Back to Ecology: Reference Conditions as a Basis for Assessment, Restoration and Sustainable Management of Large Rivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental Variables
- (a)
- Hydromorphological quality and assessment index (HQM), reflecting the combined influence of habitat quality, habitat modifications and upstream and/or downstream barriers: HQM > 0.6 (at least class 2).
- (b)
- Hydrological modification index (HLM) reflecting influence of upstream/downstream barriers (impoundments): HLM > 0.6 (at least class 2).
- (c)
- Saprobic index (minimum normalised value–ecological quality ratio (EQR) for the Slovenian (SIG3) and Croatian version (SIHR): EQR > 0.6 (at least good ecological status).
- (d)
- Percentage of CLC natural and semi-natural land use/land cover in the catchment at least 50% and CLC intensive agriculture + urban land use/land cover in the catchment <30%, where CLC urban land use/land cover in the catchment <5%.
- (e)
- Alien species could be present but account for <35% of the benthic invertebrate assemblage.
2.3. Benthic Invertebrates
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Higher Taxon | Taxon | Abbreviations |
---|---|---|
Turbellaria | Dendrocoelum album | |
Turbellaria | Dendrocoelum lacteum | |
Turbellaria | Dugesia lugubris/polychroa | |
Turbellaria | Dugesia lugubris | |
Turbellaria | Dugesia tigrina | |
Turbellaria | Phagocata sp. | |
Turbellaria | Planaria torva | |
Turbellaria | Polycelis nigra/tenuis | |
Nematoda | Nematoda Gen. sp. | |
Oligochaeta | Enchytraeidae Gen. sp. | |
Oligochaeta | Haplotaxis gordioides | |
Oligochaeta | Eiseniella tetraedra | Eis_tet |
Oligochaeta | Lumbriculidae Gen. sp. | |
Oligochaeta | Lumbriculus variegatus | |
Oligochaeta | Rhynchelmis sp. | |
Oligochaeta | Stylodrilus heringianus | Sto_her |
Oligochaeta | Stylodrilus sp. | |
Oligochaeta | Dero sp. | |
Oligochaeta | Nais sp. | Nai_sp. |
Oligochaeta | Ophidonais serpentina | |
Oligochaeta | Pristina sp. | |
Oligochaeta | Stylaria lacustris | |
Oligochaeta | Uncinais uncinata | |
Oligochaeta | Propappus volki | |
Oligochaeta | Aulodrilus pluriseta | |
Oligochaeta | Branchiura sowerbyi | |
Oligochaeta | Tubificidae—without setae | Tubb_dae |
Oligochaeta | Tubificidae—with setae | Tubz_dae |
Hirudinea | Dina punctata | |
Hirudinea | Erpobdella nigricollis | |
Hirudinea | Erpobdella octoculata | |
Hirudinea | Erpobdella sp. | |
Hirudinea | Erpobdella testacea | |
Hirudinea | Trocheta bykowskii | |
Hirudinea | Glossiphonia complanata | |
Hirudinea | Glossiphonia concolor | |
Hirudinea | Glossiphonia nebulosa | |
Hirudinea | Helobdella stagnalis | |
Hirudinea | Hemiclepsis marginata | |
Hirudinea | Piscicola geometra | |
Gastropoda | Acroloxus lacustris | |
Gastropoda | Ancylus fluviatilis | |
Gastropoda | Bithynia tentaculata | |
Gastropoda | Borysthenia naticina | |
Gastropoda | Lithoglyphus naticoides | Lith_nat |
Gastropoda | Potamopyrgus antipodarum | |
Gastropoda | Sadleriana sp. | |
Gastropoda | Radix auricularia | |
Gastropoda | Radix balthica/labiata | |
Gastropoda | Radix balthica | |
Gastropoda | Esperiana daudebartii acicularis | |
Gastropoda | Esperiana esperi | |
Gastropoda | Holandriana holandrii | |
Gastropoda | Theodoxus danubialis | The_dan |
Gastropoda | Theodoxus transversalis | |
Gastropoda | Physa fontinalis | |
Gastropoda | Physella acuta | |
Gastropoda | Gyraulus albus | |
Gastropoda | Valvata cristata | |
Gastropoda | Valvata piscinalis | |
Gastropoda | Viviparus viviparus | |
Bivalvia | Dreissena polymorpha | |
Bivalvia | Musculium lacustre | |
Bivalvia | Pisidium sp. | |
Bivalvia | Sphaerium corneum | |
Bivalvia | Sphaerium sp. | |
Bivalvia | Sinanodonta woodiana | |
Bivalvia | Unio crassus | |
Bivalvia | Unio pictorum | |
Bivalvia | Corbicula fluminea | |
Arachnida | Hydrachnidia Gen. sp. | |
Amphipoda | Synurella ambulans | |
Amphipoda | Gammarus fossarum | Gam_fos |
Amphipoda | Gammarus roeseli | Gam_roe |
Amphipoda | Corophium curvispinum | |
Amphipoda | Dikerogammarus haemobaphes | |
Amphipoda | Dikerogammarus villosus | |
Isopoda | Asellus aquaticus | |
Isopoda | Jaera istri | |
Ephemeroptera | Baetis buceratus | |
Ephemeroptera | Nigrobaetis digitatus | |
Ephemeroptera | Baetis fuscatus/scambus | Bae_f_s |
Ephemeroptera | Baetis lutheri | |
Ephemeroptera | Baetis rhodani | Bae_rho |
Ephemeroptera | Baetis scambus | |
Ephemeroptera | Baetis sp.-juv. | |
Ephemeroptera | Baetis vardarensis | |
Ephemeroptera | Baetis vernus | |
Ephemeroptera | Baetis buceratus/vernus | |
Ephemeroptera | Centroptilum luteolum | |
Ephemeroptera | Centroptilum sp. | |
Ephemeroptera | Cloeon dipterum | |
Ephemeroptera | Caenis sp. | |
Ephemeroptera | Serratella ignita | |
Ephemeroptera | Ephemerella notata | |
Ephemeroptera | Ephemerella mucronata | |
Ephemeroptera | Torleya major | |
Ephemeroptera | Ephemera danica | |
Ephemeroptera | Ephemera sp. | |
Ephemeroptera | Ecdyonurus sp. | |
Ephemeroptera | Epeorus sylvicola | |
Ephemeroptera | Heptagenia sp. | |
Ephemeroptera | Heptagenia sulphurea | Hep_sul |
Ephemeroptera | Rhithrogena sp. | |
Ephemeroptera | Habroleptoides confusa | |
Ephemeroptera | Paraleptophlebia submarginata | |
Ephemeroptera | Oligoneuriella rhenana | |
Ephemeroptera | Potamanthus luteus | |
Ephemeroptera | Siphlonurus sp. | |
Plecoptera | Chloroperla sp. | |
Plecoptera | Xanthoperla apicalis | |
Plecoptera | Leuctra sp. | |
Plecoptera | Nemoura sp. | |
Plecoptera | Nemurella pictetii | |
Plecoptera | Protonemura sp. | |
Plecoptera | Dinocras cephalotes | |
Plecoptera | Perla abdominalis (P. burmeisteriana) | |
Plecoptera | Marthamea vitripennis | |
Plecoptera | Isoperla sp. | |
Plecoptera | Perlodes sp. | |
Plecoptera | Brachyptera sp. | |
Plecoptera | Taeniopteryx nebulosa | |
Odonata | Calopteryx splendens | |
Odonata | Enallagma cyathigerum | |
Odonata | Ischnura elegans | |
Odonata | Coenagrionidae-juv. | |
Odonata | Cordulegaster heros | |
Odonata | Gomphus sp. | |
Odonata | Gomphus vulgatissimus | |
Odonata | Gomphus flavipes | |
Odonata | Onychogomphus forcipatus forcipatus | |
Odonata | Platycnemis pennipes | |
Heteroptera | Aphelocheirus aestivalis | |
Heteroptera | Micronecta sp. | |
Hymenoptera | Agriotypus armatus | |
Coleoptera | Bidessus sp. Ad. | |
Coleoptera | Elmis sp. Ad. | |
Coleoptera | Elmis sp. Lv. | |
Coleoptera | Esolus sp. Ad. | |
Coleoptera | Esolus sp. Lv. | |
Coleoptera | Limnius sp. Ad. | |
Coleoptera | Limnius sp. Lv. | |
Coleoptera | Normandia nitens Ad. | |
Coleoptera | Oulimnius sp. Ad. | |
Coleoptera | Oulimnius sp. Lv. | |
Coleoptera | Stenelmis canaliculata Ad. | |
Coleoptera | Orectochilus villosus Lv. | |
Coleoptera | Haliplus sp. Lv. | |
Coleoptera | Helophorus sp. Ad. | |
Coleoptera | Hydraena sp. Ad. | |
Coleoptera | Ochthebius sp. Ad. | |
Trichoptera | Brachycentrus montanus | |
Trichoptera | Brachycentrus subnubilus | |
Trichoptera | Ecnomus tenellus | |
Trichoptera | Agapetus delicatulus/ochripes | |
Trichoptera | Agapetus laniger | |
Trichoptera | Goera pilosa | |
Trichoptera | Silo nigricornis | |
Trichoptera | Silo piceus | |
Trichoptera | Cheumatopsyche lepida | |
Trichoptera | Hydropsyche bulbifera | |
Trichoptera | Hydropsyche bulgaromanorum | |
Trichoptera | Hydropsyche contubernalis contubernalis | |
Trichoptera | Hydropsyche incognita | Hyd_inc |
Trichoptera | Hydropsyche modesta | |
Trichoptera | Hydropsyche ornatula | |
Trichoptera | Hydropsyche pellucidula | |
Trichoptera | Hydropsyche siltalai | |
Trichoptera | Hydropsyche sp.-juv. | Hyd_spj |
Trichoptera | Hydroptila sp. | |
Trichoptera | Orthotrichia sp. | |
Trichoptera | Lepidostoma hirtum | |
Trichoptera | Athripsodes albifrons | |
Trichoptera | Athripsodes sp. | |
Trichoptera | Ceraclea annulicornis | |
Trichoptera | Ceraclea dissimilis | |
Trichoptera | Mystacides azurea | |
Trichoptera | Mystacides nigra | |
Trichoptera | Oecetis lacustris | |
Trichoptera | Oecetis notata | |
Trichoptera | Setodes punctatus | |
Trichoptera | Oecetis sp. | |
Trichoptera | Anabolia furcata | |
Trichoptera | Halesus digitatus | |
Trichoptera | Limnephilinae-juv. | |
Trichoptera | Potamophylax rotundipennis | |
Trichoptera | Philoptamus ludificatus/montanus | |
Trichoptera | Polycentropus flavomaculatus | |
Trichoptera | Lype reducta | |
Trichoptera | Psychomyia pusilla | Psy_pus |
Trichoptera | Rhyacophila sp. s. str. | |
Trichoptera | Sericostoma sp. | |
Diptera | Limnophora sp. | |
Diptera | Lispe sp. | |
Diptera | Atherix ibis | |
Diptera | Ibisia marginata | |
Diptera | Liponeura sp. | |
Diptera | Ceratopogoninae Gen. sp. | |
Diptera | Chironomini Gen. sp. | |
Diptera | Chironomus obtusidens-Gr. | |
Diptera | Chironomus thummi-Gr. | |
Diptera | Chironomus sp. | |
Diptera | Corynoneurinae Gen. sp. | |
Diptera | Diamesinae Gen. sp. | |
Diptera | Orthocladiinae Gen. sp. | Orth_nae |
Diptera | Paratendipes sp. | |
Diptera | Potthastia longimana-Gr. | |
Diptera | Procladius sp. | |
Diptera | Prodiamesa olivacea | |
Diptera | Prodiamesa rufovittata | |
Diptera | Tanypodinae Gen. sp. | |
Diptera | Tanytarsini Gen. sp. | |
Diptera | Thienemanniella sp. | |
Diptera | Dolichopodidae Gen. sp. | |
Diptera | Clinocerinae Gen. sp. | |
Diptera | Hemerodromiinae Gen. sp. | |
Diptera | Antocha sp. | Ant_sp. |
Diptera | Hexatoma sp. | |
Diptera | Limnophilinae Gen. sp. | |
Diptera | Limoniinae Gen. sp. | |
Diptera | Dicranota sp. | |
Diptera | Pedicia sp. | |
Diptera | Psychodidae Gen. sp. | |
Diptera | Prosimulium sp. | |
Diptera | Simulium sp. | Sim_sp. |
Diptera | Syrphidae Gen. sp. | |
Diptera | Chrysops sp. | |
Diptera | Tabanus sp. | |
Diptera | Tipula sp. |
References
- Malmqvist, B.; Rundle, S. Threats to the running water ecosystems of the world. Environ. Conserv. 2002, 29, 134–153. [Google Scholar] [CrossRef]
- Stoddard, J.L.; Larsen, D.P.; Hawkins, C.P.; Johnson, R.K.; Norris, R.H. Setting expectations for the ecological condition of streams: The concept of reference condition. Ecol. Appl. 2006, 16, 1267–1276. [Google Scholar] [CrossRef]
- EU. Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for the Community Action in the Field of Water Policy; European Commission: Brussels, Belgium, 2000; p. 72. [Google Scholar]
- EEA. European Waters—Assessment of Status and Pressures 2018; EEA Report No 7/2018; European Environment Agency: Copenhagen, Denmark, 2018; p. 85. [Google Scholar]
- EU. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; The European Green Deal; European Commission: Brussel, Belgium, 2019; p. 24. [Google Scholar]
- EU. EU Biodiversity Strategy for 2030. Bringing Nature Back into Our Lives; European Commission: Brussels, Belgium, 2020; p. 22. [Google Scholar]
- Bernhardt, E.S.; Sudduth, E.B.; Palmer, M.A.; Allan, J.D.; Meyer, J.L.; Alexander, G.; Follastad-Shah, J.; Hassett, B.; Jenkinson, R.; Lave, R.; et al. Restoring rivers one reach at a time: Results from a survey of US river restoration practitioners. Restor. Ecol. 2007, 15, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, E.S.; Palmer, M.A.; Allan, J.D.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J.; et al. Synthesizing US river restoration efforts. Science 2005, 308, 636–637. [Google Scholar] [CrossRef] [PubMed]
- Beechie, T.; Pess, G.; Roni, P.; Giannico, G. Setting River Restoration Priorities: A Review of Approaches and a General Protocol for Identifying and Prioritizing Actions. N. Am. J. Fish. Manag. 2008, 28, 891–905. [Google Scholar] [CrossRef]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.; Menninger, H.L.; Bernhardt, E. River restoration, habitat heterogeneity and biodiversity: A failure of theory or practice? Freshw. Biol. 2010, 55 (Suppl. 1), 205–222. [Google Scholar] [CrossRef]
- Pardo, I.; Gomez-Rodriguez, C.; Wasson, J.G.; Owen, R.; Van de Bund, W.; Kelly, M.; Bennett, C.; Birk, S.; Buffagni, A.; Erba, S.; et al. The European reference condition concept: A scientific and technical approach to identify minimally-impacted river ecosystems. Sci. Total Environ. 2012, 420, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Whittier, T.R.; Hughes, R.M.; Stoddard, J.L.; Lomnicky, G.A.; Peck, D.V.; Herlihy, A.T. A structured approach for developing indices of biotic integrity: Three examples from streams and rivers in the western USA. Trans. Am. Fish. Soc. 2007, 136, 718–735. [Google Scholar] [CrossRef]
- Tockner, K.; Uehlinger, U.; Robinson, C.T.; Tonolla, D.; Siber, R.; Peter, F.D. Introduction to European Rivers. In Rivers of Europe, 1st ed.; Tockner, K., Robinson, C.T., Uehlinger, U., Eds.; Academic Press: London, UK, 2008; pp. 1–21. [Google Scholar]
- Copp, G.H. Typology of aquatic habitats in the Great Ouse, a small regulated lowland river. Regul. Rivers Res. Manag. 1991, 6, 125–134. [Google Scholar] [CrossRef]
- Aarts, B.G.W.; Van den Brink, F.W.B.; Nienhuis, P.H. Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: The transversal floodplain gradient. River Res. Appl. 2004, 20, 3–23. [Google Scholar] [CrossRef]
- Illies, J. Limnofauna Europaea, 2nd ed.; Gustav Fischer Verlag: Stuttgart, Germany, 1978. [Google Scholar]
- Urbanič, G. Redelineation of European inland water ecoregions in Slovenia. Rev. Hydrobiol. 2008, 1, 17–25. [Google Scholar]
- Urbanič, G. Hydromorphological degradation impact on benthic invertebrates in large rivers in Slovenia. Hydrobiologia 2014, 729, 191–207. [Google Scholar] [CrossRef]
- Urbanič, G.; Mihaljević, Z.; Petkovska, V.; Pavlin Urbanič, M. Disentangling the effects of multiple stressors on large rivers using benthic invertebrates—a study of Southeastern European large rivers with implications for management. Water 2020, 12, 621. [Google Scholar] [CrossRef] [Green Version]
- Purger, J.J. (Ed.) Biotas and rehabilitation of four Drava River side-branches in Hungary; Danube-Drava National Park Directorate: Pécs, Hungary, 2013; p. 164. [Google Scholar]
- Grimmett, R.F.A.; Jones, T.A. Important Bird Areas in Europe; Technical Publication No. 9; International Council for Bird Preservation: Cambridge, UK, 1989; p. 889. [Google Scholar]
- Schwarz, U. Pilot Study: Hydromorphological survey and mapping of the Drava and Mura Rivers. IAD- Report Prepared by FLUVIUS; Floodplain Ecology and River Basin Management: Vienna, Austria, 2007; p. 140. Available online: https://www.danube-iad.eu/docs/reports/HydromorphIAD_Mura_Drava2007.pdf (accessed on 25 November 2019).
- Schneider-Jacoby, M. The Sava and Drava floodplains: Threatened ecosystems of international importance. Arch. Hydrobiol. Large Rivers 2005, 16 (Suppl. 158), 249–288. [Google Scholar] [CrossRef]
- Tavzes, B.; Urbanič, G. New indices for assessment of hydromorphological alteration of rivers and their evaluation with benthic invertebrate communities; Alpine case study. Rev. Hydrobiol. 2009, 2, 133–161. [Google Scholar]
- OGRS. Rules on monitoring of surface water. Official Gazette of the Republic of Slovenia: Ljubljana, Slovenia, 2009; Volume 10, pp. 832–839. Available online: http://www.uradni-list.si/_pdf/2009/Ur/u2009010.pdf (accessed on 12 June 2021).
- Hrvatske vode. Sampling Methodology, Laboratory Analysis and Calculation of Ecological Quality Ratio Based on Biological Quality Elements; Hrvatske vode: Zagreb, Croatia, 2016. [Google Scholar]
- Mihaljević, Z.; Urbanič, G.; Ternjej, I. Ecological status assesment system for large rivers based on macrozoobenthos. In Proceedings of the 7th Croatian Water Conference Proceedings, Dubrovnik, Croatia, 2–7 June 2002; Biondić, D., Holjević, D., Vizner, M., Eds.; Hrvatske Vode: Zagreb, Croatia, 2019; pp. 371–380, (In Croatian with English Summary). [Google Scholar]
- Mihaljević, Z.; Miliša, M.; Pozojević, I. Report on Fitting a Macroinvertebrate Classification Method with the Results of the Completed Intercalibration of the EC GIG (R-E2 and R-E3); Hrvatske Vode: Zagreb, Croatia, 2020. [Google Scholar]
- CLC. CORINE Land Cover 2012; European Environment Agency: Copenhagen, Denmark, 2012. [Google Scholar]
- Petkovska, V.; Urbanič, G.; Mikoš, M. Variety of the guiding image of rivers-defined for ecologically relevant habitat features at the meeting of the Alpine, Mediterranean, lowland and karst regions. Ecol. Eng. 2015, 81, 373–386. [Google Scholar] [CrossRef]
- Raven, P.J.; Holmes, N.T.H.; Dawson, F.H.; Fox, P.J.A.; Everard, M.; Fozzard, I.R.; Rouen, K.J. River Habitat Survey in Britain and Ireland Field Survey Guidance Manual: Version 2003; Environment Agency: 2003. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/311579/LIT_1758.pdf (accessed on 22 February 2020).
- Raven, P.J.; Holmes, N.T.H.; Dawson, F.H.; Fox, P.J.A.; Everard, M.; Fozzard, I.R.; Rouen, K.J. River Habitat Quality the Physical Character of Rivers and Streams in the UK and Isle of Man; River Habitat survey Report No. 2; Environment Agency: London, UK, 1998; p. 86. [Google Scholar]
- Urbanič, G. Ecological status assessment of rivers in Slovenia—An overview. Nat. Slov. 2011, 13, 5–16. [Google Scholar]
- Pavlin, M.; Birk, S.; Hering, D.; Urbanič, G. The role of land use, nutrients, and other stressors in shaping benthic invertebrate assemblages in Slovenian rivers. Hydrobiologia 2011, 678, 137–153. [Google Scholar] [CrossRef]
- AQEM Consortium. Manual for the application of the AQEM system. In A Comprehensive Method to Assess European Streams Using Benthic Macroinvertebrates, Developed for the Purpose of the Water Framework Directive. Version 1. 2002, p. 198. Available online: http://www.aqem.de/mains/products.php (accessed on 22 February 2020).
- Urbanič, G.; Toman, M.J.; Krušnik, C. Microhabitat type selection of caddisfly larvae (Insecta: Trichoptera) in a shallow lowland stream. Hydrobiologia 2005, 541, 1–12. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 2001, 26, 3. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities. J. Exp. Mar. Biol. Ecol. 2002, 28, 289. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–210. [Google Scholar]
- Popijać, A.; Sivec, I. Stonefly (Plecoptera) fauna in the lower reach of the Una river in Croatia. Entomol. Croat. 2011, 15, 131–143. [Google Scholar]
- Zwick, P. Key to the West Palaearctic genera of stoneflies (Plecoptera) in the larval stage. Limnologica 2004, 34, 315–348. [Google Scholar] [CrossRef] [Green Version]
- Vučković, N.; Pozojević, I.; Urbanič, G.; Mihaljević, Z. New evidence supporting upstream pathways of Hypania invalida (Grube, 1860) invasion. BioInvasions Rec. 2021, 10, 589–597. [Google Scholar] [CrossRef]
- Ketelaars, H.A.M. Range extensions of Ponto-Caspian aquatic invertebrates in Continental Europe. In Aquatic Invasions in the Black, Caspian, and Mediterranean Seas; Dumont, H., Ed.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2004; pp. 209–236. [Google Scholar]
- Pavel, A.B.; Menabit, S.; Pop, I.C.; Stanescu, I.; Naliana, L. The spatio-temporal distribution of the Ponto-Caspian polychaete in the Lower Sector of the Danube River and in Danube Delta. Glob. Ecol. Conserv. 2021, 28, e01623. [Google Scholar] [CrossRef]
- Birk, S.; Willby, N.J.; Kelly, M.G.; Bonne, W.; Borja, A.; Poikane, S.; van de Bund, W. Intercalibrating classifications of ecological status: Europe’s quest for common management objectives for aquatic ecosystems. Sci. Total Environ. 2013, 454, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Moss, B. Mammals, freshwater reference states, and the mitigation of climate change. Freshw. Biol. 2015, 60, 1964–1976. [Google Scholar] [CrossRef] [Green Version]
- Petsch, D.K. Causes and consequences of biotic homogenization in freshwater ecosystems. Int. Rev. Hydrobiol. 2016, 101, 113–122. [Google Scholar] [CrossRef]
- Rinaldi, M.; Gurnell, A.M.; del Tanago, M.G.; Bussettini, M.; Hendriks, D. Classification of river morphology and hydrology to support management and restoration. Aquat. Sci. 2016, 78, 17–33. [Google Scholar] [CrossRef]
- Allan, J.D.; Castillo, M.M. Stream Ecology: Structure and Function of Running Waters, 2nd ed.; Springer: Amsterdam, The Netherlands, 2007; p. 436. [Google Scholar]
- Allan, J.D. Structure and Function of Running Waters. In Stream Ecology; Chapman & Hall: London, UK, 1995; p. 388. [Google Scholar]
- Belletti, B.; de Leaniz, C.G.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; van de Bund, W.; Aarestrup, K.; Barry, J.; et al. More than one million barriers fragment Europe’s rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Knehtl, M.; Podgornik, S.; Urbanič, G. Scale-depended effects of hydromorphology and riparian land-use on benthic invertebrates and fish: Implications for large river management. Hydrobiologia 2021, 23, 1–21. [Google Scholar] [CrossRef]
- Sun, J.; Galib, S.M.; Lucas, M.C. Rapid response of fish and aquatic habitat to removal of a tidal barrier. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 1802–1816. [Google Scholar] [CrossRef]
- Downes, B. Back to the future: Little-used tools and principles of scientific inference can help disentangle effects of multiple stressors on freshwater ecosystems. Freshw. Biol. 2010, 55 (Suppl. 1), 60–79. [Google Scholar] [CrossRef]
- Schinegger, R.; Trautwein, C.; Melcher, A.; Schmutz, S. Multiple human pressures and their spatial patterns in European running waters. Water Environ. J. 2012, 26, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodds, W.K.; Whiles, M.R. Freshwater Ecology. In Concepts and Environmental Applications of Limnology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2019; p. 998. [Google Scholar]
River | Eco-Hydromorphological Type | Catchment Size Range (km2) | Altitude Range (m a.s.l.) | No. Sites (Samples) |
---|---|---|---|---|
Sava | Intermountain | 4946–5203 | 191–222 | 3 (7) |
Drava | Lowland-braided | 13,189–31,038 | 122–236 | 7 (11) |
Mura | Lowland-braided | 9784–10,930 | 153–246 | 6 (12) |
Sava | Lowland-deep | 7151–64,073 | 74–191 | 7 (8) |
Drava | Lowland-deep | 33,916–39,982 | 81–100 | 3 (3) |
Kupa | Lowland-deep | 9184–9184 | 92–92 | 1 (2) |
Una | Lowland-deep | 9368–9368 | 94–94 | 1 (2) |
Variable | Median | Minimum | Maximum |
---|---|---|---|
Low annual discharge (m3/s) | 99 | 7 | 648 |
Mean annual discharge (m3/s) | 140 | 9 | 998 |
High annual discharge (m3/s) | 399 | 90 | 1530 |
Hydromorphological quality and modification index (HQM) | 0.84 | 0.71 | 1 |
Hydrological modification index (HLM) | 0.94 | 0.68 | 1 |
Water temperature—median (°C) | 12.0 | 9.8 | 16.1 |
pH—median | 8.0 | 7.7 | 8.3 |
Conductivity—median (µS/cm) | 350 | 299 | 480 |
Total suspended solids—median (mg/L) | 7 | 3 | 56 |
Total nitrogen—median (mgN/L) | 1.60 | 0.69 | 2.34 |
Ammonium—median (mgN/L) | 0.06 | 0.01 | 0.30 |
Nitrate—median (mgN/L) | 1.40 | 0.50 | 2.01 |
Orthophosphate—median (mgP/L) | 0.05 | 0.01 | 0.29 |
Biochemical oxygen demand (5 days)—median (mg/L) | 1.2 | 0.8 | 2.4 |
Chemical oxygen demand (K2Cr2O7)—median (mg/L) | 6.15 | 2.5 | 19.6 |
Oxygen concentration—median (mg/L) | 9.55 | 8.55 | 11.5 |
Oxygen saturation—median (mg/L) | 90 | 80 | 104 |
Saprobic index (EQR) | 0.78 | 0.63 | 1.00 |
CLC Natural (%) | 71 | 55 | 78 |
CLC Agriculture (%) | 25 | 19 | 43 |
CLC Intensive agriculture (%) | 12 | 8 | 26 |
CLC Extensive agriculture (%) | 12 | 11 | 25 |
CLC Urban (%) | 4 | 1 | 5 |
Alien species (%) | 0 | 0 | 33.3 |
Scheme 2. | Df | Sum of Sqrs | Mean Square | F | R2 | p |
---|---|---|---|---|---|---|
ECO-HM type | 2 | 2.22 | 1.11 | 2.64 | 0.22 | 0.0001 |
Substrate | 1 | 1.94 | 1.94 | 4.62 | 0.19 | 0.0001 |
Interaction | 2 | −10.78 | −5.39 | −12.83 | 1 | |
Residual | 40 | 16.81 | 0.42 | |||
Total | 45 | 10.18 |
ECO-HM Type A vs. B | Overall Average Dissimilarity | Ten Most Influential Taxa | Percent Contibution to Difference | Cumulative Percent Contibution to Difference | Average abundance (log10)—Type A | Average Abundance (log10)—Type B |
---|---|---|---|---|---|---|
InterM vs. L-braided | 54.59 | Nai_sp. | 3.2 | 3.2 | 1.10 | 1.65 |
The_dan | 2.9 | 6.1 | 1.32 | 0 | ||
Bae_f_s | 2.7 | 8.8 | 1.26 | 0.30 | ||
Hyd_inc | 2.7 | 11.5 | 1.95 | 0.97 | ||
Gam_roe | 2.6 | 14.1 | 0 | 1.25 | ||
Hep_sul | 2.6 | 16.7 | 0 | 1.18 | ||
Sim_sp. | 2.5 | 19.2 | 1.38 | 0.78 | ||
Hyd_spj | 2.5 | 21.7 | 1.97 | 1.17 | ||
Eis_tet | 2.4 | 24.1 | 1.18 | 0.39 | ||
Tubb_dae | 2.3 | 26.4 | 0.96 | 1.68 | ||
InterM vs. L-deep | 66.15 | Gam_fos | 5.4 | 5.4 | 3.20 | 0.85 |
Hyd_inc | 3.8 | 9.1 | 1.95 | 0.26 | ||
Lith_nat | 3.2 | 12.4 | 0 | 1.39 | ||
Hyd_spj | 3.1 | 15.4 | 1.97 | 0.62 | ||
Psy_pus | 3.1 | 18.5 | 1.80 | 0.54 | ||
Orth_nae | 2.9 | 21.4 | 2.46 | 1.67 | ||
Bae_rho | 2.8 | 24.2 | 1.57 | 0.69 | ||
Sto_her | 2.8 | 27.0 | 1.55 | 0.98 | ||
Ant_sp. | 2.7 | 29.7 | 1.39 | 0.15 | ||
Nai_sp. | 2.5 | 32.2 | 1.10 | 0.41 | ||
L-braided vs. L-deep | 69.21 | Gam_fos | 5.4 | 5.4 | 3.12 | 0.85 |
Lith_nat | 3.3 | 8.7 | 0.03 | 1.39 | ||
Orth_nae | 3.3 | 11.9 | 2.62 | 1.67 | ||
Nai_sp. | 3.2 | 15.1 | 1.65 | 0.41 | ||
Sto_her | 2.8 | 17.9 | 1.63 | 0.98 | ||
Gam_roe | 2.4 | 20.3 | 1.25 | 0.13 | ||
Tubb_dae | 2.4 | 22.7 | 1.68 | 1.77 | ||
Hep_sul | 2.3 | 25.1 | 1.18 | 0.55 | ||
Bae_rho | 2.2 | 27.3 | 1.02 | 0.69 | ||
Tubz_dae | 2.2 | 29.5 | 0.75 | 1.13 |
Substratum | Overall Average Dissimilarity | Ten Most Influential Taxa | Percent Contibution to Difference | Cumulative Percent Contibution to Difference | Average Abundance (log10)—Coarse | Average Abundance (log10)—Fine |
---|---|---|---|---|---|---|
Coarse vs. fine | 74.91 | Gam_fos | 6.4 | 6.4 | 2.88 | 0.08 |
Orth_nae | 4.6 | 11.0 | 2.63 | 0.68 | ||
Lith_nat | 4.6 | 15.6 | 0.11 | 2.14 | ||
Sto_her | 3.3 | 18.9 | 1.65 | 0.22 | ||
Nai_sp. | 2.8 | 21.7 | 1.33 | 0.36 | ||
Psy_pus | 2.7 | 24.4 | 1.29 | 0 | ||
Tubb_dae | 2.5 | 26.9 | 1.48 | 2.19 | ||
Hyd_spj | 2.5 | 29.4 | 1.31 | 0.18 | ||
Bae_rho | 2.4 | 31.8 | 1.13 | 0.36 | ||
Hyd_inc | 2.3 | 34.1 | 1.07 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanič, G.; Mihaljević, Z.; Petkovska, V.; Pavlin Urbanič, M. Back to Ecology: Reference Conditions as a Basis for Assessment, Restoration and Sustainable Management of Large Rivers. Water 2021, 13, 2596. https://doi.org/10.3390/w13182596
Urbanič G, Mihaljević Z, Petkovska V, Pavlin Urbanič M. Back to Ecology: Reference Conditions as a Basis for Assessment, Restoration and Sustainable Management of Large Rivers. Water. 2021; 13(18):2596. https://doi.org/10.3390/w13182596
Chicago/Turabian StyleUrbanič, Gorazd, Zlatko Mihaljević, Vesna Petkovska, and Maja Pavlin Urbanič. 2021. "Back to Ecology: Reference Conditions as a Basis for Assessment, Restoration and Sustainable Management of Large Rivers" Water 13, no. 18: 2596. https://doi.org/10.3390/w13182596
APA StyleUrbanič, G., Mihaljević, Z., Petkovska, V., & Pavlin Urbanič, M. (2021). Back to Ecology: Reference Conditions as a Basis for Assessment, Restoration and Sustainable Management of Large Rivers. Water, 13(18), 2596. https://doi.org/10.3390/w13182596