Impact Assessment of Gridded Precipitation Products on Streamflow Simulations over a Poorly Gauged Basin in El Salvador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Precipitation Datasets
2.3. Precipitation Comparison
2.4. Precipitation Performance in Simulating Streamflow
2.4.1. SWAT Hydrological Model
2.4.2. Model Set-Up and Sensitivity Analysis
2.4.3. Model Calibration and Validation
3. Results and Discussion
3.1. Comparison and Evaluation of GP Products
3.2. Performance of GP Products in Simulating Streamflow
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Z.; Tuo, Y.; Liu, J.; Gao, H.; Song, X.; Zhang, Z.; Yang, L.; Mekonnen, D.F. Hydrological Evaluation of Open-Access Precipitation and Air Temperature Datasets Using SWAT in a Poorly Gauged Basin in Ethiopia. J. Hydrol. 2019, 569, 612–626. [Google Scholar] [CrossRef] [Green Version]
- Woldemeskel, F.M.; Sivakumar, B.; Sharma, A. Merging Gauge and Satellite Rainfall with Specification of Associated Uncertainty across Australia. J. Hydrol. 2013, 499, 167–176. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; López-Ballesteros, A.; Pérez-Sánchez, J.; Segura-Méndez, F.; Pulido-Velazquez, D. Using Multiple Monthly Water Balance Models to Evaluate Gridded Precipitation Products over Peninsular Spain. Remote Sens. 2018, 10, 922. [Google Scholar] [CrossRef] [Green Version]
- Jimeno-Sáez, P.; Pulido-Velazquez, D.; Collados-Lara, A.-J.; Pardo-Igúzquiza, E.; Senent-Aparicio, J.; Baena-Ruiz, L. A Preliminary Assessment of the “Undercatching” and the Precipitation Pattern in an Alpine Basin. Water 2020, 12, 1061. [Google Scholar] [CrossRef] [Green Version]
- Sevruk, B. Adjustment of Tipping-Bucket Precipitation Gauge Measurements. Atmos. Res. 1996, 42, 237–246. [Google Scholar] [CrossRef]
- Soo, E.Z.X.; Jaafar, W.Z.W.; Lai, S.H.; Islam, T.; Srivastava, P. Evaluation of Satellite Precipitation Products for Extreme Flood Events: Case Study in Peninsular Malaysia. J. Water Clim. Chang. 2019, 10, 871–892. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-Hourly 0.25° Global Gridded Precipitation (1979–2015) by Merging Gauge, Satellite, and Reanalysis Data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Amer. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method That Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 17. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M. Assessment of Satellite Rainfall Products for Streamflow Simulation in Medium Watersheds of the Ethiopian Highlands. Hydrol. Earth Syst. Sci. 2011, 15, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Ribbe, L.; Nauditt, A.; Giraldo-Osorio, J.D.; Thinh, N.X. Temporal and Spatial Evaluation of Satellite Rainfall Estimates over Different Regions in Latin-America. Atmos. Res. 2018, 213, 34–50. [Google Scholar] [CrossRef]
- Dinku, T.; Ruiz, F.; Connor, S.J.; Ceccato, P. Validation and Intercomparison of Satellite Rainfall Estimates over Colombia. J. Appl. Meteorol. Climatol. 2010, 49, 1004–1014. [Google Scholar] [CrossRef]
- Elgamal, A.; Reggiani, P.; Jonoski, A. Impact Analysis of Satellite Rainfall Products on Flow Simulations in the Magdalena River Basin, Colombia. J. Hydrol. Reg. Stud. 2017, 9, 85–103. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Gebremichael, M.; Hopson, T. Evaluation of High-Resolution Satellite Precipitation Products over Very Complex Terrain in Ethiopia. J. Appl. Meteorol. Climatol. 2010, 49, 1044–1051. [Google Scholar] [CrossRef]
- Le, M.-H.; Lakshmi, V.; Bolten, J.; Bui, D.D. Adequacy of Satellite-Derived Precipitation Estimate for Hydrological Modeling in Vietnam Basins. J. Hydrol. 2020, 586, 124820. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Liu, R.; Xu, F.; Zhang, P.; Yu, W.; Men, C. Identifying Non-Point Source Critical Source Areas Based on Multi-Factors at a Basin Scale with SWAT. J. Hydrol. 2016, 533, 379–388. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Guo, T.; Engel, B.A.; Flanagan, D.C.; Lee, J.G.; Li, S.; Pijanowski, B.C.; Collingsworth, P.D.; Wallace, C.W. Evaluating Efficiencies and Cost-Effectiveness of Best Management Practices in Improving Agricultural Water Quality Using Integrated SWAT and Cost Evaluation Tool. J. Hydrol. 2019, 577, 123965. [Google Scholar] [CrossRef]
- López-Ballesteros, A.; Senent-Aparicio, J.; Martínez, C.; Pérez-Sánchez, J. Assessment of Future Hydrologic Alteration Due to Climate Change in the Aracthos River Basin (NW Greece). Sci. Total Environ. 2020, 733, 139299. [Google Scholar] [CrossRef]
- Pérez-Sánchez, J.; Senent-Aparicio, J.; Martínez Santa-María, C.; López-Ballesteros, A. Assessment of Ecological and Hydro-Geomorphological Alterations under Climate Change Using SWAT and IAHRIS in the Eo River in Northern Spain. Water 2020, 12, 1745. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Alcalá, F.J.; Liu, S.; Jimeno-Sáez, P. Coupling SWAT Model and CMB Method for Modeling of High-Permeability Bedrock Basins Receiving Interbasin Groundwater Flow. Water 2020, 12, 657. [Google Scholar] [CrossRef] [Green Version]
- Worku, T.; Khare, D.; Tripathi, S.K. Modeling Runoff–Sediment Response to Land Use/Land Cover Changes Using Integrated GIS and SWAT Model in the Beressa Watershed. Environ. Earth Sci. 2017, 76, 550. [Google Scholar] [CrossRef]
- Muche, M.E.; Sinnathamby, S.; Parmar, R.; Knightes, C.D.; Johnston, J.M.; Wolfe, K.; Purucker, S.T.; Cyterski, M.J.; Smith, D. Comparison and Evaluation of Gridded Precipitation Datasets in a Kansas Agricultural Watershed Using SWAT. J. Am. Water Resour. Assoc. 2020, 56, 486–506. [Google Scholar] [CrossRef]
- Tolera, M.; Chung, I.-M.; Chang, S. Evaluation of the Climate Forecast System Reanalysis Weather Data for Watershed Modeling in Upper Awash Basin, Ethiopia. Water 2018, 10, 725. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Gómez, P.; Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J. Impact of Climate Change on Water Balance Components and Droughts in the Guajoyo River Basin (El Salvador). Water 2019, 11, 2360. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Sheshukov, A.Y.; Yen, H.; White, M.J. Impacts of Alternative Climate Information on Hydrologic Processes with SWAT: A Comparison of NCDC, PRISM and NEXRAD Datasets. Catena 2017, 156, 353–364. [Google Scholar] [CrossRef]
- Wang, N.; Liu, W.; Sun, F.; Yao, Z.; Wang, H.; Liu, W. Evaluating Satellite-Based and Reanalysis Precipitation Datasets with Gauge-Observed Data and Hydrological Modeling in the Xihe River Basin, China. Atmos. Res. 2020, 234, 104746. [Google Scholar] [CrossRef]
- Dhanesh, Y.; Bindhu, V.M.; Senent-Aparicio, J.; Brighenti, T.M.; Ayana, E.; Smitha, P.S.; Fei, C.; Srinivasan, R. A Comparative Evaluation of the Performance of CHIRPS and CFSR Data for Different Climate Zones Using the SWAT Model. Remote Sens. 2020, 12, 3088. [Google Scholar] [CrossRef]
- Mararakanye, N.; Le Roux, J.J.; Franke, A.C. Using Satellite-Based Weather Data as Input to SWAT in a Data Poor Catchment. Phys. Chem. Earth 2020, 117, 102871. [Google Scholar] [CrossRef]
- Radcliffe, D.E.; Mukundan, R. PRISM vs. CFSR Precipitation Data Effects on Calibration and Validation of SWAT Models. J. Am. Water Resour. Assoc. 2017, 53, 89–100. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M.; Ghebremichael, L.T.; Bayissa, Y.A. Evaluation of High-Resolution Satellite Rainfall Products through Streamflow Simulation in a Hydrological Modeling of a Small Mountainous Watershed in Ethiopia. J. Hydrometeorol. 2012, 13, 338–350. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Y.; Huang, Y.; Li, Y.; Hou, C.; Shi, X. Evaluation and Hydrological Application of Satellite-Based Precipitation Datasets in Driving Hydrological Models over the Huifa River Basin in Northeast China. Atmos. Res. 2018, 207, 28–41. [Google Scholar] [CrossRef]
- Blacutt, L.A.; Herdies, D.L.; de Gonçalves, L.G.G.; Vila, D.A.; Andrade, M. Precipitation Comparison for the CFSR, MERRA, TRMM3B42 and Combined Scheme Datasets in Bolivia. Atmos. Res. 2015, 163, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Melo, D.d.C.D.; Xavier, A.C.; Bianchi, T.; Oliveira, P.T.S.; Scanlon, B.R.; Lucas, M.C.; Wendland, E. Performance Evaluation of Rainfall Estimates by TRMM Multi-satellite Precipitation Analysis 3B42V6 and V7 over Brazil. J. Geophys. Res. Atmos. 2015, 120, 9426–9436. [Google Scholar] [CrossRef] [Green Version]
- Zambrano-Bigiarini, M.; Nauditt, A.; Birkel, C.; Verbist, K.; Ribbe, L. Temporal and Spatial Evaluation of Satellite-Based Rainfall Estimates across the Complex Topographical and Climatic Gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295–1320. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.T.S.; Nearing, M.A.; Moran, M.S.; Goodrich, D.C.; Wendland, E.; Gupta, H.V. Trends in Water Balance Components across the Brazilian Cerrado. Water Resour. Res. 2014, 50, 7100–7114. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Gassman, P.W.; Liang, J.; Haywood, J.M. A Review of Alternative Climate Products for SWAT Modelling: Sources, Assessment and Future Directions. Sci. Total Environ. 2021, 795, 148915. [Google Scholar] [CrossRef] [PubMed]
- Dinh, K.D.; Anh, T.N.; Nguyen, N.Y.; Bui, D.D.; Srinivasan, R. Evaluation of grid-based rainfall products and water balances over the Mekong River basin. Remote Sens. 2020, 12, 1858. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Gao, C.; Ruben, G.B.; Wang, G. Assessing the uncertainties of four precipitation products for swatmodeling in Mekong River basin. Remote Sens. 2019, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Dutta, P.; Sarma, A.K. Hydrological modeling as a tool for water resources management of the data-scarce Brahmaputra basin. J. Water Clim. Change 2020, 12, 152–165. [Google Scholar] [CrossRef] [Green Version]
- Dile, Y.T.; Srinivasan, R. Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River Basin. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 1226–1241. [Google Scholar] [CrossRef]
- Musie, M.; Sen, S.; Srivastava, P. Comparison and evaluation of gridded precipitation datasets for streamflow simulation in data scarce watersheds of Ethiopia. J. Hydrol. 2019, 579, 124168. [Google Scholar] [CrossRef]
- MARN. Plan Nacional de Gestión Integrada del Recurso Hídrico de El Salvador, Con Énfasis en Zonas Prioritarias. Ministerio de Medio Ambiente y Recursos Naturales. Available online: http://rcc.marn.gob.sv/xmlui/handle/123456789/52 (accessed on 1 March 2021).
- Wozab, D.; Jovel, J.R. Hydrological Analysis of Volcanic Terrane: Lower Basin of the Rio Grande de San Miguel, El Salvador. Hydrol. Sci. J. 1970, 15, 47–66. [Google Scholar] [CrossRef]
- Levard, C.; Basile-Doelsch, I. Geology and Mineralogy of Imogolite-Type Materials. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2016; Volume 7, pp. 49–65. ISBN 978-0-08-100293-3. [Google Scholar]
- FAO. Base Referencial Mundial Del Recurso Suelo: Un Marco Conceptual Para Clasificación, Correlación y Comunicación Internacional. Roma, Italy. 2008. Available online: http://www.fao.org/3/a0510s/a0510s.pdf (accessed on 15 June 2021).
- Sánchez-Murillo, R.; Esquivel-Hernández, G.; Corrales-Salazar, J.L.; Castro-Chacón, L.; Durán-Quesada, A.M.; Guerrero-Hernández, M.; Delgado, V.; Barberena, J.; Montenegro-Rayo, K.; Calderón, H.; et al. Tracer Hydrology of the Data-scarce and Heterogeneous Central American Isthmus. Hydrol. Process. 2020, 34, 2660–2675. [Google Scholar] [CrossRef]
- Jang, W.S.; Engel, B.; Ryu, J. Efficient Flow Calibration Method for Accurate Estimation of Baseflow Using a Watershed Scale Hydrological Model (SWAT). Ecol. Eng. 2018, 125, 50–67. [Google Scholar] [CrossRef]
- Sierra Alcocer, R.; Zenteno-Jimenez, E.D.; Barrios, J. Automatic Land Use and Land Cover Classification Using RapidEye Imagery in Mexico. In Proceedings of the AAAI Workshops Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–26 January 2015. [Google Scholar] [CrossRef]
- Tan, M.L.; Yang, X. Effect of Rainfall Station Density, Distribution and Missing Values on SWAT Outputs in Tropical Region. J. Hydrol. 2020, 584, 124660. [Google Scholar] [CrossRef]
- World Meteorological Organization. Chapter 14; Observation of present and past weather; state of the ground. In Guide to Meteorological Instruments and Methods of Observation; WMO: Geneva, Switzerland, 2012; pp. I.14–I.19. Available online: http://www.posmet.ufv.br/wp-content/uploads/2016/09/MET-474-WMO-Guide.pdf (accessed on 12 August 2021).
- Dile, Y.T.; Daggupati, P.; George, C.; Srinivasan, R.; Arnold, J. Introducing a New Open Source GIS User Interface for the SWAT Model. Environ. Modell. Softw. 2016, 85, 129–138. [Google Scholar] [CrossRef]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of Precipitation Input for SWAT Modeling in Alpine Catchment: A Case Study in the Adige River Basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, G.H. Defining and Using Reference Evapotranspiration. J. Irrig. Drain. Eng. 1994, 120, 1132–1139. [Google Scholar] [CrossRef]
- USDA. National Engineering Handbook, Section 4: Hydrology; US Soil Conservation Service: Washington, DC, USA, 1972.
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT Calibration and Uncertainty Program—A User Manual. SWAT-CUP-2012, 2012th ed.; Swiss Federal Institute of Aquatic Science and Technology: Dubendorf, Switzerland, 2012. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Magaña, V.; Amador, J.A.; Medina, S. The Midsummer Drought over Mexico and Central America. J. Clim. 1999, 12, 1577–1588. [Google Scholar] [CrossRef]
- Lane, L.J.; Ferreira, V.A.; Shirley, E.D. Estimating transmission losses in ephemeral stream channels. In Hydrology and Water Resources in Arizona and the Southwest; Arizona-Nevada Academy of Science: Las Vegas, NV, USA, 1980. [Google Scholar]
- Opere, A.O.; Okello, B.N. Hydrologic analysis for river Nyando using SWAT. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 1765–1797. [Google Scholar] [CrossRef] [Green Version]
Product | Spatial Resolution | Time-Step | Available Period | Spatial Coverage |
---|---|---|---|---|
Gauge observation | Point | Daily | 2005–2010 | Study area |
CFSR | 0.30° × 0.30° (~38 km) | Daily | 1979–2014 | Global |
MSWEPv1.1 | 0.25° × 0.25° (~30 km) | Daily | 1979–2015 | Global |
PERSIANN-CDR | 0.25° × 0.25° (~30 km) | Daily | 1983–present | Latitude band 60° N-S |
CMORPH | 0.25° × 0.25° (~30 km) | Daily | 1998–present | Latitude band 60° N-S |
CHIRPSv2.0 | 0.05° × 0.05° (~5.3 km) | Daily | 1981–present | Latitude band 50° N-S |
Statistic | Equation 1 | Unit | Optimal Value |
---|---|---|---|
POD | - | 1 | |
FAR | - | 0 | |
CSI | - | 1 | |
BS | - | 1 | |
CC | - | 1 | |
RSR | - | 0 | |
ME | mm | 0 | |
BIAS | % | 0 |
Type of Event | Daily Rainfall Intensity (mm/Day) |
---|---|
Tiny rain | <1 |
Light rain | [1, 2) |
Low modeerate rain | [2, 5) |
High moderate rain | [5, 10) |
Heavy rain | [10, 50) |
Violent rain | ≥50 |
Type | Parameter 1 | Description | Initial Range |
---|---|---|---|
Management | r_CN2 | SCS runoff curve number | [−0.2, 0.2] |
Groundwater | v_ALPHA_BF | Baseflow alpha factor (days−1) | [0, 1] |
Groundwater | v_GWQMN | Threshold depth of water in the shallow aquifer for return flow to occur (mm) | [0, 5000] |
Groundwater | v_GW_REVAP | Groundwater “revap” coefficient | [0.02, 0.20] |
Groundwater | v_RCHRG_DP | Deep aquifer percolation fraction | [0, 1] |
Groundwater | v_SHALLST | Initial depth of water in the shallow aquifer (mm) | [0, 1500] |
HRU | v_CANMX | Maximum canopy storage (mm) | [0, 50] |
HRU | r_SLSUBBSN | Average slope length | [−0.5, 0.5] |
HRU | r_HRU_SLP | Average slope steepness | [−0.5, 0.5] |
Basin | v_ESCO | Soil evaporation compensation factor | [0.1, 1] |
Basin | v_SURLAG | Surface runoff lag time | [0.05, 24] |
Routing | v_CH_N2 | Manning’s “n” value for the main channel | [−0.01, 0.3] |
Routing | v_CH_K2 | Effective hydraulic conductivity in main channel alluvium | [0.01, 150] |
Soil | r_SOL_AWC | Available water capacity of the soil layer (mm H2O/mm soil) | [−0.3, 0.3] |
Soil | r_SOL_BD | Moist bulk density | [−0.3, 0.3] |
Soil | r_SOL_Z | Depth from soil surface to bottom of layer | [−0.3, 0.3] |
Performance Metric | Equation 1 | Range |
---|---|---|
Coefficient of determination (R2) | [0, 1] | |
Nash-Sutcliffe Efficiency (NSE) | [−∞, 1] | |
Percent bias (PBIAS) | [−∞, ∞] | |
RMSE-observations standard deviation ratio (RSR) | [0, ∞] |
Precipitation Dataset | PS-1 Station | PS-2 Station | ||||||
---|---|---|---|---|---|---|---|---|
POD | FAR | CSI | BS | POD | FAR | CSI | BS | |
CFSR | 0.78 | 0.40 | 0.51 | 1.31 | 0.79 | 0.48 | 0.46 | 1.53 |
MSWEPv1.1 | 0.93 | 0.41 | 0.57 | 1.57 | 0.91 | 0.46 | 0.51 | 1.69 |
PERSIANN-CDR | 0.93 | 0.41 | 0.57 | 1.58 | 0.92 | 0.47 | 0.51 | 1.74 |
CMORPH | 0.80 | 0.31 | 0.59 | 1.16 | 0.79 | 0.30 | 0.59 | 1.13 |
CHIRPSv2.0 | 0.81 | 0.27 | 0.62 | 1.11 | 0.79 | 0.35 | 0.55 | 1.22 |
Precipitation Dataset | PS-1 Station | PS-2 Station | ||
---|---|---|---|---|
PD1 | PD10 | PD1 | PD10 | |
Gauge observations | 600 | 339 | 558 | 282 |
CFSR | 788 | 236 | 854 | 248 |
MSWEPv1.1 | 942 | 369 | 944 | 339 |
PERSIANN-CDR | 946 | 409 | 973 | 424 |
CMORPH | 696 | 315 | 628 | 289 |
CHIRPSv2.0 | 666 | 439 | 678 | 409 |
Station/Precipitation Dataset | CC | RSR | ME | BIAS 1 | MA (mm) | ||||
---|---|---|---|---|---|---|---|---|---|
Daily | Monthly | Daily | Monthly | Daily | Monthly | Daily | Monthly | ||
PS-1 | |||||||||
Gauge observations | - | - | - | - | - | - | - | - | 1833.55 |
CFSR | 0.32 | 0.84 | 1.05 | 0.60 | −1.15 | −34.64 | −19.83 | −19.83 | 1526.50 |
MSWEPv1.1 | 0.51 | 0.82 | 0.88 | 0.59 | 0.11 | 3.39 | 1.94 | 1.94 | 1867.66 |
PERSIANN-CDR | 0.48 | 0.83 | 0.89 | 0.56 | −0.03 | −1.09 | −0.58 | −0.63 | 1813.24 |
CMORPH | 0.50 | 0.87 | 0.96 | 0.50 | −0.03 | −0.96 | −0.55 | −0.55 | 1805.05 |
CHIRPSv2.0 | 0.55 | 0.89 | 0.88 | 0.50 | 0.50 | 15.05 | 8.62 | 8.62 | 2058.75 |
PS-2 | |||||||||
Gauge observations | - | - | - | - | - | - | - | 1553.04 | |
CFSR | 0.27 | 0.86 | 1.10 | 0.52 | −0.25 | −5.38 | −5.49 | −5.38 | 1537.81 |
MSWEPv1.1 | 0.52 | 0.88 | 0.90 | 0.57 | 0.55 | 12.26 | 12.13 | 12.26 | 1752.64 |
PERSIANN-CDR | 0.47 | 0.90 | 0.91 | 0.53 | 0.82 | 17.98 | 17.88 | 17.98 | 1827.73 |
CMORPH | 0.47 | 0.84 | 1.03 | 0.60 | 0.02 | 0.85 | 0.73 | 0.85 | 1588.88 |
CHIRPSv2.0 | 0.53 | 0.94 | 0.91 | 0.45 | 0.61 | 13.48 | 13.34 | 13.48 | 1847.27 |
Stream Gauge/ Criteria | CFSR | MSWEPv1.1 | PERSIANN-CDR | CMORPH | CHIRPSv2.0 |
---|---|---|---|---|---|
SG-1 calibration (validation) | |||||
R2 | 0.54 (0.68) | 0.75 (0.65) | 0.76 (0.72) | 0.63 (0.60) | 0.80 (0.82) |
NSE | 0.39 (0.63) | 0.67 (0.64) | 0.69 (0.71) | 0.36 (0.58) | 0.51 (0.80) |
PBIAS | 31.97 (25.56) | 11.92 (11.57) | 18.71 (6.03) | 1.70 (0.78) | −10.49 (−6.30) |
RSR | 0.78 (0.61) | 0.57 (0.60) | 0.56 (0.54) | 0.80 (0.65) | 0.70 (0.45) |
SG-2 calibration (validation) | |||||
R2 | 0.60 (0.69) | 0.77 (0.66) | 0.78 (0.70) | 0.63 (0.60) | 0.80 (0.82) |
NSE | 0.42 (0.62) | 0.67 (0.63) | 0.68 (0.68) | 0.34 (0.58) | 0.50 (0.80) |
PBIAS | 33.99 (26.73) | 15.49 (16.46) | 24.43 (12.31) | 8.24 (7.21) | −5.06 (−3.20) |
RSR | 0.76 (0.62) | 0.57 (0.61) | 0.57 (0.56) | 0.81 (0.65) | 0.70 (0.45) |
SG-3 calibration (validation) | |||||
R2 | 0.62 (0.67) | 0.78 (0.65) | 0.79 (0.71) | 0.65 (0.59) | 0.82 (0.81) |
NSE | 0.44 (0.61) | 0.67 (0.63) | 0.68 (0.69) | 0.34 (0.57) | 0.53 (0.79) |
PBIAS | 34.19 (25.79) | 16.08 (16.58) | 25.56 (12.63) | 9.53 (7.46) | −3.47 (−3.24) |
RSR | 0.75 (0.63) | 0.57 (0.61) | 0.57 (0.56) | 0.82 (0.66) | 0.69 (0.46) |
Parameter | Parameter Values | |||||
---|---|---|---|---|---|---|
Precipitation Gauge Data | CFSR | MSWEPv1.1 | PERSIANN-CDR | CMORPH | CHIRPSv2.0 | |
r_CN2 | −0.06 | −0.07 | −0.14 | −0.19 | −0.02 | −0.11 |
v_ALPHA_BF | 0.14 | 0.03 | 0.82 | 0.47 | 0.02 | 0.02 |
v_GWQMN | 3568.33 | 3313 | 4425 | 3737.5 | 4712.5 | 3385 |
v_GW_REVAP | 0.12 | 0.12 | 0.10 | 0.15 | 0.08 | 0.12 |
v_RCHRG_DP | 0.09 | 0.15 | 0.54 | 0.44 | 0.02 | 0.01 |
v_SHALLST | 92.33 | 594.25 | 657 | 521.5 | 937.5 | 1062.5 |
v_CANMX | 28.38 | 28.55 | 29.05 | 16.57 | 32.58 | 19.55 |
r_SLSUBBSN | 0.42 | 0.23 | −0.24 | 0.25 | −0.28 | −0.18 |
r_HRU_SLP | −0.48 | −0.21 | −0.45 | −0.01 | 0.31 | 0.24 |
v_ESCO | 0.85 | 0.58 | 0.40 | 0.56 | 0.75 | 0.73 |
v_SURLAG | 12.86 | 7.96 | 15.15 | 7.74 | 9.26 | 5.79 |
v_CH_N2 | 0.13 | 0.03 | 0.24 | 0.10 | 0.01 | 0.01 |
v_CH_K2 | 39.65 | 44.24 | 8.65 | 16.15 | 116.93 | 77.95 |
r_SOL_AWC | 0.07 | −0.08 | −0.02 | 0.02 | 0.16 | 0.07 |
r_SOL_BD | −0.08 | 0.03 | 0.09 | 0.02 | −0.13 | −0.06 |
r_SOL_Z | −0.24 | 0.13 | −0.27 | −0.16 | 0.22 | 0.04 |
Stream Gauge/ Criteria | Precipitation Gauge Data | CFSR | MSWEPv1.1 | PERSIANN-CDR | CMORPH | CHIRPSv2.0 |
---|---|---|---|---|---|---|
SG-1 calibration (validation) | ||||||
R2 | 0.73 (0.61) | 0.68 (0.79) | 0.76 (0.59) | 0.83 (0.71) | 0.58 (0.62) | 0.82 (0.90) |
NSE | 0.70 (0.60) | 0.62 (0.77) | 0.71 (0.57) | 0.82 (0.69) | 0.56 (0.57) | 0.79 (0.87) |
PBIAS | −7.48 (10.37) | −1.03 (−6.41) | −16.63 (−15.10) | −4.76 (−13.66) | −13.36 (−13.58) | −14.52 (−12.15) |
RSR | 0.55 (0.63) | 0.62 (0.48) | 0.54 (0.66) | 0.43 (0.56) | 0.67 (0.66) | 0.46 (0.37) |
SG-2 calibration (validation) | ||||||
R2 | 0.77 (0.63) | 0.74 (0.79) | 0.78 (0.57) | 0.85 (0.70) | 0.60 (0.62) | 0.84 (0.91) |
NSE | 0.76 (0.61) | 0.67 (0.76) | 0.72 (0.56) | 0.84 (0.69) | 0.60 (0.58) | 0.83 (0.88) |
PBIAS | 1.13 (16.85) | 0.20 (−6.26) | −13.82 (−11.52) | 1.03 (−7.75) | −5.60 (−7.37) | −8.50 (−12.53) |
RSR | 0.49 (0.63) | 0.58 (0.49) | 0.53 (0.66) | 0.39 (0.55) | 0.63 (0.65) | 0.41 (0.35) |
SG-3 calibration (validation) | ||||||
R2 | 0.77 (0.62) | 0.76 (0.78) | 0.78 (0.57) | 0.85 (0.71) | 0.62 (0.61) | 0.85 (0.91) |
NSE | 0.76 (0.59) | 0.67 (0.73) | 0.72 (0.56) | 0.84 (0.70) | 0.62 (0.58) | 0.84 (0.88) |
PBIAS | 3.11 (17.34) | −0.10 (−8.11) | −13.59 (−12.31) | 2.14 (−7.67) | −3.99 (−7.20) | −6.39 (−14.24) |
RSR | 0.49 (0.64) | 0.57 (0.52) | 0.53 (0.67) | 0.39 (0.54) | 0.62 (0.65) | 0.40 (0.34) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimeno-Sáez, P.; Blanco-Gómez, P.; Pérez-Sánchez, J.; Cecilia, J.M.; Senent-Aparicio, J. Impact Assessment of Gridded Precipitation Products on Streamflow Simulations over a Poorly Gauged Basin in El Salvador. Water 2021, 13, 2497. https://doi.org/10.3390/w13182497
Jimeno-Sáez P, Blanco-Gómez P, Pérez-Sánchez J, Cecilia JM, Senent-Aparicio J. Impact Assessment of Gridded Precipitation Products on Streamflow Simulations over a Poorly Gauged Basin in El Salvador. Water. 2021; 13(18):2497. https://doi.org/10.3390/w13182497
Chicago/Turabian StyleJimeno-Sáez, Patricia, Pablo Blanco-Gómez, Julio Pérez-Sánchez, José M. Cecilia, and Javier Senent-Aparicio. 2021. "Impact Assessment of Gridded Precipitation Products on Streamflow Simulations over a Poorly Gauged Basin in El Salvador" Water 13, no. 18: 2497. https://doi.org/10.3390/w13182497
APA StyleJimeno-Sáez, P., Blanco-Gómez, P., Pérez-Sánchez, J., Cecilia, J. M., & Senent-Aparicio, J. (2021). Impact Assessment of Gridded Precipitation Products on Streamflow Simulations over a Poorly Gauged Basin in El Salvador. Water, 13(18), 2497. https://doi.org/10.3390/w13182497