Stormwater Detention Ponds in Urban Catchments—Analysis and Validation of Performance of Ponds in the Ouseburn Catchment, Newcastle upon Tyne, UK
Abstract
:1. Introduction
2. Data and Methods
2.1. Case Study: Ouseburn Catchment
2.2. Discharge and Precipitation Data
2.3. Hydrological Modelling
3. Kingston Park Developments 1976–1978
3.1. Rainfall Event on 30 June 2007
3.2. Base Flow Index
3.3. Recessions
4. Newcastle Great Park Developments 2004–2019
4.1. Rainfall Event on 6 August 2011
4.2. Trends in Flows
4.3. Analysis of the Largest Events
4.4. Peaks over Threshold Analysis
5. Discussion
5.1. Discussion of the 1976–1978 Kingston Park Developments
5.2. Discussion of 2004–2019 Newcastle Great Park Developments
5.3. Discussion on the Location of Ponds and Their Effectiveness
5.4. Comparison with Other Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Shuster, W.D.; Bonta, J.; Thurston, H.; Warnemuende, E.; Smith, D.R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- Putro, B.; Kjeldsen, T.; Hutchins, M.; Miller, J. An empirical investigation of climate and land-use effects on water quantity and quality in two urbanising catchments in the southern United Kingdom. Sci. Total Environ. 2016, 548–549, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Oudin, L.; Salavati, B.; Furusho, C.; Ribstein, P.; Saadi, M. Hydrological impacts of urbanization at the catchment scale. J. Hydrol. 2018, 559, 774–786. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Fan, Y.; Zhang, T. Assessing the effect of land use change on surface runoff in a rapidly urbanized city: A case study of the central area of Beijing. Land 2020, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Blum, A.G.; Ferraro, P.J.; Archfield, S.A.; Ryberg, K.R. Causal effect of impervious cover on annual flood magnitude for the United States. Geophys. Res. Lett. 2020, 47, e2019GL086480. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J. Sustainable surface water management and green infrastructure in UK urban catchment planning. J. Environ. Plan. Manag. 2013, 56, 24–41. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-based solutions for Europe’s sustainable development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Pauleit, S.; Ambrose, B.; Endersson, E.; Anton Buijs, A.; Haase, D.; Elands, B.; Hansen, R.; Kowarik, I.; Kronenburg, J.; Mattijssen, T.; et al. Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project. Urban For. Urban Green. 2019, 40, 4–16. [Google Scholar] [CrossRef]
- O’Donnell, E.; Thorne, C.; Ahilan, S.; Arthur, S.; Birkinshaw, S.; Butler, D.; Dawson, D.; Everett, G.; Fenner, R.; Glenis, V.; et al. The blue-green path to ur-ban flood resilience. Blue Green Syst. 2020, 2, 28–45. [Google Scholar] [CrossRef] [Green Version]
- Melville-Shreeve, P.; Cotterill, S.; Grant, L.; Arahuetes, A.; Stovin, V.; Farmani, R.; Butler, D. State of SuDS delivery in the United Kingdom. Water Environ. J. 2017, 32, 9–16. [Google Scholar] [CrossRef]
- Guo, Y. Hydrologic Design of Urban Flood Control Detention Ponds. J. Hydrol. Eng. 2001, 6, 472–479. [Google Scholar] [CrossRef]
- Sahoo, S.N.; Pekkat, S. Detention Ponds for Managing Flood Risk due to Increased Imperviousness: Case Study in an Urbanizing Catchment of India. Nat. Hazards Rev. 2018, 19, 05017008. [Google Scholar] [CrossRef]
- Wiest, L.; Baudot, R.; Lafay, F.; Bonjour, E.; Becouze-Lareure, C.; Aubin, J.-B.; Jame, P.; Barraud, S.; Kouyi, G.L.; Sébastian, C.; et al. Priority substances in accumulated sediments in a stormwater detention basin from an industrial area. Environ. Pollut. 2018, 243, 1669–1678. [Google Scholar] [CrossRef]
- Ahilan, S.; Guan, M.; Wright, N.; Sleigh, A.; Allen, D.; Arthur, S.; Haynes, H.; Krivtsov, V. Modelling the long-term suspended sedimentological effects on stormwater pond performance in an urban catchment. J. Hydrol. 2019, 571, 805–818. [Google Scholar] [CrossRef]
- Sharior, S.; McDonald, W.; Parolari, A.J. Improved reliability of stormwater detention basin performance through water quality data-informed real-time control. J. Hydrol. 2019, 573, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Yao-Ming, H. Experimental evaluation of design methods for in-site detention ponds. Int. J. Sediment Res. 2010, 25, 52–63. [Google Scholar]
- Liew, Y.; Selamat, Z.; Ab Ghani, A.; Zakaria, N. Performance of a dry detention pond: Case study of Kota Damansara, Selangor, Malaysia. Urban Water J. 2012, 9, 129–136. [Google Scholar] [CrossRef]
- Wissler, A.D.; Hunt, W.F.; McLaughlin, R.A. Hydrologic and water quality performance of two aging and un-maintained dry detention basins receiving highway stormwater runoff. J. Environ. Manag. 2020, 255, 109853. [Google Scholar] [CrossRef]
- Ravazzani, G.; Gianoli, P.; Meucci, S.; Mancini, M. Assessing downstream impacts of detention basins in urbanized river basins using a distributed hydrological model. Water Resour. Manag. 2014, 28, 1033–1044. [Google Scholar] [CrossRef]
- Bilodeau, K.; Pelletier, G.; Duchesne, S. Real-time control of stormwater detention basins as an adaptation measure in mid-size cities. Urban Water J. 2018, 15, 858–867. [Google Scholar] [CrossRef]
- Ronalds, R.; Zhang, H. Assessing the impact of urban development and on-site stormwater detention on regional hydrology using monte carlo simulated rainfall. Water Resour. Manag. 2019, 33, 2517–2536. [Google Scholar] [CrossRef]
- Del Giudice, G.; Rasulo, G.; Siciliano, D.; Padulano, R. Combined Effects of Parallel and Series Detention Basins for Flood Peak Reduction. Water Resour. Manag. 2014, 28, 3193–3205. [Google Scholar] [CrossRef]
- Rhea, L.; Jarnagin, T.; Hogan, D.; Loperfido, J.V.; Shuster, W. Effects of urbanization and stormwater control measures on streamflows in the vicinity of Clarksburg, Maryland, USA. Hydrol. Process. 2015, 29, 4413–4426. [Google Scholar] [CrossRef]
- Jefferson, A.J.; Bhaskar, A.S.; Hopkins, K.G.; Fanelli, R.; Avellaneda, P.M.; McMillan, S.K. Stormwater manage-ment network effectiveness and implications for urban watershed function: A critical review. Hydrol. Process. 2017, 31, 4056–4080. [Google Scholar] [CrossRef]
- Li, C.; Fletcher, T.D.; Duncan, H.P.; Burns, M.J. Can stormwater control measures restore altered urban flow regimes at the catchment scale? J. Hydrol. 2017, 549, 631–653. [Google Scholar] [CrossRef]
- British Geological Survey. Geology of Britain Viewer. 2020. Available online: https://mapapps.bgs.ac.uk/geologyofbritain/home.html (accessed on 15 October 2020).
- Birkinshaw, S.J.; O’Donnell, G.; Glenis, V.; Kilsby, C. Improved hydrological modelling of urban catchments using runoff coefficients. J. Hydrol. 2021, 594, 125884. [Google Scholar] [CrossRef]
- Newcastle City Council. Ouseburn Surface Water Management Plan. 2015. Available online: https://www.newcastle.gov.uk/sites/default/files/Flooding/ouseburn_swmp_2015.pdf (accessed on 20 September 2017).
- Capita. Newcastle Great Park: Independent Review of SUDS Features Cell I. 2014; Unpublished report. [Google Scholar]
- Fairhust. Cell A, Newcastle Great Park, Newcastle upon Tyne. Flood Risk Assessment and Drainage strategy. 2017; Unpublished report. [Google Scholar]
- Environment Agency. Ouseburn and North Gosforth Integrated Urban Drainage Study. Making Space for Water Final Report. 2008. Available online: https://research.ncl.ac.uk/proactive/ouseburn/ms4wouseburnpilotstudy/MS4WFinalReportByEA.pdf (accessed on 14 January 2021).
- Smith, L.; Liang, Q.; James, P.; Lin, W. Assessing the utility of social media as a data source for flood risk manage-ment using a real-time modelling framework. J. Flood Risk Manag. 2017, 10, 370–380. [Google Scholar] [CrossRef]
- Ewen, J.; Parkin, G.; O’Connell, P.E. SHETRAN: Distributed River Basin Flow and Transport Modeling System. J. Hydrol. Eng. 2000, 5, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Birkinshaw, S.J.; James, P.; Ewen, J. Graphical user interface for rapid set-up of SHETRAN physically-based river catchment model. Environ. Model. Softw. 2010, 25, 609–610. [Google Scholar] [CrossRef]
- Birkinshaw, S.J.; Bathurst, J.C.; Robinson, M. 45 years of non-stationary hydrology over a forest plantation growth cycle, Coalburn catchment, Northern England. J. Hydrol. 2014, 519, 559–573. [Google Scholar] [CrossRef] [Green Version]
- Birkinshaw, S.J.; Guerreiro, S.B.; Nicholson, A.; Liang, Q.; Quinn, P.; Zhang, L.; He, B.; Yin, J.; Fowler, H.J. Climate change impacts on Yangtze River discharge at the Three Gorges Dam. Hydrol. Earth Syst. Sci. 2017, 21, 1911–1927. [Google Scholar] [CrossRef] [Green Version]
- De Hipt, F.O.; Diekkrüger, B.; Steup, G.; Yira, Y.; Hoffmann, T.; Rode, M. Applying SHETRAN in a tropical west african catchment (Dano, Burkina Faso)—Calibration, validation, uncertainty assessment. Water 2017, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Sreedevi, S.; Eldho, T.I.; Madhusoodhanan, C.G.; Jayasankar, T. Multiobjective sensitivity analysis and model pa-rameterization approach for coupled streamflow and groundwater table depth simulations using SHETRAN in a wet humid tropical catchment. J. Hydrol. 2019, 579, 124217. [Google Scholar] [CrossRef]
- Santhi, C.; Allen, P.M.; Muttiah, R.S.; Arnold, J.G.; Tuppad, P. Regional estimation of base flow for the contermi-nous United States by hydrologic landscape regions. J. Hydrol. 2008, 351, 139–153. [Google Scholar] [CrossRef]
- Gustard, A.; Bullock, A.; Dixon, J.M. Low Flow Estimation in the United Kingdom; Institute of Hydrology: Wallingford, Oxfordshire, UK, 1992. [Google Scholar]
- Kirchner, J.W. Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.; Vogel, R.M.; Famiglietti, J. Objective hydrograph baseflow recession analysis. J. Hydrol. 2015, 525, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Keller, V.D.J.; Tanguy, M.; Prosdocimi, I.; Terry, J.A.; Hitt, O.; Cole, S.J.; Fry, M.; Morris, D.G.; Dixon, H. CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological and other applications. Earth Syst. Sci. Data 2015, 7, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Lerner, D.N. Identifying and quantifying urban recharge: A review. Hydrogeol. J. 2002, 10, 143–152. [Google Scholar] [CrossRef]
- Ngo, T.T.; Yoo, D.G.; Lee, Y.S.; Kim, J.H. Optimization of Upstream Detention Reservoir Facilities for Downstream Flood Mitigation in Urban Areas. Water 2016, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Kaini, P.; Artita, K.; Nicklow, J.W. Evaluating optimal detention pond locations at a watershed scale. World Environ. Water Resour. Congr. 2007, 1–8. [Google Scholar] [CrossRef]
- Pereira Souza, F.; Leite Costa, M.E.; Koide, S. Hydrological modelling and evaluation of detention ponds to im-prove urban drainage system and water quality. Water 2019, 11, 1547. [Google Scholar] [CrossRef] [Green Version]
- Saadatpour, M.; Delkhosh, F.; Afshar, A.; Solis, S.S. Developing a simulation-optimization approach to allocate low impact development practices for managing hydrological alterations in urban watershed. Sustain. Cities Soc. 2020, 61, 102334. [Google Scholar] [CrossRef]
Development | Approximate Year Completion | Area (km2) | Cumulative Area (km2) |
---|---|---|---|
Sage HQ | 2004 | 0.08 | 0.08 |
Warkworth Woods | 2005 | 0.07 | 0.15 |
Melbury | 2008 | 0.24 | 0.39 |
East Moor Village | 2012 | 0.05 | 0.44 |
Green Side | 2014 | 0.20 | 0.64 |
Brunton | 2016 | 0.31 | 0.95 |
Elmwood | 2016 | 0.29 | 1.24 |
Brunton Meadows | 2020 | 0.34 | 1.58 |
Gauging Station (Catchment) | Gauge Type (Number) | Area (km2) | Data Availability |
---|---|---|---|
Woolsington (Ouseburn) | EA (23018) | 11.4 | 1984–1987 (daily), 1992–2018 (hourly and some 15 min) |
Brunton Bridge (Ouseburn) | MS4W | 17.6 | 2007–2013 (15 min) |
Kingston Park (Ouseburn) | MS4W | 22.6 | 2007–2013 (15 min) |
Three Mile Bridge (Ouseburn) | MS4W | 29.8 | 2007–2013 (15 min) |
Crag Hall (Ouseburn) | EA (23016) | 53.8 | 1976–1978 (daily), 1980–1981 (daily), 1983–1990 (daily),1991–2018 (hourly and some 15 min) |
Hartford Bridge (Blyth) | EA (22006) | 269.4 | 1976–2018 (daily) |
Mitford (Wansbeck) | EA (22007) | 287.3 | 1976–2018 (daily) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birkinshaw, S.J.; Kilsby, C.; O’Donnell, G.; Quinn, P.; Adams, R.; Wilkinson, M.E. Stormwater Detention Ponds in Urban Catchments—Analysis and Validation of Performance of Ponds in the Ouseburn Catchment, Newcastle upon Tyne, UK. Water 2021, 13, 2521. https://doi.org/10.3390/w13182521
Birkinshaw SJ, Kilsby C, O’Donnell G, Quinn P, Adams R, Wilkinson ME. Stormwater Detention Ponds in Urban Catchments—Analysis and Validation of Performance of Ponds in the Ouseburn Catchment, Newcastle upon Tyne, UK. Water. 2021; 13(18):2521. https://doi.org/10.3390/w13182521
Chicago/Turabian StyleBirkinshaw, Stephen J., Chris Kilsby, Greg O’Donnell, Paul Quinn, Russell Adams, and Mark E. Wilkinson. 2021. "Stormwater Detention Ponds in Urban Catchments—Analysis and Validation of Performance of Ponds in the Ouseburn Catchment, Newcastle upon Tyne, UK" Water 13, no. 18: 2521. https://doi.org/10.3390/w13182521
APA StyleBirkinshaw, S. J., Kilsby, C., O’Donnell, G., Quinn, P., Adams, R., & Wilkinson, M. E. (2021). Stormwater Detention Ponds in Urban Catchments—Analysis and Validation of Performance of Ponds in the Ouseburn Catchment, Newcastle upon Tyne, UK. Water, 13(18), 2521. https://doi.org/10.3390/w13182521