Improvement of Downstream Flow by Modifying SWAT Reservoir Operation Considering Irrigation Water and Environmental Flow from Agricultural Reservoirs in South Korea
Abstract
:1. Introduction
2. Irrigation Water and Environmental Flow Module Development
2.1. Irrigation Water Requirement Calculation of Paddy Rice
2.2. SWAT Modified Reservoir Operation Module
3. Evaluating the Model with the Anseong Watershed Dataset
3.1. Study Watershed and Reservoirs
3.2. Data Acquisition and Setup for Simulation
4. Results and Discussion
4.1. Irrigation Water Requirement of Reservoirs
4.2. Improved SWAT Calibration and Validation Results
4.3. Improved SWAT Reservoir Operation
4.4. Streamflow Impact by Irrigation Water Supply and Environmental Flow Release
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Data | Input | Output |
---|---|---|
Climatic | Location of weather station, Daily rainfall (mm), Daily air temperature (°C), Daily relative humidity (%), Daily sunshine hour (hr), Daily wind speed (m/s) | Reference ET (ET0, m3) Crop ET (ETc, m3) Consumptive water use (m3) Ponding depth (mm) Effective rainfall (m3) Net duty of water (m3) Gross duty of water (m3) |
Crop (rice) | for ET, maximum and minimum ponding depths (mm) | |
Soil | Daily infiltration of paddy field (mm) | |
Irrigation | Irrigated area (ha), Irrigation schedule (seeding, planting, and harvesting dates), Water conveyance loss of irrigation canal (%), Water management loss of irrigation facilities (%) |
Subroutine | Name | Unit | Definition |
---|---|---|---|
readres.f | RSVORD(:) | none | Number of water level measurement points |
RSVHWL(:) | EL.m | High water level | |
RSVDWL(:) | EL.m | Dead water level | |
RSVWL(:,:) | EL.m | Water level for each measurement point in relation curve between water level and storage capacity | |
RSVST(:,:) | m3 | Storage for each measurement point in relation curve between water level and storage (read in as 103 m3 and converted to m3) | |
IRRTFF(:) | fraction | Irrigation return flow as a fraction of the irrigation water requirement volume (0–1) | |
RSVRWL(:) | EL.m | Release restricted water level | |
ENVFLOR(:) | m3 | Environmental flow for each RWL (read in as m3/s and converted to m3) | |
res.f | RSVCWL(:) | EL.m | Calculated water level |
IWR | m3 | Irrigation water requirement | |
IRRTFO | m3/s | Irrigation return flow | |
ENVFLOW | m3 | Environmental flow |
Data | Input (*.res) | Output (Output.rsv) |
---|---|---|
Reservoir characteristic | Relation curve between water level (EL.m) and storage capacity (103 m3) HWL and DWL (EL.m) | Water level on day (EL.m) Irrigation water requirement on day (m3) Irrigation return flow on day (m3/s) Environmental flow on day (m3) |
Irrigation water | Beginning and ending dates of the irrigation period (mm/dd–mm/dd) Daily irrigation water requirement (103 m3) calculated by IWRM Irrigation return flow fraction (0~1) | |
Environmental flow | RWL (EL, m) (able to be set to five RWL) Environmental flow rate for each RWL |
Parameter | Initial Value | Adjusted Value | |||
---|---|---|---|---|---|
GS | GK | MD | GD (Outlet) | ||
Runoff and evapotranspiration | |||||
ESCO | 0.95 | 0.8 | 0.8 | 0.8 | 0.8 |
CH_N1/CH_N2 | 0.014 | 0.033 | 0.033 | 0.033 | 0.033/0.025 |
Groundwater | |||||
GW_DELAY (days) | 31 | 80 | 80 | 80 | 55.75 |
ALPHA_BF (days) | 0.048 | 0.5 | 0.6 | 0.5 | 0.37 |
GW_REVAP | 0.02 | 0.2 | 0.2 | 0.2 | 0.2 |
Snowmelt | |||||
SFTMP (°C) | 1 | −1.3 | −1.3 | −1.3 | −1.3 |
SMTMP (°C) | 0.5 | 4.2 | 4.2 | 4.2 | 4.2 |
SNO50COV | 0 | 0.47 | 0.47 | 0.47 | 0.47 |
Reservoir | |||||
RES_K (mm/hr) | 0 | 0.2 | 0.3 | 0.3 | - |
EVRSV | 0.6 | 0.5 | 0.6 | 0.6 | - |
IRRTFF | 0 | 0.35 | 0.35 | 0.35 | - |
References
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. J. Sci. 2005, 308, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Lee, Y.G.; Woo, S.Y.; Kim, W.J.; Kim, S.J. Evaluation of water quality interaction by dam and weir operation using SWAT in the Nakdong River Basin of South Korea. Sustainability 2020, 12, 6845. [Google Scholar] [CrossRef]
- Acreman, M.; Aldrick, J.; Binnie, C.; Black, A.; Cowx, I.; Dawson, H.; Dunbar, M.; Extence, C.; Hannaford, J.; Harby, A.; et al. Environmental flows from dams: The water framework directive. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability; Thomas Telford, Ltd.: London, UK, 2009; pp. 13–22. [Google Scholar]
- Acreman, M.; Angela, H.A.; Matthew, J.C.; Carol, C.; Neville, D.C.; Fiona, D.; Ian, O.; Carmel, A.P.; Michael, J.S.; William, Y. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 2014, 12, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Alfredsen, K.; Harby, A.; Linnansaari, T.; Ugedal, O. Development of an inflow-controlled environmental flow regime for a Norwegian river. River Res. Appl. 2012, 28, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Haghighi, A.T.; Kløve, B. Design of environmental flow regimes to maintain lakes and wetlands in regions with high seasonal irrigation demand. Ecol. Eng. 2017, 100, 120–129. [Google Scholar] [CrossRef] [Green Version]
- King, A.J.; Tonkin, Z.; Mahoney, J. Environmental flow enhances native fish spawning and recruitment in the Murray River, Australia. River Res. Appl. 2009, 25, 1205–1218. [Google Scholar] [CrossRef]
- Lytle, D.A.; Poff, N.L. Adaptation to natural flow regimes. Trends Ecol. Evol. 2004, 19, 94–100. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Yang, H. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol. Indic. 2016, 60, 434–441. [Google Scholar] [CrossRef] [Green Version]
- MLTM. Water Vision 2020; Ministry of Land, Transportation and Maritime Affairs: Sejong, Korea, 2016. (In Korean)
- Kim, S.M.; Park, Y.K.; Won, C.H.; Kim, M.H. Analysis of scenarios for environmental instream flow considering water quality in Saemangeum Watershed. J. Korean Soc. Eng. 2016, 38, 117–127. (In Korean) [Google Scholar] [CrossRef]
- MFAFF. Statistical Yearbook of Land and Water Development for Agriculture; Ministry for Food, Agriculture, Forestry and Fisheries: Gwacheon, Korea, 2009. (In Korean)
- KRC. The Project of Raising Embankment of Agricultural Reservoir; Korea Rural Community Corporation: Naju-si, Korea, 2011. (In Korean) [Google Scholar]
- Park, J.Y.; Park, M.J.; Joh, H.K.; Shin, H.J.; Kwon, H.J.; Srinivasan, R.; Kim, S.J. Assessment of MIROC3.2 HiRes climate and CLUE-s land use change impacts on watershed hydrology using SWAT. Trans. ASABE 2011, 54, 1713–1724. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, P.S.; Lim, C.Y. Behaviour analysis of irrigation reservoir using open water management program. J. Korean Soc. Agric. Eng. 2004, 46, 3–13. (In Korean) [Google Scholar]
- Kim, S.J.; Park, K.C.; Park, H.S. Estimation of available permit water for large scale agricultural reservoirs in Youngsan River basin. J. Korean Soc. Agric. Eng. 2012, 54, 93–97. (In Korean) [Google Scholar]
- Kim, P.S.; Kim, S.J. Development of storage management system for small dams. J. Korean Soc. Agric. Eng. 2005, 47, 15–25. (In Korean) [Google Scholar]
- Lee, N.H.; Heo, Y.J. Reliability and applicability of weather forecasts for irrigation scheduling. J. Korean Soc. Agric. Engin. 1999, 41, 25–32. (In Korean) [Google Scholar]
- Hatterman, F.; Krysanova, V.; Wechsung, F.; Wattenbach, M. Integrating groundwater dynamics in regional hydrological modelling. Environ. Model. Softw. 2004, 19, 1039–1051. [Google Scholar] [CrossRef]
- Kannan, N.; Jeong, J.; Srinivasan, R. Hydrologic modeling of a canal-irrigated agricultural watershed with irrigation best management practices: Case study. J. Hydrol. Eng. 2011, 16, 746–757. [Google Scholar] [CrossRef] [Green Version]
- Cau, P.; Paniconi, C. Assessment of alternative land management practices using hydrological simulation and a decision support tool: Arborea agricultural region, Sardinia. Hydrol. Earth Syst. Sci. 2007, 11, 1811–1823. [Google Scholar] [CrossRef] [Green Version]
- Piniewski, M.; Cedric, L.R.; Acreman, M.C.; Okruszko, T.; Schneider, C. Effect of climate change on environmental flow indicators in the Narew Basin, Poland. J. Environ. Qual. 2014, 43, 155–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large-area hydrologic modeling and assessment: Part I. Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Cai, X.; McKinney, D.C.; Lasdon, L.S. A framework for sustainability analysis in water resources management and application to the Syr Darya Basin. Water Resour. Res. 2002, 38, 1–14. [Google Scholar] [CrossRef]
- Chang, L.C. Guiding rational reservoir flood operation using penalty-type genetic algorithm. J. Hydrol. 2008, 354, 65–74. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Chung, H.W.; Kim, S.J.; Kim, J.S.; Noh, J.K.; Park, K.U.; Son, J.K.; Yoon, K.S.; Lee, K.H.; Lee, N.H.; Chung, S.O.; et al. Irrigation and Drainage Engineering, 2nd ed.; Dongmyeong Publisher: Seoul, Korea, 2006. (In Korean) [Google Scholar]
- Yoo, S.H.; Choi, J.Y.; Jang, M.W. Estimation of design water requirement using FAO Penman-Monteith and optimal probability distribution function in South Korea. Agric. Water Manag. 2008, 95, 845–853. [Google Scholar] [CrossRef]
- Dastane, N.G. Effective Rainfall in Irrigated Agriculture; FAO Irrigation and Drainage. Paper, No. 25; Food and Agriculture Organization of the United Nations: Rome, Italy, 1978. [Google Scholar]
- Jang, M.W.; Chung, H.W.; Choi, J.Y.; Park, K.W.; Bae, S.J. Development of a single reservoir agricultural drought evaluation model for paddy. J. Korean Soc. Agric. Eng. 2004, 46, 17–30. [Google Scholar]
- KRC. A Study on Causative Factors of Drying Streams in Rural Area; Korea Rural Community Corporation: Naju-si, Korea, 2006. (In Korean) [Google Scholar]
- Yoo, S.H.; Choi, J.Y.; Nam, W.H.; Hong, E.M. Analysis of design water requirement of paddy rice using frequency analysis affected by climate change in South Korea. Agric. Water Manag. 2012, 112, 33–42. [Google Scholar] [CrossRef]
- Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; ASCE Manual, No. 70; ASCE: New York, NY, USA, 1990. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.; King, K.W. Soil and Water Assessment Tool: Theoretical Documentation; Version 2000. TWRI Report TR-191; Texas Water Resources Institute: College Station, TX, USA, 2002. [Google Scholar]
- Park, J.Y. Improvement of SWAT Model for Agricultural Water Management Adapting Climate Change. Ph.D. Thesis, Konkuk University, Seoul, Korea, 2013. [Google Scholar]
- Kim, D.R.; Lee, Y.G.; Lee, J.W.; Kim, S.J. Assessment of future climate and land use changes impact on hydrologic behavior in Anseong-cheon Gongdo urban-growing watershed. J. Korea Water Resour. Assoc. 2018, 51, 141–150. (In Korean) [Google Scholar]
- Ashoften, P.S.; Haddad, O.B.; Mariño, M. Climate change impact on reservoir performance indexes in agricultural water supply. J. Irrig. Drain. Eng. 2013, 139, 85–97. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: A case study of the Xinfengjiang Reservoir in southern China. Agricul. Water Manag. 2013, 116, 110–121. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois river watershed using HSPF and SWAT 1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Muleta, M.K.; Nicklow, J.W. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J. Hydrol. 2005, 306, 127–145. [Google Scholar] [CrossRef] [Green Version]
- Refsgaard, J.C. Parameterization, calibration and validation of distributes hydrologic models. J. Hydrol. 1997, 198, 69–97. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Knudsen, J. Operational validation and intercomparison of different types of hydrologic models. Water Resour. Res. 1996, 32, 2189–2202. [Google Scholar] [CrossRef]
- Senarath, S.U.S.; Ogden, F.L.; Downer, C.W.; Sharif, H.O. On the calibration and verification of two-dimensional, distributed, hortonian, continuous watershed models. Water Resour. Res. 2000, 36, 1495–1510. [Google Scholar] [CrossRef]
- Kang, S.K.; Lee, D.R.; Moon, J.W.; Choi, S.J. Effects of dams and water use on flow regime alteration of the Geum River Basin. J. Korea Water Res. Assoc. 2010, 43, 325–336. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Anand, J.; Gosain, A.K.; Kohsa, R. Optimisation of multipurpose reservoir operation by coupling soil and water assessment tool (SWAT) and algorithm for optimal operating policy (case study: Ganga River Basin). Sustainability 2018, 10, 1660. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D. Re-thinking environmental flows: From allocations and reserves to sustainability boundaries. River Res. Appl. 2010, 26, 1052–1063. [Google Scholar] [CrossRef]
- Farhadian, M.; Bozorg-Haddad, O.; Loáiciga, H.A. Fulfillment of river environmental flow: Applying Nash theory for quantitative-qualitative conflict resolution in reservoir operation. Water Environ. J. 2020, 35, 486–499. [Google Scholar] [CrossRef]
- Farooq, N.; Gheewala, S.H. A review of two different methods for the estimation of water footprint of crops. Bull. Geol. Soc. Malays. 2019, 68, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Deng, W.; Zhang, J.F. Evaluating Mountain water scarcity on the county scale: A case study of Dongchuan District, Kunming, China. J. Mt. Sci. 2019, 16, 744–754. [Google Scholar] [CrossRef]
- Pastor, A.V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 2014, 18, 5041–5059. [Google Scholar] [CrossRef] [Green Version]
- Zeiger, S.J.; Hubbart, J.A. Assessing Environmental Flow Targets Using Pre-Settlement Land Cover: A SWAT Modeling Application. Water 2018, 10, 791. [Google Scholar] [CrossRef] [Green Version]
- Pang, A.; Li, C.; Sun, T.; Yang, W.; Yang, Z. Trade-off analysis to determine environmental flows in a highly regulated watershed. Sci. Rep. 2018, 8, 14130. [Google Scholar] [CrossRef] [Green Version]
Input Model | Parameter | Reservoir | ||
---|---|---|---|---|
Gosam | Geumkwang | Madun | ||
Area (ha) | Watershed area | 7100 | 4830 | 1240 |
Irrigated area | 2970 | 1906 | 530 | |
Full water area | 229.9 | 138.4 | 40.5 | |
Storage (103 m3) | Gross storage | 16,150 | 12,095 | 3496 |
Effective storage | 15,217 | 12,047 | 3486 | |
Dead storage | 888 | 48 | 10 | |
Water level (EL.m) | Full water level | 54.1 | 67.7 | 120.8 |
High water level | 52.4 | 67.0 | 119.1 | |
Dead water level | 40.8 | 51.5 | 102.0 |
Unit: mm/month | |||||||
---|---|---|---|---|---|---|---|
IWRM Result | Apr | May | Jun | Jul | Aug | Sep | Total |
Gosam reservoir | |||||||
IWR | 10.5 | 61.4 | 300.7 | 103.0 | 172.8 | 53.4 | 701.8 |
CUW | 216.3 | 213.3 | 333.2 | 294.2 | 318.9 | 88.2 | 1464.1 |
- ET | 50.6 | 137.4 | 142.1 | 124.0 | 130.7 | 36.5 | 621.2 |
- ER | 32.4 | 98.1 | 70.1 | 204.0 | 167.7 | 41.4 | 613.7 |
Geumkwang reservoir | |||||||
IWR | 9.2 | 10.2 | 344.2 | 137.1 | 238.9 | 136.8 | 876.4 |
CUW | 162.0 | 250.1 | 359.3 | 327.8 | 362.9 | 197.9 | 1659.9 |
- ET | 15.6 | 142.1 | 145.6 | 128.2 | 126.1 | 64.0 | 621.6 |
- ER | 14.7 | 86.6 | 84.0 | 218.1 | 171.7 | 88.5 | 663.4 |
Madun reservoir | |||||||
IWR | 7.8 | 6.4 | 255.4 | 95.9 | 160.7 | 97.3 | 623.5 |
CUW | 156.0 | 197.3 | 319.0 | 278.3 | 317.3 | 169.3 | 1437.2 |
- ET | 14.0 | 130.9 | 135.0 | 125.2 | 126.7 | 65.1 | 596.9 |
- ER | 16.1 | 82.0 | 89.0 | 191.9 | 172.7 | 81.7 | 633.5 |
Periods | PCP (mm) | Streamflow (mm) | Evaluation Criteria | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Obs. | SWAT | Impv.S | R2 | RMSE (mm/day) | NSE | |||||
SWAT | Impv.S | SWAT | Impv.S | SWAT | Impv.S | |||||
Irrigation | 1086.0 | 497.7 | 571.2 | 566.7 | 0.93 | 0.93 | 30.6 | 30.3 | 0.88 | 0.89 |
Non-irrigation | 203.8 | 115.3 | 143.0 | 148.6 | 0.80 | 0.79 | 8.8 | 8.8 | 0.93 | 0.93 |
Total | 1289.8 | 613.0 | 714.1 | 718.9 | 0.87 | 0.86 | 19.70 | 19.54 | 0.91 | 0.91 |
Flow Duration | Streamflow (m3/s) | CFR | |||||
---|---|---|---|---|---|---|---|
Q10 | Q95 | Q185 | Q275 | Q355 | |||
Normal year | SWAT | 52.35 | 5.71 | 3.35 | 1.85 | 0.94 | 55.69 |
Impv.S | 52.10 | 5.70 | 3.38 | 1.98 | 1.05 | 49.76 | |
Diff (%) | −0.49 | −0.30 | 0.97 | 7.20 | 11.37 | −10.65 | |
Selected drought year (2001) | SWAT | 16.27 | 3.16 | 2.17 | 1.45 | 0.66 | 24.75 |
Impv.S | 16.27 | 3.10 | 2.29 | 1.87 | 0.77 | 21.16 | |
Diff (%) | 0.00 | −1.93 | 5.49 | 29.19 | 16.96 | −14.50 | |
Selected flood year (2011) | SWAT | 114.50 | 9.32 | 4.47 | 2.36 | 1.54 | 74.40 |
Impv.S | 114.50 | 9.28 | 4.45 | 2.36 | 1.57 | 73.07 | |
Diff (%) | 0.00 | −0.37 | −0.43 | 0.08 | 1.82 | −1.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, J.; Park, J.; Kim, S.; Kim, S. Improvement of Downstream Flow by Modifying SWAT Reservoir Operation Considering Irrigation Water and Environmental Flow from Agricultural Reservoirs in South Korea. Water 2021, 13, 2543. https://doi.org/10.3390/w13182543
Kim J, Lee J, Park J, Kim S, Kim S. Improvement of Downstream Flow by Modifying SWAT Reservoir Operation Considering Irrigation Water and Environmental Flow from Agricultural Reservoirs in South Korea. Water. 2021; 13(18):2543. https://doi.org/10.3390/w13182543
Chicago/Turabian StyleKim, Jinuk, Jiwan Lee, Jongyoon Park, Sehoon Kim, and Seongjoon Kim. 2021. "Improvement of Downstream Flow by Modifying SWAT Reservoir Operation Considering Irrigation Water and Environmental Flow from Agricultural Reservoirs in South Korea" Water 13, no. 18: 2543. https://doi.org/10.3390/w13182543
APA StyleKim, J., Lee, J., Park, J., Kim, S., & Kim, S. (2021). Improvement of Downstream Flow by Modifying SWAT Reservoir Operation Considering Irrigation Water and Environmental Flow from Agricultural Reservoirs in South Korea. Water, 13(18), 2543. https://doi.org/10.3390/w13182543