Washing and Heat Treatment of Aluminum-Based Drinking Water Treatment Residuals to Optimize Phosphorus Sorption and Nitrogen Leaching: Considerations for Lake Restoration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of DWTRs
2.2. Experimental Treatment of DWTRs
2.3. Leaching Assays
2.4. Physio-Chemical Characterization of DWTRs
2.5. Phosphorus Sorption Capacity and Isotherms
2.6. Statistical Analysis
3. Results
3.1. Metal and Nutrient Content
3.2. Nitrogen Gas Sorption/Desorption
3.3. P Sorption Capacity
3.4. Nitrogen Desorption
3.5. Association of P Sorption Parameters with Physio-Chemical Characteristics
3.6. Effect of DWTR Treatment on Key Physio-Chemical Characteristics
4. Discussion
4.1. Comparison of P Sorption Capacities
Country [Ref] | Coagulant | Particle Size | v/m Ratio | Initial P | Contact Time | Maximum Sorption Capacity 1 |
---|---|---|---|---|---|---|
(µm) | (g/mL) | (mg P/L) | (days) | (mg P/g) | ||
Korea [53] | alum | <2000 | 30 | 100–4000 | 0.6 | 25.0 |
USA [21] | alum | 100–300 | 40 | 300 | 1 | 12.5 |
USA [54] | Al-based | <2000 | 25 | 0–100 | 0.6 | 1.3 (0.3–5.1) |
USA [20] | Al-based | <150 | 10 | 0–3500 | 6 | 20.6 (10.4–37.0) |
Ireland [55] | <63 | 5 | 2 | 2.5 | ||
Ireland [19] | alum | <2360 | 200–1000 | 4800 | 1 | 10.2 |
Ireland [56] | alum | <63 | 200–1000 | 100 | 2 | 13.7 (13.1–14.3) |
China [17] | FeCl3 + PAC, PAC | <2000 | 100 | 5–100 | 2 | 4.5 (4.0–8.3) |
UK [52] | Al-based | <2000 | 25 | 0–1250 | 10 | 28.8 |
Australia [57] | alum | 150–600 | 200 | 0–600 | 2 | 33.4 (30.3–41.7) |
China [36] | alum | 100 | 3.5 (2.1–6.1) | |||
Thailand [this study] | alum, alum + PAC | <150 | 200 | 0–300 | 30 * | 29.5 (19.5–45.7) |
4.2. Relating P Sorption to DWTR Properties
4.3. P Binding Efficiency of DWTR
4.4. Considerations for Treatment of DWTR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paerl, H.W.; Barnard, M.A. Mitigating the Global Expansion of Harmful Cyanobacterial Blooms: Moving Targets in a Human- and Climatically-Altered World. Harmful Algae 2020, 96, 101845. [Google Scholar] [CrossRef]
- Carpenter, S.R. Phosphorus Control Is Critical to Mitigating Eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paerl, H.W.; Havens, K.E.; Xu, H.; Zhu, G.; McCarthy, M.J.; Newell, S.E.; Scott, J.T.; Hall, N.S.; Otten, T.G.; Qin, B. Mitigating Eutrophication and Toxic Cyanobacterial Blooms in Large Lakes: The Evolution of a Dual Nutrient (N and P) Reduction Paradigm. Hydrobiologia 2020, 847, 4359–4375. [Google Scholar] [CrossRef]
- Douglas, G.B.; Hamilton, D.P.; Robb, M.S.; Pan, G.; Spears, B.M.; Lurling, M. Guiding Principles for the Development and Application of Solid-Phase Phosphorus Adsorbents for Freshwater Ecosystems. Aquat. Ecol. 2016, 50, 385–405. [Google Scholar] [CrossRef] [Green Version]
- Jančula, D.; Maršálek, B. Critical Review of Actually Available Chemical Compounds for Prevention and Management of Cyanobacterial Blooms. Chemosphere 2011, 85, 1415–1422. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, H.-L. Chemicals Used for in Situ Immobilization to Reduce the Internal Phosphorus Loading from Lake Sediments for Eutrophication Control. Crit. Rev. Environ. Sci. Technol. 2016, 46, 947–997. [Google Scholar] [CrossRef]
- Huser, B.J.; Egemose, S.; Harper, H.; Hupfer, M.; Jensen, H.; Pilgrim, K.M.; Reitzel, K.; Rydin, E.; Futter, M. Longevity and Effectiveness of Aluminum Addition to Reduce Sediment Phosphorus Release and Restore Lake Water Quality. Water Res. 2016, 97, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Huser, B.J.; Futter, M.; Lee, J.T.; Perniel, M. In-Lake Measures for Phosphorus Control: The Most Feasible and Cost-Effective Solution for Long-Term Management of Water Quality in Urban Lakes. Water Res. 2016, 97, 142–152. [Google Scholar] [CrossRef]
- Gensemer, R.W.; Gondek, J.C.; Rodriquez, P.H.; Arbildua, J.J.; Stubblefield, W.A.; Cardwell, A.S.; Santore, R.C.; Ryan, A.C.; Adams, W.J.; Nordheim, E. Evaluating the Effects of PH, Hardness, and Dissolved Organic Carbon on the Toxicity of Aluminum to Freshwater Aquatic Organisms under Circumneutral Conditions. Environ. Toxicol. Chem. 2018, 37, 49–60. [Google Scholar] [CrossRef]
- De Vicente, I.; Jensen, H.S.S.; Andersen, F.Ø.O. Factors Affecting Phosphate Adsorption to Aluminum in Lake Water: Implications for Lake Restoration. Sci. Total Environ. 2008, 389, 29–36. [Google Scholar] [CrossRef]
- De Vicente, I.; Huang, P.; Andersen, F.Ø.; Jensen, H.S. Phosphate Adsorption by Fresh and Aged Aluminum Hydroxide. Consequences for Lake Restoration. Environ. Sci. Technol. 2008, 42, 6650–6655. [Google Scholar] [CrossRef]
- Wang, Q.; Liao, Z.; Yao, D.; Yang, Z.; Wu, Y.; Tang, C. Phosphorus Immobilization in Water and Sediment Using Iron-Based Materials: A Review. Sci. Total Environ. 2021, 767, 144246. [Google Scholar] [CrossRef] [PubMed]
- Jilbert, T.; Couture, R.-M.; Huser, B.J.; Salonen, K. Preface: Restoration of Eutrophic Lakes: Current Practices and Future Challenges. Hydrobiologia 2020, 847, 4343–4357. [Google Scholar] [CrossRef]
- Kelly Vargas, K.G.; Qi, Z. P Immobilizing Materials for Lake Internal Loading Control: A Review towards Future Developments. Crit. Rev. Environ. Sci. Technol. 2019, 49, 518–552. [Google Scholar] [CrossRef]
- Zhao, Y.; Nzihou, A.; Ren, B.; Lyczko, N.; Shen, C.; Kang, C.; Ji, B. Waterworks Sludge: An Underrated Material for Beneficial Reuse in Water and Environmental Engineering. Waste Biomass Valorization 2020, 12, 4239–4251. [Google Scholar] [CrossRef]
- Al-Tahmazi, T.; Babatunde, A.O. Mechanistic Study of P Retention by Dewatered Waterworks Sludges. Environ. Technol. Innov. 2016, 6, 38–48. [Google Scholar] [CrossRef]
- Bai, L.; Wang, C.; He, L.; Pei, Y. Influence of the Inherent Properties of Drinking Water Treatment Residuals on Their Phosphorus Adsorption Capacities. J. Environ. Sci. 2014, 26, 2397–2405. [Google Scholar] [CrossRef]
- Turner, T.; Wheeler, R.; Stone, A.; Oliver, I. Potential Alternative Reuse Pathways for Water Treatment Residuals: Remaining Barriers and Questions—A Review. Water Air Soil Pollut. 2019, 230. [Google Scholar] [CrossRef] [Green Version]
- Razali, M.; Zhao, Y.Q.; Bruen, M. Effectiveness of a Drinking-Water Treatment Sludge in Removing Different Phosphorus Species from Aqueous Solution. Sep. Purif. Technol. 2007, 55, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Dayton, E.; Basta, N.T. A Method for Determining the Phosphorus Sorption Capacity and Amorphous Aluminum of Aluminum-Based Drinking Water Treatment Residuals. J. Environ. Qual. 2005, 34, 1112–1118. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, J.A.; Barbarick, K.A.; Heil, D.M.; Chandler, J.P.; Redente, E.F. Phosphorus Retention Mechanisms of a Water Treatment Residual. J. Environ. Qual. 2003, 32, 1857–1864. [Google Scholar] [CrossRef] [Green Version]
- Makris, K.C.; Harris, W.G.; O’Connor, G.A.; Obreza, T.A.; Elliott, H.A. Physicochemical Properties Related to Long-Term Phosphorus Retention by Drinking-Water Treatment Residuals. Environ. Sci. Technol. 2005, 39, 4280–4289. [Google Scholar] [CrossRef] [PubMed]
- Soleimanifar, H.; Deng, Y.; Wu, L.; Sarkar, D. Water Treatment Residual (WTR)-Coated Wood Mulch for Alleviation of Toxic Metals and Phosphorus from Polluted Urban Stormwater Runoff. Chemosphere 2016, 154, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, A.O.; Zhao, Y.Q.; Zhao, X.H. Alum Sludge-Based Constructed Wetland System for Enhanced Removal of P and OM from Wastewater: Concept, Design and Performance Analysis. Bioresour. Technol. 2010, 101, 6576–6579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Lee, L.Y.; Lim, F.Y.; Lyu, Z.; Zhu, H.; Ong, S.L.; Hu, J. Water Treatment Residual: A Critical Review of Its Applications on Pollutant Removal from Stormwater Runoff and Future Perspectives. J. Environ. Manag. 2020, 259, 109649. [Google Scholar] [CrossRef]
- Ichihara, M.; Nishio, T. Suppression of Phosphorus Release from Sediments Using Water Clarifier Sludge as Capping Material. Environ. Technol. 2013, 34, 2291–2299. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qi, Y.; Pei, Y. Laboratory Investigation of Phosphorus Immobilization in Lake Sediments Using Water Treatment Residuals. Chem. Eng. J. 2012, 209, 379–385. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Y.; Bai, L.; Wang, C.; Jiang, H.; Wei, Z.; Wei, X.; Yuan, Z.; Liu, X. Intermittent Aeration Incubation of Drinking Water Treatment Residuals for Recycling in Aquatic Environment Remediation. J. Clean. Prod. 2018, 183, 220–230. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Wang, M.; Shen, X.; Bai, L.; Yuan, A.; Xu, H.; Jiang, H. Desorption of Nitrogen from Drinking Water Treatment Residue: Implications for Environmental Recycling. J. Clean. Prod. 2019, 226, 96–105. [Google Scholar] [CrossRef]
- Bai, L.; Wang, C.; Huang, C.; He, L.; Pei, Y. Reuse of Drinking Water Treatment Residuals as a Substrate in Constructed Wetlands for Sewage Tertiary Treatment. Ecol. Eng. 2014, 70, 295–303. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Y.; Bai, L.; Zhao, Y.; Yan, Z.; Jiang, H.; Liu, X. Recycling of Drinking Water Treatment Residue as an Additional Medium in Columns for Effective P Removal from Eutrophic Surface Water. J. Environ. Manag. 2018, 217, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yuan, N.; Bai, L.; Jiang, H.-L.; Pei, Y.; Yan, Z. Key Factors Related to Drinking Water Treatment Residue Selection for Adsorptive Properties Tuning via Oxygen-Limited Heat Treatment. Chem. Eng. J. 2016, 306, 897–907. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, H.-L.; Yuan, N.; Pei, Y.; Yan, Z. Tuning the Adsorptive Properties of Drinking Water Treatment Residue via Oxygen-Limited Heat Treatment for Environmental Recycle. Chem. Eng. J. 2016, 284, 571–581. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, N.; Pei, Y.; Jiang, H.-L. Aging of Aluminum/Iron-Based Drinking Water Treatment Residuals in Lake Water and Their Association with Phosphorus Immobilization Capability. J. Environ. Manag. 2015, 159, 178–185. [Google Scholar] [CrossRef]
- Ren, B.; Zhao, Y.; Ji, B.; Wei, T.; Shen, C. Granulation of Drinking Water Treatment Residues: Recent Advances and Prospects. Water 2020, 12, 1400. [Google Scholar] [CrossRef]
- Hou, Q.; Meng, P.; Pei, H.; Hu, W.; Chen, Y. Phosphorus Adsorption Characteristics of Alum Sludge: Adsorption Capacity and the Forms of Phosphorus Retained in Alum Sludge. Mater. Lett. 2018, 229, 31–35. [Google Scholar] [CrossRef]
- Shen, C.; Zhao, Y.; Li, W.; Yang, Y.; Liu, R.; Morgen, D. Global Profile of Heavy Metals and Semimetals Adsorption Using Drinking Water Treatment Residual. Chem. Eng. J. 2019, 372, 1019–1027. [Google Scholar] [CrossRef]
- Xu, H.; Pei, H.; Jin, Y.; Ma, C.; Wang, Y.; Sun, J.; Li, H. High-Throughput Sequencing Reveals Microbial Communities in Drinking Water Treatment Sludge from Six Geographically Distributed Plants, Including Potentially Toxic Cyanobacteria and Pathogens. Sci. Total Environ. 2018, 634, 769–779. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-Total. Methods Soil Anal. 1996, 5, 1085–1121. [Google Scholar]
- Kasenow, M. Determination of Hydraulic Conductivity from Grain Size Analysis; Water Resources Publications: Denver, CO, USA, 2010. [Google Scholar]
- Bertsch, P.M.; Bloom, P.R. Aluminum. In Methods of Soil Analysis Part 3—Chemical Methods; SSSA Book Series; Soil Science Society of America: Madison, WI, USA, 1996; pp. 517–550. [Google Scholar]
- Jan, J.; Borovec, J.; Kopacek, J.; Hejzlar, J. Assessment of Phosphorus Associated with Fe and Al (Hydr)Oxides in Sediments and Soils. J. Soils Sediments 2015, 15, 1620–1629. [Google Scholar] [CrossRef]
- Cucarella, V.; Renman, G. Phosphorus Sorption Capacity of Filter Materials Used for On-Site Wastewater Treatment Determined in Batch Experiments–A Comparative Study. J. Environ. Qual. 2009, 38, 381–392. [Google Scholar] [CrossRef]
- Sui, Y.; Thompson, M.L. Phosphorus Sorption, Desorption, and Buffering Capacity in a Biosolids-Amended Mollisol. Soil Sci. Soc. Am. J. 2000, 64, 164–169. [Google Scholar] [CrossRef]
- Sposito, G. On the Use of the Langmuir Equation in the Interpretation of “Adsorption” Phenomena: II. The “Two-Surface” Langmuir Equation. Soil Sci. Soc. Am. J. 1982, 46, 1147–1152. [Google Scholar] [CrossRef]
- Zhou, A.; Tang, H.; Wang, D. Phosphorus Adsorption on Natural Sediments: Modeling and Effects of PH and Sediment Composition. Water Res. 2005, 39, 1245–1254. [Google Scholar] [CrossRef]
- Bolster, C.H.; Hornberger, G.M. On the Use of Linearized Langmuir Equations. Soil Sci. Soc. Am. J. 2007, 71, 1796–1806. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Makris, K.C.; Harris, W.G.; O’Connor, G.A.; El-Shall, H. Long-Term Phosphorus Effects on Evolving Physicochemical Properties of Iron and Aluminum Hydroxides. J. Colloid Interface Sci. 2005, 287, 552–560. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- De Souza Souza, C.; Bomfim, M.R.; de Almeida, M.D.C.; de Souza Alves, L.; de Santana, W.N.; da Silva Amorim, I.C.; Santos, J.A.G. Induced Changes of Pyrolysis Temperature on the Physicochemical Traits of Sewage Sludge and on the Potential Ecological Risks. Sci. Rep. 2021, 11, 974. [Google Scholar] [CrossRef]
- Habibiandehkordi, R.; Quinton, J.N.; Surridge, B.W.J. Effect of Equilibration Time on Estimates of the Maximum Phosphorus Sorption Capacity of Industrial By-Products Using the Langmuir Model. J. Soils Sediments 2014, 14, 1818–1828. [Google Scholar] [CrossRef]
- Gon Kim, J.; Hyun Kim, J.; Moon, H.-S.; Chon, C.-M.; Sung Ahn, J. Removal Capacity of Water Plant Alum Sludge for Phosphorus in Aqueous Solutions. Chem. Speciat. Bioavailab. 2002, 14, 67–73. [Google Scholar] [CrossRef]
- Dayton, E.; Basta, N.T.; Jakober, C.A.; Hattey, J.A. Using Treatment Residuals to Reduce Phosphorus in Agricultural Runoff. J. Am. Water Works Assoc. 2003, 95, 151–158. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.Q.; Babatunde, A.O.; Wang, L.; Ren, Y.X.; Han, Y. Characteristics and Mechanisms of Phosphate Adsorption on Dewatered Alum Sludge. Sep. Purif. Technol. 2006, 51, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.Q.; Yang, Y. Extending the Use of Dewatered Alum Sludge as a P-Trapping Material in Effluent Purification: Study on Two Separate Water Treatment Sludges. J. Environ. Sci. Health Part A 2010, 45, 1234–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bal Krishna, K.C.; Aryal, A.; Jansen, T. Comparative Study of Ground Water Treatment Plants Sludges to Remove Phosphorous from Wastewater. J. Environ. Manag. 2016, 180, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Yuan, N.; Wang, C. The Bioturbation Effect of the Snail Bellamya Aeruginosa on Phosphorus Immobilisation by Drinking Water Treatment Residue in Sediment: A Long-Term Continuous Flow Test. J. Environ. Manag. 2020, 266, 110579. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Wang, C.; Pei, Y. Comparison of Different Phosphate Species Adsorption by Ferric and Alum Water Treatment Residuals. J. Environ. Sci. 2013, 25, 986–992. [Google Scholar] [CrossRef]
- Bolan, N.S.; Barrow, N.J.; Posner, A.M. Describing the Effect of Time on Sorption of Phosphate by Iron and Aluminium Hydroxides. J. Soil Sci. 1985, 36, 187–197. [Google Scholar] [CrossRef]
- Wagner, D.J.; Elliott, H.A.; Brandt, R.C.; Jaiswal, D. Managing Biosolids Runoff Phosphorus Using Buffer Strips Enhanced with Drinking Water Treatment Residuals. J. Environ. Qual. 2008, 37, 1567–1574. [Google Scholar] [CrossRef]
- Makris, K.C.; Harris, W.G.; O’Conno, G.A.; Obreza, T.A. Phosphorus Immobilization in Micropores of Drinking-Water Treatment Residuals: Implications for Long-Term Stability. Environ. Sci. Technol. 2004, 38, 6590–6596. [Google Scholar] [CrossRef]
- Muisa, N.; Nhapi, I.; Ruziwa, W.; Manyuchi, M.M. Utilization of Alum Sludge as Adsorbent for Phosphorus Removal in Municipal Wastewater: A Review. J. Water Process Eng. 2020, 35, 101187. [Google Scholar] [CrossRef]
- Zhao, W.; Xie, H.; Li, J.; Zhang, L.; Zhao, Y. Application of Alum Sludge in Wastewater Treatment Processes: “Science” of Reuse and Reclamation Pathways. Processes 2021, 9, 612. [Google Scholar] [CrossRef]
- Babatunde, A.O.; Zhao, Y.Q. Equilibrium and Kinetic Analysis of Phosphorus Adsorption from Aqueous Solution Using Waste Alum Sludge. J. Hazard. Mater. 2010, 184, 746–752. [Google Scholar] [CrossRef] [Green Version]
- James, W.F. Variations in the Aluminum:Phosphorus Binding Ratio and Alum Dosage Considerations for Half Moon Lake, Wisconsin. Lake Reserv. Manag. 2011, 27, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Kuster, A.C.; Kuster, A.T.; Huser, B.J. A Comparison of Aluminum Dosing Methods for Reducing Sediment Phosphorus Release in Lakes. J. Environ. Manag. 2020, 261, 110195. [Google Scholar] [CrossRef] [PubMed]
- Huser, B.J.; Pilgrim, K.M. A Simple Model for Predicting Aluminum Bound Phosphorus Formation and Internal Loading Reduction in Lakes after Aluminum Addition to Lake Sediment. Water Res. 2014, 53, 378–385. [Google Scholar] [CrossRef]
- Huser, B.J. Variability in Phosphorus Binding by Aluminum in Alum Treated Lakes Explained by Lake Morphology and Aluminum Dose. Water Res. 2012, 46, 4697–4704. [Google Scholar] [CrossRef]
- Huser, B.J. Aluminum Application to Restore Water Quality in Eutrophic Lakes: Maximizing Binding Efficiency between Aluminum and Phosphorus. Lake Reserv. Manag. 2017, 33, 143–151. [Google Scholar] [CrossRef]
- Schütz, J.; Rydin, E.; Huser, B.J. A Newly Developed Injection Method for Aluminum Treatment in Eutrophic Lakes: Effects on Water Quality and Phosphorus Binding Efficiency. Lake Reserv. Manag. 2017, 33, 152–162. [Google Scholar] [CrossRef]
- Wang, C.; Liang, J.; Pei, Y.; Wendling, L.A. A Method for Determining the Treatment Dosage of Drinking Water Treatment Residuals for Effective Phosphorus Immobilization in Sediments. Ecol. Eng. 2013, 60, 421–427. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Lin, L.; Tian, B.; Pei, Y. Effect of Low Molecular Weight Organic Acids on Phosphorus Adsorption by Ferric-Alum Water Treatment Residuals. J. Hazard. Mater. 2012, 203–204, 145–150. [Google Scholar] [CrossRef]
- Zhang, D.; Kong, H.; Wu, D.; He, S.; Hu, Z.; Dai, L. Impact of Pyrolysis Treatment on Heavy Metals in Sediment. Soil Sediment Contam. Int. J. 2009, 18, 754–765. [Google Scholar] [CrossRef]
- Wang, C.; Wei, Z.; Yan, Z.; Wang, C.; Xu, S.; Bai, L.; Jiang, H.; Yuan, N. The Feasibility of Recycling Drinking Water Treatment Residue as Suspended Substrate for the Removal of Excess P and N from Natural Water. J. Environ. Manag. 2021, 280, 111640. [Google Scholar] [CrossRef]
- Hoorman, J.; Hone, T.; Sudman, T.; Dirksen, T.; Iles, J.; Islam, K.R. Agricultural Impacts on Lake and Stream Water Quality in Grand Lake St. Marys, Western Ohio. Water Air Soil Pollut. 2008, 193, 309–322. [Google Scholar] [CrossRef]
- Yuan, N.; Wang, C.; Pei, Y.; Jiang, H. Applicability of Drinking Water Treatment Residue for Lake Restoration in Relation to Metal/Metalloid Risk Assessment. Sci. Rep. 2016, 6, 38638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotero-Santos, R.B.; Rocha, O.; Povinelli, J. Toxicity of Ferric Chloride Sludge to Aquatic Organisms. Chemosphere 2007, 68, 628–636. [Google Scholar] [CrossRef]
- Ranjbar, L.; Eslami, A.; Yazdanbakhsh, A.; Saghi, M.H. Toxicity Assessment of Tehran Water Treatment Sludges Using Bioassay Tests. Toxin Rev. 2018, 37, 27–34. [Google Scholar] [CrossRef]
- Yuan, N.; Wang, C.; Wendling, L.A.; Pei, Y. Ecotoxicological Assessment of Dewatered Drinking Water Treatment Residue for Environmental Recycling. Environ. Technol. 2017, 38, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Wang, C.; Pei, Y. Investigation on the Eco-Toxicity of Lake Sediments with the Addition of Drinking Water Treatment Residuals. J. Environ. Sci. 2016, 46, 5–15. [Google Scholar] [CrossRef]
- Yuan, N.; Pei, Y.; Bao, A.; Wang, C. The Physiological and Biochemical Responses of Daphnia Magna to Dewatered Drinking Water Treatment Residue. Int. J. Environ. Res. Public Health 2020, 17, 5863. [Google Scholar] [CrossRef]
- Devi, P.; Saroha, A.K. Utilization of Sludge Based Adsorbents for the Removal of Various Pollutants: A Review. Sci. Total Environ. 2017, 578, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Sørmo, E.; Silvani, L.; Thune, G.; Gerber, H.; Schmidt, H.P.; Smebye, A.B.; Cornelissen, G. Waste Timber Pyrolysis in a Medium-Scale Unit: Emission Budgets and Biochar Quality. Sci. Total Environ. 2020, 718, 137335. [Google Scholar] [CrossRef] [PubMed]
- Lürling, M.; Kang, L.; Mucci, M.; van Oosterhout, F.; Noyma, N.P.; Miranda, M.; Huszar, V.L.M.; Waajen, G.; Marinho, M.M. Coagulation and Precipitation of Cyanobacterial Blooms. Ecol. Eng. 2020, 158, 106032. [Google Scholar] [CrossRef]
- Thongdam, S.; Kuster, A.C.; Huser, B.J.; Kuster, A.T. Low Dose Coagulant and Local Soil Ballast Effectively Remove Cyanobacteria (Microcystis) from Tropical Lake Water without Cell Damage. Water 2021, 13, 111. [Google Scholar] [CrossRef]
WTP Abbreviation | Water Supply Capacity (m3/hr) | Raw Water Source | Coagulant Used |
---|---|---|---|
BP | 14,400 | Lawa Lake | PAC/Alum |
MS | 30,800 | Chee River | PAC/Alum |
DP | 32,000 | Chee River | PAC |
UD | 48,000 | Huai Luang Reservoir | Alum |
Treatment Name | Abbreviation | Experimental Treatment | Approximate Yield 1 |
---|---|---|---|
Single washing | W | washing 1x with deionized water (1:10 m/v) and then dried for 48 h at 105 °C | 97–99% |
Multi-washing | MW | washing 3x with deionized water (1:20 m/v) and then dried for 48 h at 105 °C | 95–99% |
Heat treatment at 200 °C | 200 | heated to 200 °C for 2 h in muffle furnace | 90–95% |
Heat treatment at 600 °C | 600 | heated to 600 °C for 2 h in muffle furnace | 60–85% |
Oxygen-limited heat treatment at 200 °C | OL200 | heated to 200 °C for 2 h in muffle furnace with N2 atmosphere | 90–95% |
Oxygen-limited heat treatment at 600 °C | OL600 | heated to 600 °C for 2 h in muffle furnace with N2 atmosphere | 60–85% |
Multi-washing and oxygen-limited heat treatment at 600 °C | MW600 | Multi-washing followed by oxygen-limited treatment at 600 °C | 55–80% |
DWTR Sample Name | Langmuir SSA (m2/g) | BJH Cumulative Adsorption SSA (m2/g) | HK Micropore Volume (cm3/g) | Average Pore Radius (Å) |
---|---|---|---|---|
BP | 212.3 | 36.4 | 0.0328 | 45.8 |
MS | 158.8 | 28.4 | 0.0240 | 52.3 |
DP | 204.8 | 39.4 | 0.0285 | 71.1 |
DP-W | 194.0 | 38.5 | 0.0237 | 73.7 |
DP-MW | 234.5 | 44.8 | 0.0316 | 73.8 |
DP-200 | 207.0 | 43.3 | 0.0255 | 69.3 |
DP-OL200 | 270.3 | 50.5 | 0.0314 | 63.1 |
DP-600 | 180.4 | 39.6 | 0.0198 | 91.4 |
DP-OL600 | 179.6 | 43.9 | 0.0226 | 105.8 |
DP-MW600 | 183.5 | 40.1 | 0.0232 | 88.0 |
UD | 311.6 | 45.1 | 0.0513 | 36.0 |
UD-W | 188.9 | 32.9 | 0.0392 | 37.9 |
UD-MW | 359.6 | 45.6 | 0.0685 | 29.0 |
UD-200 | 259.7 | 40.0 | 0.0452 | 34.4 |
UD-OL200 | 254.2 | 41.9 | 0.0352 | 40.0 |
UD-600 | 171.9 | 39.2 | 0.0310 | 55.0 |
UD-OL600 | 346.4 | 59.6 | 0.0481 | 39.7 |
UD-MW600 | 342.5 | 63.4 | 0.0433 | 43.7 |
Sample | b1 | b2 | P Sorption Capacity, b 1 | K1 | K2 | E |
---|---|---|---|---|---|---|
BP-Raw | 8.21 | 25.84 | 34.05 | 19.97 | 0.0190 | 0.998 |
MS-Raw | 5.99 | 21.58 | 27.57 | 7.92 | 0.0136 | 0.999 |
DP-Raw | 3.64 | 15.87 | 19.51 | 13.95 | 0.0202 | 0.998 |
DP-W | 3.14 | 17.63 | 20.77 | 10.44 | 0.0180 | 0.999 |
DP-MW | 2.90 | 19.01 | 21.91 | 12.24 | 0.0122 | >0.999 |
DP-200 | 4.32 | 16.94 | 21.26 | 19.17 | 0.0197 | 0.998 |
DP-OL200 | 3.79 | 18.82 | 22.61 | 29.15 | 0.0194 | 0.999 |
DP-600 | 4.29 | 17.48 | 21.77 | 44.46 | 0.0199 | 0.999 |
DP-OL600 | 4.48 | 21.45 | 25.93 | 86.50 | 0.0108 | 0.997 |
DP-MW600 | 4.75 | 18.30 | 23.05 | 132.03 | 0.0166 | 0.999 |
UD-Raw | 8.74 | 27.86 | 36.60 | 50.14 | 0.0241 | 0.993 |
UD-W | 8.28 | 27.28 | 35.56 | 14.62 | 0.0135 | 0.999 |
UD-MW | 7.87 | 27.56 | 35.43 | 18.47 | 0.0155 | 0.998 |
UD-200 | 11.11 | 22.99 | 34.10 | 30.94 | 0.0173 | 0.999 |
UD-OL200 | 9.04 | 22.47 | 31.51 | 95.76 | 0.0231 | 0.998 |
UD-600 | 16.91 | 23.70 | 40.61 | 107.60 | 0.0176 | 0.999 |
UD-OL600 | 22.00 | 23.69 | 45.69 | 164.23 | 0.0214 | 0.998 |
UD-MW600 | 18.11 | 27.18 | 45.29 | 102.06 | 0.0134 | 0.997 |
Min | 2.90 | 15.87 | 19.51 | 7.92 | 0.0108 | 0.993 |
Max | 22.00 | 27.86 | 45.69 | 164.23 | 0.0241 | >0.999 |
Independent Variable | b1 (mol/kg) | b2 (mol/kg) | K1 (L/kg) | K2 (L/kg) | P Sorption Capacity (mol/kg) |
---|---|---|---|---|---|
Sum of Alox and Feox (mol/kg) | 0.16 (0.12–0.18) *** | 0.04 (0.006–0.072) * | -- | -- | 0.21 (0.18–0.24) *** |
HK Micropore Volume (cm³/g) | −3.75 (−7.31–−0.17) * | 5.07 (1.82–8.32) ** | -- | -- | -- |
Pox (mol/kg) | -- | 7.69 (3.03–12.36) ** | -- | -- | -- |
Aluminum (mg/g) | -- | -- | 0.91 (0.57–1.24) *** | -- | -- |
Outcome | W | MW | 200 | OL200 | 600 | OL600 | MW600 |
---|---|---|---|---|---|---|---|
Alox | |||||||
TKN in leachate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuster, A.C.; Huser, B.J.; Padungthon, S.; Junggoth, R.; Kuster, A.T. Washing and Heat Treatment of Aluminum-Based Drinking Water Treatment Residuals to Optimize Phosphorus Sorption and Nitrogen Leaching: Considerations for Lake Restoration. Water 2021, 13, 2465. https://doi.org/10.3390/w13182465
Kuster AC, Huser BJ, Padungthon S, Junggoth R, Kuster AT. Washing and Heat Treatment of Aluminum-Based Drinking Water Treatment Residuals to Optimize Phosphorus Sorption and Nitrogen Leaching: Considerations for Lake Restoration. Water. 2021; 13(18):2465. https://doi.org/10.3390/w13182465
Chicago/Turabian StyleKuster, Anthony C., Brian J. Huser, Surapol Padungthon, Rittirong Junggoth, and Anootnara T. Kuster. 2021. "Washing and Heat Treatment of Aluminum-Based Drinking Water Treatment Residuals to Optimize Phosphorus Sorption and Nitrogen Leaching: Considerations for Lake Restoration" Water 13, no. 18: 2465. https://doi.org/10.3390/w13182465
APA StyleKuster, A. C., Huser, B. J., Padungthon, S., Junggoth, R., & Kuster, A. T. (2021). Washing and Heat Treatment of Aluminum-Based Drinking Water Treatment Residuals to Optimize Phosphorus Sorption and Nitrogen Leaching: Considerations for Lake Restoration. Water, 13(18), 2465. https://doi.org/10.3390/w13182465