Suitability of the Decentralised Wastewater Treatment Effluent for Agricultural Use: Decision Support System Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Decision Support System
2.2. Model Parameterisation
2.2.1. Study Sites
2.2.2. DEWATS Effluent Characteristics
2.2.3. Soil Types
2.2.4. Crop Type and Management Practices
2.3. DSS Model Simulations
2.4. Data Analysis
3. Results
3.1. The AF Effluent Fitness for Use
3.2. Effects on Soil Quality
3.3. Crop Yield and Quality Fitness for Use
3.4. Contribution to N and P Removal
3.5. Trace Elements
3.6. Irrigation Equipment
3.7. Microbial Contamination
4. Discussion
4.1. The AF Effluent Fitness for Use
4.2. Effects on Soil Quality
4.3. Crop Yield and Quality Fitness for Use
4.4. Contribution to N and P Removal
4.5. Trace Elements
4.6. Irrigation Equipment
4.7. Microbial Contamination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Source of Variation | D.f. | N | P | K | ||
---|---|---|---|---|---|---|
Climatic region | 3 | 217,614 | *** | 1954.6 | *** | 36,198 |
Cropping system | 1 | 145,034 | ** | 14,062 | *** | 1778 |
Irrigation system | 1 | 1695 | 98.3 | 42 | ||
Soil type | 2 | 13,290 | 3183.9 | *** | 968 | |
Climatic region * Cropping system | 3 | 100,965 | *** | 1891.1 | *** | 185 |
Climatic region * Irrigation system | 3 | 3499 | 81.2 | 87 | ||
Cropping system * Irrigation system | 1 | 1878 | 0 | 210 | ||
Climatic region * Soil type | 6 | 6160 | 443.3 | 352 | ||
Cropping system * Soil type | 2 | 17,984 | 231.9 | 125 | ||
Irrigation system * Soil type | 2 | 4612 | 65.7 | 103 | ||
Climatic region * Cropping system * Irrigation system | 3 | 929 | 75.4 | 221 | ||
Climatic region * Cropping system * Soil type | 6 | 9584 | 241.7 | 103 | ||
Climatic region * Irrigation system * Soil type | 6 | 2570 | 21.6 | 94 | ||
Cropping system * Irrigation system * Soil type | 2 | 316 | 22.1 | 59 | ||
Climatic region * Cropping system * Irrigation system * Soil type | 6 | 707 | 31.5 | 107 | ||
Residual | 96 | 13,027 | 317.7 | 659 | ||
Total | 143 |
References
- Parliamentary Monitoring Group. Urbanisation. Available online: https://pmg.org.za/page/Urbanisation (accessed on 11 July 2021).
- Mokoele, J.; Sebola, M. Unplanned urbanisation in South African cities: The emergence of urban environmental problems. In Proceedings of the 7th International Conference on Business and Economic Development (ICBED), New York, NY, USA, 9–10 April 2018; pp. 574–584. [Google Scholar]
- Gutterer, B.; Sasse, L.; Panzerbieter, T.; Reckerzügel, T. Decentralised Wastewater Treatment Systems (DEWATS) and Sanitation in Developing Countries; Water, Engineering and Development Centre (WEDC): Leicestershire, UK, 2009; ISBN 9781843801283. [Google Scholar]
- Magwaza, S.T.; Magwaza, L.S.; Odindo, A.O.; Mditshwa, A.; Buckley, C. Evaluating the feasibility of human excreta-derived material for the production of hydroponically grown tomato plants—Part II: Growth and yield. Agric. Water Manag. 2020, 234, 106115. [Google Scholar] [CrossRef]
- Bame, I.B.; Hughes, J.C.; Titshall, L.W.; Buckley, C.A. Leachate characteristics as influenced by application of anaerobic baffled reactor effluent to three soils: A soil column study. Chemosphere 2013, 93, 2171–2179. [Google Scholar] [CrossRef]
- Busari, T.; Senzanje, A.; Odindo, A.; Buckley, C. Effect of intercropping madumbe [Colocasia esculenta) and rice (Oryza sativa L.) on yield and land productivity under different irrigation water management techniques with effluent water. J. Water SA 2020, 46, 205–212. [Google Scholar]
- Bame, I.B.; Hughes, J.C.; Titshall, L.W.; Buckley, C.A. The effect of irrigation with anaerobic baffled reactor effluent on nutrient availability, soil properties and maize growth. Agric. Water Manag. 2014, 134, 50–59. [Google Scholar] [CrossRef]
- Abdel-Aziz, R. Impact of Treated Wastewater Irrigation on Soil Chemical Properties and Crop Productivity. Int. J. Water Resour. Arid Environ. 2015, 4, 30–36. [Google Scholar]
- Jaramillo, F.M.; Restrepo, I. Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organisation. Wastewater Treatment and Use in Agriculture; Volume Irrigation and Drainage Paper 47; FAO, Ed.; FAO: Rome, Italy, 1992; ISBN 92-5-103135-5. [Google Scholar]
- Department of Water and Sanitation. South African Water Quality Guidelines, 2nd ed.; DWS (Formerly DWAF): Pretoria, South Africa, 1996; Volume 4, ISBN 0-7988-5342-5.
- du Plessis, M.; Annandale, J.G.; Benade, N.; Van der Laan, M.; Jooste, S.; du Preez, C.; Barnard, J.; Rodda, N.; Dabrowski, J.; Genthe, B.; et al. Risk Based, Site-Specific, Irrigation Water Quality Guidelines. Volume 1: Description of Decision Support System; Water Research Commission (WRC): Pretoria, South Africa, 2017; ISBN 978-1-4312-0910-1. [Google Scholar]
- Department of Water and Sanitation. Revision of General Authorisations in Terms of Section 39 of the National Water Act. 1998. 2013. Available online: https://www.greencape.co.za/assets/Water-Sector-Desk-Content/DWS-Revision-of-general-authorisation-in-terms-of-the-National-Water-Act-notice-169-2013.pdf (accessed on 6 September 2021).
- Food and Agriculture Organisation. Water Quality for Agriculture; FAO, Ed.; FAO: Rome, Italy, 1985; ISBN 92-5-102263-1. [Google Scholar]
- World Health Organisation. Guidelines for the Safe Use of Wastewater and Excreta in Agriculture and Aquaculture; WHO: Genever, Switzerland, 1989; ISBN 92-4-152248-9. [Google Scholar]
- World Health Organisation. Guidelines for the Safe Use of Wastewater, Excreta and Greywater: Exctreta and Greywater Use in Agricuture; WHO: Geneva, Switzerland, 2006; Volume 4, p. 191. ISBN 92-4-154685-9. [Google Scholar]
- United States Environmental Protection Agency. Guidelines for Water Reuse; EPA/600/R-12/618; United States Environmental Protection Agency: Washington, DC, USA, 2012.
- Fessehazion, M.K.; Annandale, J.G.; Everson, C.S.; Stirzaker, R.J.; Tesfamariam, E.H. Evaluating of soil water balance (SWB-Sci) model for water and nitrogen interactions in pasture: Example using annual ryegrass. Agric. Water Manag. 2014, 146, 238–248. [Google Scholar] [CrossRef]
- Kalra, Y. Handbook of Reference Methods for Plant Analysis; CRC Press: New York, NY, USA, 1997; p. 320. ISBN 9781420049398. [Google Scholar]
- Andersson, K.; Rosemarin, A.; Lamizana, B.; Kvarnström, E.; McConville, J.; Seidu, R.; Dickin, S.; Trimmer, C. Sanitation, Wastewater Management and Sustainability from Waste Disposal to Resource Recovery; United Nations Environment Programme and Stockholm Environment Institute: Nairobi, Kenya; Stockholm, Sweden, 2016; ISBN 978-92-807-3488-1. [Google Scholar]
- Lal, K.; Minhas, P.S.; Yadav, R.K. Long-term impact of wastewater irrigation and nutrient rates II. Nutrient balance, nitrate leaching and soil properties under peri-urban cropping systems. Agric. Water Manag. 2015, 156, 110–117. [Google Scholar] [CrossRef]
- Sharpley, A. Managing agricultural phosphorus to minimize water quality impacts. Sci. Agric. 2016, 73, 1–8. [Google Scholar] [CrossRef]
- Conradie, D.C.U. South Africa’s Climatic Zones: Today, Tomorrow. In Proceedings of the International Green Building Conference and Exhibition, Sandton, South Africa, 25–26 July 2012. [Google Scholar]
- VSN International. Genstat for Windows. Available online: www.Genstat.co.uk (accessed on 3 April 2021).
- Erel, R.; Eppel, A.; Yermiyahu, U.; Ben-Gal, A.; Levy, G.; Zipori, I.; Schaumann, G.E.; Mayer, O.; Dag, A. Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance. Agric. Water Manag. 2019, 213, 324–335. [Google Scholar] [CrossRef]
- Echeverría, I.; Machicado, L.; Saavedra, O.; Escalera, R.; Heredia, G.; Montoya, R. Domestic Wastewater Treated by Anaerobic Baffled Reactors and Gravel Filters as a Resource to Be Used in Agriculture. Rev. Investig. Desarro. 2019, 19, 63–72. [Google Scholar] [CrossRef]
- Kiziloglu, F.M.; Turan, M.; Sahin, U.; Angin, I.; Anapali, O.; Okuroglu, M. Effects of wastewater irrigation on soil and cabbage-plant (brassica olerecea var. capitate cv. yalova-1) chemical properties. J. Plant Nutr. Soil Sci. 2007, 170, 166–172. [Google Scholar] [CrossRef]
- Sahin, U.; Ekinci, M.; Ors, S.; Turan, M.; Yildiz, S.; Yildirim, E. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci. Hortic. 2018, 240, 196–204. [Google Scholar] [CrossRef]
- Masa, R.; Khan, Z.; Chowa, G. Youth food insecurity in Ghana and South Africa: Prevalence, socioeconomic correlates, and moderation effect of gender. Child. Youth Serv. Rev. 2020, 116, 105180. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Hashem, M.S.; Qi, X. Treated Wastewater Irrigation—A Review. Water 2021, 13, 1527. [Google Scholar] [CrossRef]
- FAO. Users Manual for Irrigation with Treated Wastewater; TC/D/Y5009F/1/10.03/100; Food and Agriculture Organisation Regional Office near East: Cairo, Egypt, 2003. [Google Scholar]
- Musazura, W.; Odindo, A.O.; Tesfamariam, E.H.; Hughes, J.C.; Buckley, C.A. Nitrogen and phosphorus fluxes in three soils fertigated with decentralised wastewater treatment effluent to field capacity. J. Water Reuse Desalination 2019, 9, 142–151. [Google Scholar] [CrossRef]
- Levy, G.; Fine, P.; Bar-Tal, A. Treated Wastewater in Agriculture: Use and Impacts on the Soil Environments and Crops; Wiley: New York, NY, USA, 2011; p. 464. ISBN 9781444322514. [Google Scholar]
- Dirwai, T.L.; Senzanje, A.; Mabhaudhi, T.; Buckley, C.A. Moistube irrigation fouling due to anaerobic filtered effluent (AF) and horizontal flow constructed wetland (HFCW) effluent. Sci. Rep. 2021, 11, 7124. [Google Scholar] [CrossRef]
- Farhadkhani, M.; Nikaeen, M.; Yadegarfar, G.; Hatamzadeh, M.; Pourmohammadbagher, H.; Sahbaei, Z.; Rahmani, H.R. Effects of irrigation with secondary treated wastewater on physicochemical and microbial properties of soil and produce safety in a semi-arid area. Water Res. 2018, 144, 356–364. [Google Scholar] [CrossRef]
- De Sanctis, M.; Del Moro, G.; Levantesi, C.; Luprano, M.L.; Di Iaconi, C. Integration of an innovative biological treatment with physical or chemical disinfection for wastewater reuse. Sci. Total Environ. 2016, 543, 206–213. [Google Scholar] [CrossRef]
- Musazura, W. Suitability of the Decentralised Wastewater Treatment effluent for agricultural use: Decision Support System approach. Mendeley Data 2021. [Google Scholar] [CrossRef]
Climatic Region | Place | Coordinates | Altitude (masl) | Description |
---|---|---|---|---|
1 | Pretoria | −25.7500 S; 28.26670 E | 1360 | Cwb; Warm temperate, Dry winter, Warm summer |
Roodeplaat | −25.6000 S; 28.35000 E | 1240 | ||
Servontein | −29.7500 S; 30.13333 E | 1440 | ||
2 | Messina | −22.2333 S; 29.91667 E | 500 | Bsh; Steppe, Hot Arid |
Pieterzburg | −23.8667 S; 29.45000 E | 1250 | ||
Zebediela | −22.233300 S, 29.916670 E | 500 | ||
3 | Douglas | −29.0500 S; 23.76667 E | 1024 | Bwh; Desert, Hot Arid |
Taung | −27.5500 S; 24.76667 E | 1110 | ||
Upington | −28.4500 S; 21.25000 E | 775 | ||
4 | Citrusdale | −32.5667 S; 18.98330 E | 234 | Bsk; Steppe, Cold Arid |
Ladysmith | −33.4833 S; 21.03333 E | 384 | ||
Riversdale | −34.100000 S; 21.266700 E | 104 |
Sandy Loam | Coarse Sand | Clay | |
---|---|---|---|
Initial salt content | Low | Low | Low |
Profile available water (mm) | 120 | 40 | 150 |
Volumetric water content at field capacity (m m−1) | 0.22 | 0.08 | 0.33 |
Volumetric water content at permanent wilting point (m m−1) | 0.1 | 0.04 | 0.18 |
Bulk density (g cm−3) | 1.4 | 1.7 | 1.2 |
Fitness for Use | Range | |
---|---|---|
Crop yield and quality | ||
Root zone effects (Relative crop yield in %) | Ideal | 90–100% |
Acceptable | 80–90% | |
Tolerable | 70–80% | |
Unacceptable | <70% | |
Leaf scorching when wetted (Degree of leaf scorching) | Ideal | None |
Acceptable | Slight | |
Tolerable | Moderate | |
Unacceptable | Severe | |
Contribution to NPK removal by crop | Ideal | 0–10% |
Acceptable | 10–30% | |
Tolerable | 30–50% | |
Unacceptable | >50% | |
Microbial contamination (Excess infections per 1000 persons per year) | Ideal | <1 |
Acceptable | 1–3 | |
Tolerable | 3–10 | |
Unacceptable | >10 | |
Soil quality | ||
Soil profile salinity (mS/m) | Ideal | 0–200 |
Acceptable | 200–400 | |
Tolerable | 400–800 | |
Unacceptable | >800 | |
Soil permeability | Ideal | None |
Acceptable | Slight | |
Tolerable | Moderate | |
Unacceptable | Severe | |
Oxidizable carbon loading (kg/ha per month) | Ideal | 0–400 |
Acceptable | 400–1000 | |
Tolerable | 1000–1600 | |
Unacceptable | >1600 | |
Trace element accumulation (No of years to reach soil accumulation threshold) | Ideal | >200 |
Acceptable | 150–200 | |
Tolerable | 100–150 | |
Unacceptable | <100 | |
Irrigation equipment | ||
Corrosion of irrigation equipment (Langelier Index) | Ideal | 0 to −0.5 |
Acceptable | −0.5 to −1.0 | |
Tolerable | −1.0 to −2.0 | |
Unacceptable | <−2.0 | |
Scaling (Langelier Index) | Ideal | 0 to +0.5 |
Acceptable | +0.5 to +1.0 | |
Tolerable | +1.0 to +2.0 | |
Unacceptable | >+2.0 |
Constituent | Parameter | Unit | Value | |
---|---|---|---|---|
Major constituents | Calcium | mg L−1 | 25 | |
Magnesium | mg L−1 | 20 | ||
Sodium | mg L−1 | 55 | ||
pH | - | 7.5 | ||
Electrical conductivity | mS m−1 | 94 | ||
SAR | (mol L−1)0.5 | 2 | ||
Bicarbonate | mg L−1 | 231 | ||
Chloride | mg L−1 | 49 | ||
Sulphate | mg L−1 | 39 | ||
Total dissolved solids (TDS) | mg L−1 | 419 | ||
Suspended solids (SS) | mg L−1 | 59 | ||
Charge balance error | - | −5.30% * | ||
TDS/EC | - | 4.46 # | ||
Biological constituents | E. coli | counts/100 mL | 4.00 × 104 | |
Chemical oxygen demand | mg L−1 | 303 | ||
Nutrients | Total inorganic nitrogen (N) | mg L−1 | 60 | |
Total inorganic phosphorus (P) | mg L−1 | 9 | ||
Total inorganic potassium (K) | mg L−1 | 16 | ||
Trace Element | Water (mg/L) | Soil (mg/kg) | ||
Trace elements | Aluminium | 0 | 0 | |
Arsenic | 0 | 0 | ||
Beryllium | 0 | 0 | ||
Boron | 0 | 0 | ||
Cadmium | 0 | 0 | ||
Chromium | 0 | 0 | ||
Cobalt | 0 | 0 | ||
Fluoride | 0 | 0 | ||
Iron | 0 | 0 | ||
Lead | 0 | 0 | ||
Lithium | 0 | 0 | ||
Manganese | 0 | 0 | ||
Mercury | 0 | 0 | ||
Molybdenum | 0 | 0 | ||
Nickel | 0 | 0 | ||
Selenium | 0 | 0 | ||
Uranium | 0 | 0 | ||
Vanadium | 0 | 0 | ||
Zinc | 0 | 0 |
Irrigation System | Soil Type | Climatic Region | Soil Profile Salinity (EC) | Soil Permeability | Soil Oxidizable C Loading | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil Hydraulic Conductivity | Soil Infiltrability | |||||||||||||||||
a | b | c | d | a | b | c | d | a | b | c | d | a | b | c | d | |||
Overhead | C | CR 1 | 100 | 0 | 0 | 0 | 49 | 15 | 14 | 23 | 82 | 19 | 0 | 0 | 73 | 27 | 0 | 0 |
CR 2 | 100 | 0 | 0 | 0 | 75 | 9 | 7 | 9 | 89 | 12 | 0 | 0 | 55 | 46 | 0 | 0 | ||
CR 3 | 100 | 0 | 0 | 0 | 91 | 5 | 3 | 2 | 95 | 5 | 0 | 0 | 34 | 66 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 74 | 12 | 8 | 6 | 83 | 17 | 0 | 0 | 65 | 35 | 0 | 0 | ||
CS | CR 1 | 100 | 0 | 0 | 0 | 58 | 10 | 13 | 19 | 85 | 15 | 0 | 0 | 80 | 21 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 75 | 7 | 8 | 10 | 91 | 9 | 0 | 0 | 68 | 33 | 0 | 0 | ||
CR 3 | 100 | 0 | 0 | 0 | 84 | 6 | 5 | 6 | 95 | 6 | 0 | 0 | 53 | 48 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 69 | 10 | 10 | 12 | 82 | 18 | 0 | 0 | 67 | 33 | 0 | 0 | ||
SL | CR 1 | 100 | 0 | 0 | 0 | 51 | 12 | 12 | 25 | 83 | 17 | 0 | 0 | 80 | 20 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 75 | 8 | 7 | 10 | 90 | 10 | 0 | 0 | 61 | 39 | 0 | 0 | ||
CR 3 | 100 | 0 | 0 | 0 | 90 | 5 | 3 | 3 | 95 | 5 | 0 | 0 | 42 | 58 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 68 | 11 | 10 | 12 | 85 | 15 | 0 | 0 | 73 | 27 | 0 | 0 | ||
Surface | C | CR 1 | 100 | 0 | 0 | 0 | 49 | 15 | 15 | 25 | 58 | 42 | 0 | 0 | 73 | 27 | 0 | 0 |
CR 2 | 100 | 0 | 0 | 0 | 75 | 9 | 6 | 6 | 58 | 42 | 0 | 0 | 53 | 47 | 0 | 0 | ||
CR 3 | 100 | 0 | 0 | 0 | 91 | 5 | 3 | 2 | 67 | 33 | 0 | 0 | 34 | 66 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 74 | 12 | 8 | 7 | 52 | 48 | 0 | 0 | 65 | 35 | 0 | 0 | ||
CS | CR 1 | 100 | 0 | 0 | 0 | 58 | 10 | 13 | 21 | 59 | 41 | 0 | 0 | 81 | 19 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 75 | 7 | 8 | 8 | 58 | 42 | 0 | 0 | 65 | 35 | 0 | 0 | ||
CR 3 | 100 | 0 | 0 | 0 | 84 | 5 | 4 | 3 | 67 | 33 | 0 | 0 | 50 | 51 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 69 | 11 | 10 | 12 | 44 | 56 | 0 | 0 | 75 | 25 | 0 | 0 | ||
SL | CR 1 | 100 | 0 | 0 | 0 | 51 | 10 | 11 | 23 | 66 | 34 | 0 | 0 | 84 | 15 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 75 | 8 | 7 | 8 | 58 | 37 | 0 | 0 | 61 | 39 | 0 | 0 | ||
CR 3 | 100 | 0 | 0 | 0 | 90 | 5 | 3 | 3 | 67 | 34 | 0 | 0 | 35 | 49 | 1 | 15 | ||
CR 4 | 100 | 0 | 0 | 0 | 68 | 12 | 10 | 9 | 44 | 56 | 0 | 0 | 74 | 26 | 0 | 0 |
(A) Maize | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irrigation System | Soil Type | Climatic Region | Crop Root Zone Effects | Leaf Scorching When Wetted | ||||||||||||||||||||||
Cl− | B | EC | Na+ | Cl− | Na+ | |||||||||||||||||||||
a | b | c | d | a | b | c | d | a | b | c | d | a | b | c | d | a | b | c | d | a | b | c | d | |||
Overhead | C | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 99 | 1 | 0 | 0 | 95 | 4 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 86 | 7 | 4 | 3 | 77 | 8 | 3 | 12 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 69 | 11 | 7 | 14 | 100 | 0 | 0 | 0 | 33 | 6 | 7 | 55 | 27 | 4 | 4 | 66 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 91 | 7 | 2 | 0 | 75 | 11 | 4 | 11 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CS | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 99 | 1 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 91 | 5 | 2 | 3 | 88 | 2 | 2 | 9 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 95 | 3 | 2 | 1 | 100 | 0 | 0 | 0 | 81 | 7 | 3 | 9 | 66 | 11 | 9 | 15 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 99 | 1 | 0 | 0 | 94 | 5 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
SL | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 95 | 3 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 81 | 11 | 4 | 5 | 68 | 7 | 7 | 18 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 76 | 10 | 5 | 9 | 100 | 0 | 0 | 0 | 34 | 14 | 9 | 43 | 21 | 7 | 9 | 63 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 94 | 6 | 0 | 0 | 75 | 12 | 6 | 6 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
Surface | C | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 89 | 6 | 2 | 3 | 84 | 5 | 2 | 9 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
CR 2 | 99 | 1 | 0 | 0 | 100 | 0 | 0 | 0 | 71 | 15 | 8 | 6 | 58 | 11 | 7 | 24 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 76 | 11 | 5 | 9 | 100 | 0 | 0 | 0 | 45 | 13 | 6 | 36 | 20 | 11 | 3 | 66 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 95 | 5 | 0 | 0 | 83 | 8 | 3 | 6 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CS | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 90 | 5 | 2 | 3 | 89 | 2 | 1 | 9 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 99 | 1 | 1 | 0 | 96 | 1 | 2 | 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 99 | 1 | 0 | 0 | 100 | 0 | 0 | 0 | 92 | 8 | 0 | 0 | 73 | 14 | 8 | 6 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 97 | 3 | 0 | 0 | 88 | 6 | 3 | 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
SL | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 90 | 5 | 2 | 3 | 85 | 4 | 2 | 9 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 76 | 14 | 5 | 5 | 62 | 10 | 9 | 19 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 79 | 9 | 4 | 9 | 100 | 0 | 0 | 0 | 62 | 12 | 5 | 22 | 26 | 12 | 9 | 52 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 95 | 5 | 0 | 0 | 79 | 9 | 6 | 6 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
(B) Lettuce | ||||||||||||||||||||||||||
Irrigation System | Soil Type | Climatic Region | Plant Root Zone Effects | Leaf Scorching When Wetted | ||||||||||||||||||||||
Cl− | B | EC | Cl− | Na+ | ||||||||||||||||||||||
a | b | c | d | a | b | c | d | a | b | c | d | a | b | c | d | a | b | c | d | |||||||
Overhead | C | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 97 | 3 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 98 | 2 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 96 | 4 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 90 | 8 | 2 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CS | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 98 | 2 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |||||
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 82 | 9 | 5 | 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 3 | 88 | 4 | 4 | 4 | 100 | 0 | 0 | 0 | 56 | 13 | 2 | 29 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 4 | 97 | 2 | 1 | 0 | 100 | 0 | 0 | 0 | 63 | 14 | 8 | 16 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
SL | CR 1 | 87 | 5 | 1 | 7 | 100 | 0 | 0 | 0 | 38 | 14 | 11 | 38 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |||||
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 98 | 2 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 98 | 1 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 92 | 7 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
Surface | C | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 78 | 13 | 6 | 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 81 | 10 | 6 | 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 79 | 12 | 6 | 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 75 | 15 | 7 | 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CS | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 95 | 5 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |||||
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 81 | 10 | 6 | 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 3 | 86 | 6 | 1 | 7 | 100 | 0 | 0 | 0 | 41 | 11 | 9 | 39 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 94 | 6 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
SL | CR 1 | 88 | 4 | 4 | 4 | 100 | 0 | 0 | 0 | 63 | 7 | 1 | 29 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |||||
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 99 | 1 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 99 | 1 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 96 | 3 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||||||
(C) Cabbage | ||||||||||||||||||||||||||
Irrigation System | Soil Type | Climatic Region | Plant Root Zone Effects | Leaf Scorching When Wetted | ||||||||||||||||||||||
Cl− | B | EC | Na+ | Cl− | Na+ | |||||||||||||||||||||
a | b | c | d | a | b | c | d | a | b | c | d | a | b | c | d | a | b | c | d | a | b | c | d | |||
Overhead | C | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 85 | 12 | 3 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 87 | 12 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 88 | 8 | 4 | 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 75 | 16 | 12 | 13 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CS | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 42 | 40 | 8 | 11 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 54 | 20 | 12 | 14 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 88 | 4 | 4 | 4 | 100 | 0 | 0 | 0 | 4 | 4 | 7 | 84 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 97 | 2 | 1 | 0 | 100 | 0 | 0 | 0 | 35 | 58 | 7 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
SL | CR 1 | 87 | 5 | 1 | 7 | 100 | 0 | 0 | 0 | 18 | 13 | 16 | 54 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 87 | 11 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 92 | 5 | 3 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 83 | 13 | 3 | 0 | 97 | 2 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
Surface | C | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 85 | 12 | 3 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 85 | 15 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 88 | 8 | 4 | 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 44 | 24 | 14 | 18 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CS | CR 1 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 44 | 53 | 4 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 43 | 26 | 13 | 11 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 86 | 6 | 1 | 7 | 100 | 0 | 0 | 0 | 18 | 9 | 15 | 58 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 36 | 58 | 7 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
SL | CR 1 | 88 | 4 | 4 | 4 | 100 | 0 | 0 | 0 | 18 | 12 | 16 | 54 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |
CR 2 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 82 | 17 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 3 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 97 | 3 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | ||
CR 4 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 91 | 9 | 1 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
Fitness for Use Category | Range | Observed Value | |
---|---|---|---|
Suspended solids (mg L−1) | Ideal | <50 | |
Acceptable | 50–75 | ||
Tolerable | 75–100 | 91 | |
Unacceptable | >100 | ||
pH | Ideal | <7.0 | |
Acceptable | 7.0–7.5 | ||
Tolerable | 7.5–8.0 | 7.6 | |
Unacceptable | >8 | ||
Ideal | <0.1 | 0.0 | |
Manganese | Acceptable | 0.1–0.5 | |
(mg L−1) | Tolerable | 0.5–1.5 | |
Unacceptable | >1.5 | ||
Ideal | <0.2 | 0.0 | |
Total Iron | Acceptable | 0.2–0.5 | |
(mg L−1) | Tolerable | 0.5–1.5 | |
Unacceptable | >1.5 | ||
Ideal | <1 | 0.025 | |
E. coli | Acceptable | 1–2 | |
(106 per 100 mL) | Tolerable | 2–5 | |
Unacceptable | >5 |
Fitness for Use Category | Corrosion (Langelier Index) | Observed Score | Scaling (Langelier Index) | Observed Score |
---|---|---|---|---|
Ideal | 0 to −0.5 | −0.37 | 0 to +0.5 | Not scaling |
Acceptable | −0.5 to −0.1 | +0.5 to +0.1 | ||
Tolerable | −0.1 to −2.0 | +0.1 to +2.0 | ||
Unacceptable | <−2.0 | >+2.0 |
Crop | Irrigation System | Category | Predicted Excess Infections per 1000 People |
---|---|---|---|
Maize | Overhead | Ideal | 0 |
Acceptable | |||
Tolerable | |||
Unacceptable | |||
Surface | Ideal | 0 | |
Acceptable | |||
Tolerable | |||
Unacceptable | |||
Cabbage | Overhead | Ideal | |
Acceptable | |||
Tolerable | |||
Unacceptable | 82.6 | ||
Surface | Ideal | 0 | |
Acceptable | |||
Tolerable | |||
Unacceptable | |||
Lettuce | Overhead | Ideal | |
Acceptable | |||
Tolerable | |||
Unacceptable | 101.1 | ||
Surface | Ideal | 0 | |
Acceptable | |||
Tolerable | |||
Unacceptable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musazura, W.; Odindo, A.O. Suitability of the Decentralised Wastewater Treatment Effluent for Agricultural Use: Decision Support System Approach. Water 2021, 13, 2454. https://doi.org/10.3390/w13182454
Musazura W, Odindo AO. Suitability of the Decentralised Wastewater Treatment Effluent for Agricultural Use: Decision Support System Approach. Water. 2021; 13(18):2454. https://doi.org/10.3390/w13182454
Chicago/Turabian StyleMusazura, William, and Alfred O. Odindo. 2021. "Suitability of the Decentralised Wastewater Treatment Effluent for Agricultural Use: Decision Support System Approach" Water 13, no. 18: 2454. https://doi.org/10.3390/w13182454
APA StyleMusazura, W., & Odindo, A. O. (2021). Suitability of the Decentralised Wastewater Treatment Effluent for Agricultural Use: Decision Support System Approach. Water, 13(18), 2454. https://doi.org/10.3390/w13182454