Characterization of Regional Groundwater System Based on Aquifer Response to Recharge–Discharge Phenomenon and Hierarchical Clustering Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Explanatory Data Analysis (EDA)
2.3. Hierarchical Clustering Analysis (HCA)
3. Results
3.1. HCA Results and Aquifer Classification
3.2. Apparent Line Patterns of Groundwater Hydrograph and Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahid, S.; Hazarika, M.K. Groundwater drought in the northwestern districts of Bangladesh. Water Resour. Manag. 2009, 24, 1989–2006. [Google Scholar] [CrossRef]
- Raj, P. Classification and interpretation of piezometer well hydrographs in parts of southeaster peninsular India. Environ. Geol. 2004, 46, 808–819. [Google Scholar] [CrossRef]
- Mukherjee, A.; Gupta, A.; Ray, R.K.; Tewari, D. Aquifer response to recharge–discharge phenomenon: Inference from well hydrographs for genetic classification. Appl. Water Sci. 2017, 7, 801–812. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Feng, P.; Zhang, W.; Zhang, T. An integrated groundwater management mode based on control indexes of groundwater quantity and level. Water Resour. Manag. 2013, 27, 3273–3292. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, W. The spatio-temporal variability of groundwater depth in a typical desert-oasis ecotone. J. Earth Syst. Sci. 2015, 124, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, H.; Ghazavi, R.; Karimi, H. Estimation of groundwater recharge from the rainfall and irrigation in an arid environment using inverse modeling approach and RS. Water Resour. Manag. 2016, 30, 1939–1951. [Google Scholar] [CrossRef]
- Shahmohammadi-Kalalagh, S.; Taran, F.; Nasiri, H. Investigating groundwater level fluctuations via analyzing groundwater hydrograph: A case study of Naqadeh plain in north-west of Iran. Sustain. Water Resour. Manag. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Almedeij, J.; Al-Ruwaih, F. Periodic behavior of groundwater level fluctuations in residential areas. J. Hydrol. 2006, 328, 677–684. [Google Scholar] [CrossRef]
- Theodossiou, N.; Latinopoulos, P. Evaluation and optimisation of groundwater observation networks using the Kriging methodology. Environ. Modell. Softw. 2006, 21, 991–1000. [Google Scholar] [CrossRef]
- Bacani, A.; Posavec, D.; Parlov, J. Groundwater quantity in the Zagreb aquifer. In Proceedings of the XXXVIII IAH congress groundwater quality sustainability, Krakow, Poland, 12–17 September 2010; pp. 87–92. [Google Scholar]
- Lemieux, J.M.; Sudicky, E.A.; Peltier, W.R.; Tarasov, L. Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. J. Geophys. Res. Earth 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Luczaj, J.; Masarik, K. Groundwater quantity and quality issues in a water-rich region: Examples from Wisconsin, USA. Resources 2015, 4, 323–357. [Google Scholar] [CrossRef]
- Taylor, C.J.; Alley, W.M. Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data; Circular 1217; U.S. Geological Survey: Denver, CO, USA, 2001; p. 74.
- Thakur, G.S.; Thomas, T. Analysis of groundwater levels for detection of trend in Sagar district, Madhya Pradesh. J. Geol. Soc. India 2011, 77, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Gorgoglione, A.; Gioia, A.; Iacobellis, V. A framework for assessing modeling performance and effects of rainfall-catchment-drainage characteristics on nutrient urban runoff in poorly gauged watersheds. Sustainability 2019, 11, 4933. [Google Scholar] [CrossRef] [Green Version]
- Ouarda, T.B.M.J.; Charron, C.; Hundecha, Y.; St-Hilaire, A.; Chebana, F. Introduction of the GAM model for regional low-flow frequency analysis at ungauged basins and comparison with commonly used approaches. Environ. Model. Softw. 2018, 109, 256–271. [Google Scholar] [CrossRef]
- Wu, B.; Wang, G.; Wang, Z.; Liu, C.; Ma, J. Integrated hydrologic and hydrodynamic modeling to assess water exchange in a data-scarce reservoir. J. Hydrol. 2017, 555, 15–30. [Google Scholar] [CrossRef]
- Chai, Y.; Xiao, C.; Li, M.; Liang, X. Hydrogeochemical characteristics and groundwater quality evaluation based on multivariate statistical analysis. Water 2020, 12, 2792. [Google Scholar] [CrossRef]
- Liu, G.; Ma, F.; Liu, G.; Guo, J.; Duan, X.; Gu, H. Quantification of water sources in a coastal gold mine through an end-member mixing analysis combining multivariate statistical methods. Water 2020, 12, 580. [Google Scholar] [CrossRef] [Green Version]
- Yidana, S.M. Groundwater classification using multivariate statistical methods: Southern Ghana. J. Afr. Earth Sci. 2010, 57, 455–469. [Google Scholar] [CrossRef]
- Tiri, A.; Lahbari, N.; Boudoukha, A. Assessment of the quality of water by hierarchical cluster and variance analyses of the Koudiat Medouar Watershed, East Algeria. Appl. Water Sci. 2017, 7, 4197–4206. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, A.; Vadiati, M.; Talkhabi, M.; Nadiri, A.A.; Nakhaei, M.; Rahimian, M. A hydrogeochemical analysis of groundwater using hierarchical clustering analysis and fuzzy C-mean clustering methods in Arak plain, Iran. Environ. Earth Sci. 2020, 79, 342. [Google Scholar] [CrossRef]
- Hussain, F.; Wu, R.-S.; Yu, K.-C. Application of Physically Based Semi-Distributed HEC-HMS Model for Flow Simulation in Tributary Catchments of Kaohsiung Area Taiwan. J. Mar. Sci. Technol. 2021, 29, 42–62. [Google Scholar] [CrossRef]
- Hussain, F.; Yu, K.-C.; Wu, R.-S. Estimation of hydrogeological parameters using physically based hydrological modelling and lithology data in ungauged creek catchments of southern Taiwan. Hydrol. Sci. J. 2021, 66, 703–728. [Google Scholar] [CrossRef]
- Hussain, F. A systematic review on integrated surface–subsurface modeling using watershed WASH123D model. Model. Earth Syst. Environ. 2021. [Google Scholar] [CrossRef]
- Halder, S.; Roy, M.B.; Roy, P.K. Analysis of groundwater level trend and groundwater drought using standard groundwater level index: A case study of an eastern river basin of West Bengal, India. SN Appl. Sci. 2020, 2, 507. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, R.; Moghaddam, A.A.; Tziritis, E.; Fakhri, M.S.; Soltani, S. Identification of hydrogeochemical processes and pollution sources of groundwater resources in the Marand plain, northwest of Iran. Environ. Earth Sci. 2017, 76, 297. [Google Scholar] [CrossRef]
- Weeks, E.P. Barometric fluctuations in wells tapping deep unconfined aquifers. Water Resour. Res. 1979, 15, 1167–1176. [Google Scholar] [CrossRef]
- Rojstaczer, S. Determination of fluid flow properties of the response of water level in well to atmospheric loading. Water Resour. Res. 1988, 24, 1927–1938. [Google Scholar] [CrossRef] [Green Version]
- Posavec, K.; Bacani, A.; Nakic, Z. A visual basic spreadsheet macro for recession curve analysis. Groundwater 2006, 44, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Sujono, J.; Shikasho, S.; Hiramatsu, K. A comparison of techniques for hydrograph recession analysis. Hydrol. Process. 2004, 18, 403–413. [Google Scholar] [CrossRef]
- Ferdowsian, R.; Pannell, D.J.; McCarron, C.; Ryder, A.T.; Crossing, L. Explaining groundwater hydrographs: Separating atypical rainfall events from time trends. Aust. J. Soil Res. 2001, 39, 861–876. [Google Scholar] [CrossRef] [Green Version]
- Gailuma, A.; Vitola, I.; Lauva, A.D.; Vircavs, V.; Veinbergs, A.; Dimanta, Z. Recession curve analysis for groundwater levels: Case study in Latvia. In Proceedings of the EGU General Assembly 2012, Geophysical Research Abstracts, Vienna, Austria, 22–27 April 2012; Volume 14. EGU2012-713. [Google Scholar]
- Yu, H.-L.; Lin, Y.-C. Analysis of space-time non-stationary patterns of rainfall-groundwater interactions by integrating empirical orthogonal function and cross wavelet transform methods. J. Hydrol. 2015, 525, 585–597. [Google Scholar] [CrossRef]
- Lewis, J.; Liljedahl, B. Groundwater surveys in Developing Regions. Air Soil Water Res. 2020, 3. [Google Scholar] [CrossRef] [Green Version]
ID | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Xin Wei | Mei Nong | Ji Yang | Ji Yang-G | Qi Shan | Zhong Zhou | Tu Kou | Li Gang | Xi Pu | Da Shu | Jiu Qu | Yong Fang | Chao Liao | Zhao Ming |
Total depth (m) | 87.4 | 76.8 | 218.2 | 40.4 | 96.9 | 206.5 | 53.5 | 116.6 | 86 | 173.3 | 184.2 | – | 145 | 138 |
Aquifer 1 position (m) | 12–33 | 30–36 | 90–120 | 0–0 | 8–20 | 60–78 | 0–0 | 36–66 | 15–33 | 18–36 | 99–114 | – | 6–21 | 22–34 |
Aquifer 2 position (m) | 63–81 | 52–70 | 192–216 | – | 62–92 | 174–183 | – | 144–174 | 68–80 | 141–153 | 186–198 | – | 110–140 | 108–132 |
W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | |
W1 | 1 | |||||||||||||
W2 | 0.36 | 1 | ||||||||||||
W3 | 0.48 | 0.74 | 1 | |||||||||||
W4 | 0.46 | 0.72 | 1.00 | 1 | ||||||||||
W5 | 0.71 | 0.59 | 0.87 | 0.87 | 1 | |||||||||
W6 | 0.58 | 0.74 | 0.95 | 0.94 | 0.88 | 1 | ||||||||
W7 | 0.54 | 0.73 | 0.92 | 0.92 | 0.87 | 0.92 | 1 | |||||||
W8 | 0.34 | 0.55 | 0.52 | 0.54 | 0.54 | 0.57 | 0.77 | 1 | ||||||
W9 | 0.35 | 0.57 | 0.83 | 0.83 | 0.77 | 0.80 | 0.88 | 0.73 | 1 | |||||
W10 | 0.45 | 0.62 | 0.75 | 0.74 | 0.72 | 0.76 | 0.84 | 0.79 | 0.90 | 1 | ||||
W11 | 0.05 | 0.01 | 0.24 | 0.25 | 0.31 | 0.16 | 0.41 | 0.58 | 0.58 | 0.54 | 1 | |||
W12 | 0.30 | 0.30 | 0.59 | 0.60 | 0.58 | 0.58 | 0.63 | 0.57 | 0.78 | 0.78 | 0.66 | 1 | ||
W13 | 0.46 | 0.55 | 0.74 | 0.73 | 0.75 | 0.65 | 0.81 | 0.71 | 0.87 | 0.85 | 0.67 | 0.69 | 1 | |
W14 | 0.41 | 0.37 | 0.68 | 0.68 | 0.72 | 0.59 | 0.71 | 0.45 | 0.75 | 0.65 | 0.56 | 0.54 | 0.87 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.-S.; Hussain, F.; Lin, Y.-C.; Yeh, T.-Y.; Yu, K.-C. Characterization of Regional Groundwater System Based on Aquifer Response to Recharge–Discharge Phenomenon and Hierarchical Clustering Analysis. Water 2021, 13, 2535. https://doi.org/10.3390/w13182535
Wu R-S, Hussain F, Lin Y-C, Yeh T-Y, Yu K-C. Characterization of Regional Groundwater System Based on Aquifer Response to Recharge–Discharge Phenomenon and Hierarchical Clustering Analysis. Water. 2021; 13(18):2535. https://doi.org/10.3390/w13182535
Chicago/Turabian StyleWu, Ray-Shyan, Fiaz Hussain, Yuan-Chien Lin, Tzu-Yu Yeh, and Kai-Chun Yu. 2021. "Characterization of Regional Groundwater System Based on Aquifer Response to Recharge–Discharge Phenomenon and Hierarchical Clustering Analysis" Water 13, no. 18: 2535. https://doi.org/10.3390/w13182535
APA StyleWu, R.-S., Hussain, F., Lin, Y.-C., Yeh, T.-Y., & Yu, K.-C. (2021). Characterization of Regional Groundwater System Based on Aquifer Response to Recharge–Discharge Phenomenon and Hierarchical Clustering Analysis. Water, 13(18), 2535. https://doi.org/10.3390/w13182535