneficiary | −0.111 | −0.075 | −0.120 | −0.101 | −0.094 | −0.210 ** | 0.003 |
Farm size | −0.205 ** | −0.079 | −0.140 | −0.035 | −0.131 | −0.143 | −0.018 |
Main crop | −0.160 * | −0.122 | −0.007 | −0.044 | −0.139 | −0.177 * | −0.063 |
Irrigation method | 0.030 | 0.092 | 0.057 | 0.105 | −0.001 | 0.060 | −0.025 |
Annual water consumption | −0.001 | −0.008 | −0.119 | 0.070 | −0.087 | −0.106 | −0.037 |
Variable | Mean | STD |
---|---|---|
Change in timing, intensity, or frequency of rainfall events | 1.02 | 0.39 |
Warmer temperatures and heatwaves | 1.00 | 0.26 |
Increased frequency or intensity of droughts | 1.01 | 0.24 |
Less reliable water supply—water scarcity | 1.03 | 0.33 |
Change in rate of land erosion | 1.25 | 0.74 |
Decreased plant growth | 0.97 | 0.68 |
New diseases or pests | 1.14 | 0.58 |
Increase in weeds or invasive species | 1.13 | 0.80 |
Variable | RAIN | WARM | DROU | WAT | EROS | PLAN | DISE | WEED |
---|---|---|---|---|---|---|---|---|
Age | −0.036 | −0.136 | 0.018 | −0.053 | 0.072 | 0.007 | 0.104 | 0.003 |
Education | 0.033 | 0.160 * | 0.154 * | 0.064 | −0.111 | −0.046 | −0.060 | 0.038 |
Farming experience | −0.009 | −0.187 * | −0.064 | −0.079 | −0.018 | −0.066 | −0.090 | −0.098 |
Succession intention | 0.009 | 0.054 | 0.010 | 0.126 | −0.070 | −0.009 | 0.001 | 0.034 |
Union farm membership | 0.043 | −0.130 | −0.144 | −0.036 | −0.029 | −0.075 | −0.043 | 0.033 |
Subsidy beneficiary | −0.028 | −0.047 | −0.031 | −0.140 | −0.091 | 0.027 | −0.047 | 0.064 |
Farm size | −0.030 | −0.160 * | −0.062 | −0.133 | −0.112 | −0.191 * | −0.056 | −0.155 * |
Main crop | −0.009 | −0.182 * | −0.054 | −0.256 ** | −0.044 | −0.108 | 0.032 | 0.044 |
Irrigation method | 0.040 | 0.040 | 0.036 | 0.045 | 0.044 | −0.051 | −0.022 | −0.031 |
Annual water consumption | −0.159 * | −0.096 | −0.016 | −0.096 | −0.166 * | −0.193 ** | 0.003 | −0.198 ** |
Variable | Mean | STD |
---|---|---|
Soil conservation techniques | 0.76 | 1.21 |
Use of treated wastewater | 0.68 | 0.47 |
Invest in water technologies | 0.51 | 0.73 |
Geoengineering | 0.19 | 0.39 |
Agroforestry practices | 0.58 | 1.45 |
Application of agrochemicals | 0.31 | 0.46 |
Agricultural insurance | 0.46 | 0.50 |
Variable | SOIL | WASTE | TECH | ENGI | AGROF | CHEM | INS |
---|---|---|---|---|---|---|---|
Age | −0.196 ** | −0.066 | −0.089 | −0.031 | −0.098 | 0.139 | −0.103 |
Education | 0.110 | 0.154 * | −0.004 | −0.144 | −0.008 | −0.155 * | 0.064 |
Farming experience | −0.006 | −0.053 | 0.064 | 0.064 | −0.061 | 0.195 ** | −0.027 |
Succession intention | 0.033 | 0.128 | 0.031 | −0.007 | 0.045 | 0.050 | 0.139 |
Union farm membership | 0.139 | −0.061 | 0.128 | −0.023 | −0.054 | −0.048 | 0.211 ** |
Subsidy beneficiary | 0.091 | −0.112 | 0.068 | 0.004 | 0.132 | 0.041 | 0.159 * |
Farm size | 0.130 | −0.003 | 0.163 * | 0.080 | 0.140 | 0.131 | 0.336 ** |
Main crop | 0.078 | −0.068 | −0.066 | −0.069 | −0.086 | −0.007 | 0.024 |
Irrigation method | 0.205 ** | −0.019 | 0.219 ** | −0.061 | −0.046 | −0.007 | 0.094 |
Annual water consumption | 0.009 | −0.019 | 0.178 * | 0.138 | 0.080 | 0.182 * | 0.257 ** |
Variable | Mean | STD |
---|---|---|
Climate change skepticism | 0.79 | 0.86 |
Low risk perception | 1.02 | 0.72 |
Shock towards change | 1.17 | 0.68 |
Lack of information and data | 1.24 | 0.64 |
High cost of investment and changing market | 1.43 | 0.57 |
Lack of government support | 1.21 | 0.55 |
Regulations and rules are too complicated | 1.58 | 0.60 |
Lack of cooperation between stakeholders | 1.25 | 0.55 |
Variable | AGE | EDU | EXP | SUC | MEM | SUB | SIZE | CROP | IRR | WAT |
---|---|---|---|---|---|---|---|---|---|---|
Treated wastewater use | 0.015 | 0.022 | 0.078 | 0.146 | 0.084 | 0.093 | 0.140 | 0.247 ** | 0.008 | 0.076 |
Treated wastewater quality standards | 0.018 | −0.053 | −0.015 | −0.147 | −0.060 | 0.003 | −0.124 | −0195 ** | 0.042 | −0.015 |
Variable | AGE | EDU | EXP | SUC | MEM | SUB | SIZE | CROP | IRR | WAT |
---|---|---|---|---|---|---|---|---|---|---|
CWs (invest in water technologies) | −0.089 | −0.004 | 0.064 | 0.031 | 0.128 | 0.068 | 0.163 * | −0.066 | 0.219 * | 0.178 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricart, S.; Rico-Amorós, A.M. Constructed Wetlands to Face Water Scarcity and Water Pollution Risks: Learning from Farmers’ Perception in Alicante, Spain. Water 2021, 13, 2431. https://doi.org/10.3390/w13172431
Ricart S, Rico-Amorós AM. Constructed Wetlands to Face Water Scarcity and Water Pollution Risks: Learning from Farmers’ Perception in Alicante, Spain. Water. 2021; 13(17):2431. https://doi.org/10.3390/w13172431
Chicago/Turabian StyleRicart, Sandra, and Antonio M. Rico-Amorós. 2021. "Constructed Wetlands to Face Water Scarcity and Water Pollution Risks: Learning from Farmers’ Perception in Alicante, Spain" Water 13, no. 17: 2431. https://doi.org/10.3390/w13172431
APA StyleRicart, S., & Rico-Amorós, A. M. (2021). Constructed Wetlands to Face Water Scarcity and Water Pollution Risks: Learning from Farmers’ Perception in Alicante, Spain. Water, 13(17), 2431. https://doi.org/10.3390/w13172431