Data- and Model-Based Discharge Hindcasting over a Subtropical River Basin
Abstract
:1. Introduction
2. Simulation Methodology
2.1. Study Area
2.2. Models
2.2.1. The SWAT Model
2.2.2. The ARX Model
2.2.3. The GEP Model
2.3. Models Setup
2.3.1. The SWAT Model
Physiographic Data
Meteorological Data
2.3.2. The ARX Model
2.3.3. The GEP Model
2.4. Observed Discharge Data
2.5. Model Performance Evaluation
2.6. Model Calibration and Validation
3. Results and Discussion
3.1. Calibration Results
3.2. Validation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Price, K. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Prog. Phys. Geogr. Earth Environ. 2011, 35, 465–492. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Arnold, J.G.; Garbrecht, J.D. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 2003, 46, 1539–1551. [Google Scholar] [CrossRef]
- Clark, M.P.; Bierkens, M.F.P.; Samaniego, L.; Woods, R.A.; Uijlenhoet, R.; Bennett, K.E.; Pauwels, V.R.N.; Cai, X.; Wood, A.W.; Peters-Lidard, C.D. The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. Hydrol. Earth Syst. Sci. 2017, 21, 3427–3440. [Google Scholar] [CrossRef] [Green Version]
- Barnhart, B.L.; Golden, H.E.; Kasprzyk, J.R.; Pauer, J.J.; Jones, C.E.; Sawicz, K.A.; Hoghooghi, N.; Simon, M.; McKane, R.B.; Mayer, P.M.; et al. Embedding co-production and addressing uncertainty in watershed modeling decision-support tools: Successes and challenges. Environ. Model. Softw. 2018, 109, 368–379. [Google Scholar] [CrossRef]
- Knisel, W.G. CREAMS: A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems; Conservation Research Report; U.S. Department of Agriculture: Washington, DC, USA, 1980. [Google Scholar]
- Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G. Precipitation-runoff modeling system: User’s manual. Water-Resour. Investig. Rep. 1983, 83, 207. [Google Scholar]
- Johanson, R.C.; Imhoff, J.C.; Little, J.L.; Donigian, A.S. User’s Manual for the Hydrological Simulation Program (HSPF); U.S. Environmental Protection Agency: Athens, GA, USA, 1984. [Google Scholar]
- Arnold, J.G.; Allen, P.M.; Bernhardt, G. A Comprehensive Surface-Groundwater Flow Model. J. Hydrol. 1993, 142, 47–69. [Google Scholar] [CrossRef]
- Luijten, J. Dynamic Hydrological Modeling Using ArcView GIS. ArcUser, July–September; ESRI: Redlands, CA, USA, 2000. [Google Scholar]
- Bingner, R.L. Runoff Simulated from Goodwin Creek Watershed Using SWAT. Trans. ASAE 1996, 39, 85–90. [Google Scholar] [CrossRef]
- Rauf, A.; Ghumman, A.R. Impact Assessment of Rainfall-Runoff Simulations on the Flow Duration Curve of the Upper Indus River—A Comparison of Data-Driven and Hydrologic Models. Water 2018, 10, 876. [Google Scholar] [CrossRef] [Green Version]
- Parasuraman, K.; Amin, E.; Sean, K.C. Modelling the dynamics of the evapotranspiration process using genetic programming. Hydrol. Sci. J. 2007, 52, 563–578. [Google Scholar] [CrossRef]
- Barge, J.T.; Sharif, H.O. An Ensemble Empirical Mode Decomposition, Self-Organizing Map, and Linear Genetic Programming Approach for Forecasting River Streamflow. Water 2016, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Aytek, A.; Asce, M.; Alp, M. An application of artificial intelligence for rainfall-runoff modeling. J. Earth Syst. Sci. 2008, 117, 145–155. [Google Scholar] [CrossRef] [Green Version]
- U.S. EPA (U.S. Environmental Protection Agency). Mountaintop Mining/Valley Fills in Appalachia—Final Programmatic Environmental Impact Statement. 2005. Available online: http://www.epa.gov/region03/mtntop/index.htm (accessed on 27 November 2020).
- Kentucky River and Tributaries. Upper Kentucky River Navigation Project. Volume 2. Public Involvement Record. Army Engineer District Louisville KY. 1980. Available online: https://apps.dtic.mil/sti/citations/ADA115625 (accessed on 27 November 2020).
- KGS (Kentucky Geological Survey). Kentucky River Basin Map and Chart by Carey, D.I. 2009. Available online: http://kgs.uky.edu/kgsweb/olops/pub/kgs/mc188_12.pdf (accessed on 17 June 2021).
- USGS (U.S. Geological Survey). Water-Quality Assessment of the Kentucky River Basin, Kentucky—Analysis of Available Surface-Water-Quality Data Through 1986; National Water-Quality Assessment: Reston, VA, USA, 1995; USGS Water-Supply Paper 2351.
- Kentucky River Authority. Kentucky River History—Locks and Dams. 2021. Available online: http://finance.ky.gov/offices/Pages/LocksandDams.aspx (accessed on 17 June 2021).
- Kentucky River Locks and Dams. Available online: https://abandonedonline.net/location/kentucky-river-locks-dams/ (accessed on 11 September 2021).
- Kentucky River Authority. Available online: https://finance.ky.gov/kentucky-river-authority/PublishingImages/kyriverbasinmap.jpg (accessed on 23 August 2021).
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment—Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input/Output File Documentation Version 2009; Technical Report No. 365; Texas Water Resources Institute: College Station, TX, USA, 2010. [Google Scholar]
- Chaplot, V.; Saleh, A.; Jaynes, D.B.; Arnold, J. Predicting water, sediment and NO3-N loads under scenarios of land-use and management practices in a flat watershed. Water Air Soil Pollut. 2004, 154, 271–293. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Rostamian, R.; Jaleh, A.; Afyuni, M.; Mousavi, S.F.; Heidarpour, M.; Jalalian, A.; Abbaspour, K.C. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrol. Sci. J. 2008, 53, 977–988. [Google Scholar] [CrossRef]
- Yahya, C. Using ARX and NARX approaches for modeling and prediction of the process behavior: Application to a reactor-exchanger. Asia-Pac. J. Chem. Eng. 2008, 3, 597–605. [Google Scholar] [CrossRef]
- Knotters, M.; Bierkens, M.F.P. Physical basis of time series models for water table depths. Water Resour. Res. 2000, 36, 181–188. [Google Scholar] [CrossRef]
- James, L.D.; Thompson, W.O. Least Squares Estimation of Constants in a Linear Recession Model. Water Resour. Res. 1970, 6, 1062–1069. [Google Scholar] [CrossRef]
- Tallaksen, L.M. A review of baseflow recession analysis. J. Hydrol. 1995, 165, 349–370. [Google Scholar] [CrossRef]
- Ljung, L. System Identification. In Signal Analysis and Prediction; Applied and Numerical Harmonic Analysis; Prochazka, A., Kingsbury, N.G., Payner, P.J.W., Uhlir, J., Eds.; Springer Birkhäuser: Boston, MA, USA, 1998; pp. 163–173. ISBN 978-1-4612-7273-1. [Google Scholar]
- Wallin, R.; Isaksson, A.J.; Ljung, L. An iterative method for identification of ARX models from incomplete data. In Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), Sydney, NSW, Australia, 12–15 December 2000; Volume 1, pp. 203–208. [Google Scholar]
- Ferreira, C. Gene Expression Programming and the Evolution of Computer Programs. In Recent Developments in Biologically Inspired Computing; IGI Global: Hershey, PA, USA, 2005. [Google Scholar] [CrossRef]
- Gan, Z.; Yang, Z.; Li, G.; Jiang, M. Automatic Modeling of Complex Functions with Clonal Selection-Based Gene Expression Programming. Third Int. Conf. Nat. Comput. 2007, 4, 228–232. [Google Scholar] [CrossRef]
- Ferreira, C. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Syst. 2001, 13, 87–129. [Google Scholar]
- Aytac, G.; Ali, A. New Approach for Stage–Discharge Relationship: Gene-Expression Programming. J. Hydrol. Eng. 2009, 14, 812–820. [Google Scholar] [CrossRef]
- Ferreira, C. Gene Expression Programming in Problem Solving. In Soft Computing and Industry; Springer: London, UK, 2002; pp. 635–653. ISBN 978-1-4471-1101-6. [Google Scholar]
- González-Leiva, F.; Valdés-Pineda, R.; Valdés, J.B.; Ibáñez-Castillo, L.A. Assessing the Performance of Two Hydrologic Models for Forecasting Daily Streamflows in the Cazones River Basin (Mexico). Open J. Mod. Hydrol. 2016, 6, 168. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.D.; Heuvelink, G.B.M. Assessing Uncertainty Propagation through Physically Based Models of Soil Water Flow and Solute Transport. In Encyclopedia of Hydrological Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Healy, M.J.R. The Use of R2 as a Measure of Goodness of Fit. J. R. Stat. Soc. Ser. A 1984, 147, 608–609. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Sakib, S.; Ghebreyesus, D.; Sharif, H.O. Performance Evaluation of IMERG GPM Products during Tropical Storm Imelda. Atmosphere 2021, 12, 687. [Google Scholar] [CrossRef]
- Khatibi, R.; Ghorbani, M.A.; Kashani, M.H.; Kisi, O. Comparison of three artificial intelligence techniques for discharge routing. J. Hydrol. 2011, 403, 201–212. [Google Scholar] [CrossRef]
- Bogner, K.; Pappenberger, F. Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Firat, M. Comparison of Artificial Intelligence Techniques for river flow forecasting. Hydrol. Earth Syst. Sci. 2008, 12, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Vilaysane, B.; Takara, K.; Luo, P.; Akkharath, I.; Duan, W. Hydrological Stream Flow Modelling for Calibration and Uncertainty Analysis Using SWAT Model in the Xedone River Basin, Lao PDR. Procedia Environ. Sci. 2015, 28, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Lubini, A.; Adamowski, J. Assessing the Potential Impacts of Four Climate Change Scenarios on the Discharge of the Simiyu River, Tanzania Using the SWAT Model. 2013. Available online: http://www.taccire.sua.ac.tz/handle/123456789/286 (accessed on 13 September 2021).
- Xie, H.; Lian, Y. Uncertainty-based evaluation and comparison of SWAT and HSPF applications to the Illinois River Basin. J. Hydrol. 2013, 481, 119–131. [Google Scholar] [CrossRef]
- Abdollahi, S.; Raeisi, J.; Khalilianpour, M.; Ahmadi, F.; Kisi, O. Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques. Water Resour. Manag. 2017, 31, 4855–4874. [Google Scholar] [CrossRef]
Performance Rating | NSE | R2 | PBIAS |
---|---|---|---|
Very good | 0.75 < NSE ≤ 1.00 | 0.7 < R2 < 1 | PBIAS < ±10 |
Good | 0.65 < NSE ≤ 0.75 | 0.6 < R2 < 0.7 | ±10 ≤ PBIAS < ±15 |
Satisfactory | 0.50 < NSE ≤ 0.65 | 0.5 < R2 < 0.6 | ±15 ≤ PBIAS < ±25 |
Unsatisfactory | NSE ≤ 0.50 | R2 < 0.5 | PBIAS ≥ ±25 |
Calibrated Model Parameters | Calibrated Values | ||
---|---|---|---|
Parameters | Definitions (Unit) | Lower and Upper Bound | |
CH_N2 | Manning’s N value for stream channels | 0–0.3 | 0.07 |
CH_K2 | Effective hydraulic conductivity in main channel (mm/h) | 0–150 | 5.0 |
CN2 | SCS curve number | 30–100 | 36.0–96.9 |
SOL_K | Soil hydraulic conductivity (mm/h) | ≥0 | 0.756–331.2 |
SOL_AWC | Available water capacity of the soil (mm H2O/mm Soil) | 0–1 | 0.01–0.48 |
ALPHA_BF | Base flow alpha factor (days) | 0–1 | 0.15 |
GW_REVAP | Groundwater “revap” coefficient | 0.02–0.2 | 0.2 |
GW_DELAY | Groundwater delay (days) | 0–100 | 31 |
GWQMN | Threshold depth of water in the shallow aquifer for return flow to occur (mm H2O) | 0–5000 | 0.0 |
REVAPMN | Threshold depth of water in the shallow aquifer for “revap” to occur (mm H2O) | 0–500 | 1.0 |
ESCO | Soil evaporation compensation factor | 0–1 | 0.01 |
Calibration at LD14 | Correlation | Bias (%) | NSE | ||||||
---|---|---|---|---|---|---|---|---|---|
SWAT | ARX | GEP | SWAT | ARX | GEP | SWAT | ARX | GEP | |
2002–2005 period | 0.85 | 0.92 | 0.94 | 16.86 | −0.02 | −0.17 | 0.71 | 0.85 | 0.88 |
2002 | 0.86 | 0.92 | 0.94 | 7.32 | 2.68 | −0.70 | 0.58 | 0.84 | 0.88 |
2003 | 0.83 | 0.95 | 0.94 | 5.54 | −3.19 | −0.55 | 0.52 | 0.91 | 0.89 |
2004 | 0.86 | 0.89 | 0.96 | 34.21 | −1.04 | −0.40 | 0.69 | 0.79 | 0.84 |
2005 | 0.90 | 0.90 | 0.95 | 19.75 | 4.94 | −0.17 | 0.75 | 0.83 | 0.91 |
Validation at LD14 | Correlation | Bias (%) | NSE | ||||||
SWAT | ARX | GEP | SWAT | ARX | GEP | SWAT | ARX | GEP | |
2008–2010 | 0.85 | 0.88 | 0.93 | 19.92 | 6.99 | 1.47 | 0.65 | 0.76 | 0.87 |
2008 | 0.75 | 0.86 | 0.94 | 20.33 | 18.04 | 3.61 | 0.52 | 0.84 | 0.9 |
2009 | 0.82 | 0.89 | 0.91 | 14.22 | 1.11 | 0.08 | 0.64 | 0.91 | 0.84 |
2010 | 0.87 | 0.85 | 0.96 | 28.62 | 8.95 | 2.3 | 0.69 | 0.79 | 0.91 |
Validation at LD10 | Correlation | Bias (%) | NSE | ||||||
SWAT | ARX | GEP | SWAT | ARX | GEP | SWAT | ARX | GEP | |
2008–2010 | 0.82 | 0.92 | 0.93 | 16.83 | −2.38 | −3.11 | 0.65 | 0.85 | 0.86 |
2008 | 0.67 | 0.9 | 0.96 | 0.64 | 3.01 | −0.26 | 0.1 | 0.83 | 0.94 |
2009 | 0.82 | 0.93 | 0.9 | 20.15 | −5.54 | −4.74 | 0.62 | 0.86 | 0.81 |
2010 | 0.87 | 0.92 | 0.94 | 23.76 | −1.67 | −2.81 | 0.61 | 0.85 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billah, K.; Le, T.B.; Sharif, H.O. Data- and Model-Based Discharge Hindcasting over a Subtropical River Basin. Water 2021, 13, 2560. https://doi.org/10.3390/w13182560
Billah K, Le TB, Sharif HO. Data- and Model-Based Discharge Hindcasting over a Subtropical River Basin. Water. 2021; 13(18):2560. https://doi.org/10.3390/w13182560
Chicago/Turabian StyleBillah, Khondoker, Tuan B. Le, and Hatim O. Sharif. 2021. "Data- and Model-Based Discharge Hindcasting over a Subtropical River Basin" Water 13, no. 18: 2560. https://doi.org/10.3390/w13182560
APA StyleBillah, K., Le, T. B., & Sharif, H. O. (2021). Data- and Model-Based Discharge Hindcasting over a Subtropical River Basin. Water, 13(18), 2560. https://doi.org/10.3390/w13182560