Microalgae Growth Inhibition-Based Reservoirs Water Quality Assessment to Identify Ecotoxicological Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Sampling and General Support Physical and Chemical Parameters Measured In Situ
2.3. Laboratory Procedure
2.3.1. Physical and Chemical Characterization
2.3.2. Ecological Quality Ratio (EQR) for Phytoplankton
2.3.3. Water Treatments
2.3.4. Bioassays
Culture Maintenance of Raphidocelis subcapitata and Growth Inhibition Assays
2.4. Statistical Analysis
3. Results and Discussion
3.1. WFD Approach Based on Physical, Chemical, and Biological Parameters
3.2. R. subcapitata Growth Inhibition Assays
3.3. Ecotoxicity Results, Purposed Ranges of Ecotoxicological Potential, and Classes of Disturbances
3.4. Physicochemical and Ecological Potential vs. Ecotoxicological Approach
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Community Commission (ECC). Commission Directive 2000/60/EC of the European Parliament and the Council establishing the framework for community action in the field of water policy. Off. J. Eur. Union OJL 2000, 327, 1–73. [Google Scholar]
- European Parliament and of the Council. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. European Parliament and of the Council. Off. J. Eur. Union L 2013, 226, 1–17. [Google Scholar]
- APA—Agência Portuguesa do Ambiente. Plano de Gestão de Região Hidrográfica—Região Hidrográfica Do Vouga, Mondego E Lis (Rh4); Agência Portuguesa do Ambiente: Amadora, Portugal, 2016; pp. 1–169. [Google Scholar]
- Escher, B.I.; Aït-Aïssa, S.; Behnisch, P.A.; Brack, W.; Brion, F.; Brouwer, A.; Buchinger, S.; Crawford, S.E.; Du Pasquier, D.; Hamers, T.; et al. Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directiv. Sci. Total Environ. 2018, 628–629, 748–765. [Google Scholar] [CrossRef]
- De Baat, M.L.; Kraak, M.H.S.; Van der Oost, R.; De Voogt, P.; Verdonschot, P.F.M. Effect-based nationwide surface water quality assessment to identify ecotoxicological risks. Water Res. 2019, 159, 434–443. [Google Scholar] [CrossRef]
- Santos, J.I.; Vidal, T.; Gonçalves, F.J.M.; Castro, B.B.; Pereira, J.L. Challenges to water quality assessment in Europe—Is there scope for improvement of the current Water Framework Directive bioassessment scheme in rivers? Ecol. Ind. 2021, 121, 107030. [Google Scholar] [CrossRef]
- McQuatters-Gollop, A.; Gilbert, A.J.; Mee, L.D.; Vermaat, J.E.; Artioli, Y.; Humborg, C.; Wulff, F. How well do ecosystem indicators communicate the effects of anthropogenic eutrophication? Estuar. Coast. Shelf Sci. 2009, 82, 583–596. [Google Scholar] [CrossRef]
- Omar, W.M. Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop. Life Sci. Res. 2010, 21, 51–67. [Google Scholar] [PubMed]
- Pérez, J.R.; Loureiro, S.; Menezes, S.; Palma, P.; Fernandes, R.M.; Barbosa, I.; Soares, A. Assessment of water quality in the Alqueva Reservoir (Portugal) using bioassays. Environ. Sci. Pollut. Res. 2010, 17, 688–702. [Google Scholar] [CrossRef]
- Wernersson, A.-S.; Carere, M.; Maggi, C.; Tusil, P.; Soldan, P.; James, A.; Sanchez, W.; Dulio, V.; Broeg, K.; Reifferscheid, G.; et al. The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environ. Sci. Eur. 2015, 27, 7. [Google Scholar] [CrossRef] [Green Version]
- Tapolczai, K.; Bouchez, A.; Stenger-Kovács, C.; Padisák, J.; Rimet, F. Trait-based ecological classify cations for benthic algae: Review and perspectives. Hydrobiologia 2016, 776, 1–17. [Google Scholar] [CrossRef]
- Pinto, I.; Rodrigues, S.; Lage, O.M.; Antunes, S.C. Assessment of water quality in Aguieira reservoir: Ecotoxicological tools in addition to the Water Framework Directive. Ecotoxicol. Environ. Saf. 2021, 208, 111583. [Google Scholar] [CrossRef]
- Rodrigues, S.; Pinto, I.; Martins, F.; Formigo, N.; Antunes, S. Can biochemical endpoints improve the sensitivity of the biomonitoring strategy using bioassays with standard species, for water quality evaluation? Ecotoxicol. Environ. Saf. 2021, 215, 112151. [Google Scholar] [CrossRef]
- Gökçe, D. Algae as an indicator of water quality. In Algae—Organisms for Imminent Biotechnology; Dhanasekaran, D., Ed.; InTech: Rijeka, Croatia, 2016; pp. 1–18. [Google Scholar]
- Moreira-Santos, M.; Soares, A.M.V.M.; Ribeiro, R. An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata. Ecotoxicol. Environ. Saf. 2004, 59, 164–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tousova, Z.; Oswald, P.; Slobodnik, J.; Blaha, L.; Muz, M.; Hu, M.; Brack, W.; Krauss, M.; Di Paolo, C.; Tarcai, Z.; et al. European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. Sci. Total Environ. 2017, 601, 1849–1868. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.V.M.; Moreno-Garrido, I. Chapter 36—Toxicity bioassays on benthic diatoms. In Handbook of Marine Microalgae; Kim, S.K., Ed.; Academic Press: London, UK, 2015; pp. 539–546. [Google Scholar]
- USEPA. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 4th ed.; EPA-821-R-02-013; U.S. Environmental Protection Agency Office of Water: Washington, DC, USA, 2002; pp. 1–324.
- OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test; OECD Guidelines for Testing of Chemicals; OECD Publishing: Paris, France, 2011. [Google Scholar]
- Lewis, M.A. Are laboratory-derived toxicity data for freshwater algae worth the effort? Environ. Toxicol. Chem. 1990, 9, 1279–1284. [Google Scholar] [CrossRef]
- Amiard-Triquet, C. How to improve toxicity assessment? From single-species tests to mesocosms and field studies. In Aquatic Ecotoxicology; Amiard-Triquet, C., Amiard, J.-C., Mouneyrac, C., Eds.; Academic Press: Cambridge, MA, USA; pp. 127–152.
- Science Direct. Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/raphidocelis-subcapitata (accessed on 15 July 2021).
- Radix, P.; Léonard, M.; Papantoniou, C.; Roman, G.; Saouter, E.; Gallotti-Schmitt, S.; Thiébaud, H.; Vasseur, P. Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicol. Environ. Saf. 2000, 47, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Weyers, A.; Sokull-Klüttgen, B.; Baraibar-Fentanes, J.; Vollmer, G. Acute toxicity data: A comprehensive comparison of results on fish, daphnia and algae tests with new substances notified in the European Union. Environ. Toxicol. Chem. 2000, 19, 1931–1933. [Google Scholar] [CrossRef]
- Roig, N.; Sierra, J.; Nadal, M.; Moreno-Garrido, I.; Nieto, E.; Hampel, M.; Gallego, E.P.; Schuhmacher, M.; Blasco, J. Assessment of sediment ecotoxicological status as a complementary tool for the evaluation of surface water quality: The Ebro river basin case study. Sci. Total Environ. 2015, 503–504, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Bordalo, A.A.; Teixeira, R.; Wiebe, W.J. A water quality index applied to an international shared river basin: The case of the Douro river. Environ. Manag. 2006, 38, 910–920. [Google Scholar] [CrossRef]
- Cabecinha, E.; Cortes, R.; Cabral, J.; Ferreira, T.; Lourenço, J.; Pardal, M. Multi-scale approach using phytoplankton as a first step towards the definition of the ecological status of reservoirs. Ecol. Indic. 2009, 9, 240–255. [Google Scholar] [CrossRef]
- Pádua, J.; Bernardo, J.M.; Alves, M.H. Exercício De Intercalibração Em Massas De Água Fortemente Modificadas—Albufeiras, No Âmbito Da Diretiva Quadro da Água. 2005, pp. 1–14. Available online: http://www.apambiente.pt/dqa/assets/exercício-de-intercalibração-em-albufeiras.pdf (accessed on 21 September 2021).
- Palma, P.; Ledo, L.; Alvarenga, P. Ecotoxicological endpoints, are they useful tools to support ecological status assessment in strongly modified water bodies? Sci. Total Environ. 2016, 541, 119–129. [Google Scholar] [CrossRef] [PubMed]
- ISO 5663. Water Quality—Determination of Kjeldahl Nitrogen—Method after Mineralization with Selenium; ISO: Geneva, Switzerland, 1984. [Google Scholar]
- ISO 17294–2. Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements including Uranium Isotopes 31; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Inag, I.P. Manual Para a Avaliação da Qualidade Biológica da Água em Lagos e Albufeiras Segundo a Diretiva Quadro da Água. Protocolo de Amostragem e Análise Para o Fitoplâncton; Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional, Instituto da Água: Lisbon, Portugal, 2009; pp. 1–67.
- Olenina, I.; Andersson, A.; Wasmund, N.; Busch, S. Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea; Baltic Sea Environment Proceedings No. 106; Helsinki Commission Baltic Marine Environment Protection Commission: Washington, DC, USA, 2006; p. 144. [Google Scholar]
- Stein, J.R. (Ed.) Handbook of Phycological Methods—Culture Methods and Growth Measurements; Cambridge University Press: London, UK, 1973. [Google Scholar]
- Pereira, J.; Antunes, S.; Castro, B.; Marques, C.; Gonçalves, A.M.; Gonçalves, F.J.M.; Pereira, R. Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: Commercial formulation versus active ingredient. Ecotoxicology 2009, 18, 455–463. [Google Scholar] [CrossRef]
- Vasconcelos, V.; Sivonen, K.; Evans, W.; Carmichael, W.; Namikoshi, M. Hepatotoxic Microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. Water Res. 1996, 30, 2377–2384. [Google Scholar] [CrossRef]
- Vasconcelos, V.; Morais, J.; Vale, M. Microcystins and cyanobacteria trends in a 14 year monitoring of a temperate eutrophic reservoir (Aguieira, Portugal). J. Environ. Monit. 2011, 13, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Teneva, I.; Belkinova, D.; Mladenov, R.; Stoyanov, P.; Moten, D.; Basheva, D.; Kazakov, S.; Dzhambazov, B. Phytoplankton composition with an emphasis of Cyanobacteria and their toxins as an indicator for the ecological status of Lake Vaya (Bulgaria)—Part of the Via Pontica migration route. Biodivers. Data J. 2020, 8, e57507. [Google Scholar] [CrossRef]
- D’Costa, P.M.; D’Silva, M.S.; Naik, R.K. Chapter 13—Impact of pollution on phytoplankton and implications for marine econiches. In Marine Pollution and Microbial Remediation; Naik, M., Dubey, S., Eds.; Springer: Singapore, 2017; pp. 205–222. [Google Scholar]
- Álvarez, X.; Valero, E.; Cancela, Á.; Sánchez, Á. Freshwater algae competition and correlation between their growth and microcystin production. Environ. Sci. Pollut. Res. 2016, 23, 21577–21583. [Google Scholar] [CrossRef] [PubMed]
- Herath, G. Freshwater algal blooms and their control: Comparison of the European and Australian experience. J. Environ. Manag. 1997, 51, 217–227. [Google Scholar] [CrossRef]
- Liu, X.; Lu, X.; Chen, Y. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: An 11-year investigation. Harmful Algae 2011, 10, 337–343. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar]
- Brussaard, C.P.; Riegman, R. Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient. Aquat. Microb. Ecol. 1998, 14, 271–280. [Google Scholar] [CrossRef]
- Joseph, S.M.; Ketheesan, B. Microalgae based wastewater treatment for the removal of emerging contaminants: A review of challenges and opportunities. Case Stud. Chem. Environ. Eng. 2020, 2, 100046. [Google Scholar]
- Walsh, G.E. Chapter 12 Toxic effects of pollutants on Plankton. In Principles of Ecotoxicology; Butler, G.C., Ed.; Wiley & Sons: New York, NY, USA, 1978; pp. 1–18. [Google Scholar]
- Monteiro, C.M.; Castro, P.M.L.; Malcata, F.X. Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnol. Prog. 2012, 28, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Filová, A.; Fargašová, A.; Molnárová, M. Cu, Ni, and Zn effects on basic physiological and stress parameters of Raphidocelis subcapitata algae. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
General Physical and Chemical | Specific Pollutants and Priority Substances: Metals | Ecological Potential (Physical and Chemical) | Biological (Phytoplankton EQR) | Ecological Potential (Biological) | |||||||||||
Reservoirs and Sampling Points | EQS | 6–9 [3] | ≥5 [3] | 60–120 [3] north and main course 60–140 [3] south | - | ≤25 [3] | - | - | ≤0.05 [3] north and main course ≤0.07 [3] south | 0.07 [2] | 7.8 [3] | North [3] [1.0–0.60]—Good or more [0.6–0.4]—Moderate [0.4–0.2]—Poor [0.2–0]—Bad | |||
Sampling periods | pH | O2 (mg/L) | O2 (%) | Temp (°C) | NO3− (mg/L) | NO2−(mg/L) | Ntotal(mg/L) | Ptotal (mg/L) | Hg (µg/L) | Zn (µg/L) | South and Main Course [3] ≥0.17—Good or more <0.17—Moderate or less | ||||
Miranda (main course) | M | Spring 19 | 8.84 | 14.07 | 149.7 | 15.6 | 6.4 | 0.09 | <0.5 | 0.03 | <0.01 | 2.8 | GOOD | 0.11 | MODERATE OR LESS |
Autumn 19 | 7.88 | 4.40 | 50.0 | 18.3 | 2.3 | 0.43 | <0.5 | 0.01 | <0.01 | 1.1 | MODERATE | 0.85 | GOOD OR MORE | ||
Spring 20 | 8.64 | 11.04 | 124.1 | 19.0 | 7.4 | 0.16 | <0.5 | 0.13 | 1.02 | 26.6 | MODERATE | 0.16 | MODERATE OR LESS | ||
Pocinho (main course) | P | Spring 19 | 8.82 | 13.95 | 144.0 | 16.5 | <0.5 | <0.01 | <0.5 | 0.03 | <0.01 | 1.4 | GOOD | 0.26 | GOOD OR MORE |
Autumn 19 | 8.03 | 8.21 | 90.3 | 19.2 | 2.3 | <0.04 | <0.5 | 0.04 | <0.01 | 2.6 | GOOD | 0.61 | GOOD OR MORE | ||
Spring 20 | 9.24 | 15.90 | 185.0 | 22.8 | 3.5 | 0.05 | 0.7 | 0.09 | 1.06 | 80.7 | MODERATE | 0.12 | MODERATE OR LESS | ||
Aguieira (north) | Ag1 | Spring 19 | 9.20 | 11.90 | 119.4 | 14.4 | 2.8 | 0.04 | <0.5 | 0.01 | 0.02 | 6.7 | GOOD | 0.45 | MODERATE |
Ag2 | 8.99 | 12.40 | 124.9 | 15.0 | 3.3 | 0.07 | <0.5 | 0.01 | 0.02 | 12.8 | MODERATE | 0.73 | GOOD OR MORE | ||
Ag3 | 8.31 | 11.30 | 112.1 | 15.2 | 4.0 | 0.04 | <0.5 | 0.09 | 0.02 | 6.7 | MODERATE | 0.50 | MODERATE | ||
Ag4 | 9.15 | 12.20 | 125.2 | 15.5 | 1.2 | 0.02 | 0.7 | 0.02 | 0.02 | 6.8 | GOOD | 0.35 | POOR | ||
Ag1 | Autumn 19 | 6.83 | 4.48 | 47.1 | 17.7 | 1.5 | <0.01 | <0.5 | <0.01 | 0.18 | 7.3 | MODERATE | 0.61 | GOOD OR MORE | |
Ag2 | 6.68 | 5.29 | 55.9 | 17.9 | 1.2 | <0.01 | <0.5 | <0.01 | 0.14 | 9.4 | MODERATE | 0.72 | GOOD OR MORE | ||
Ag3 | 6.74 | 8.95 | 91.8 | 16.3 | 2.3 | 0.02 | 2.2 | 0.09 | 0.13 | 10.8 | MODERATE | 0.41 | MODERATE | ||
Ag4 | 6.80 | 6.90 | 72.3 | 17.3 | 1.0 | 0.03 | 0.6 | <0.01 | 0.11 | 20.3 | MODERATE | 0.50 | MODERATE | ||
Ag1 | Spring 20 | 9.61 | 12.92 | 150.2 | 21.9 | 2.7 | 0.04 | <0.5 | 0.02 | 1.85 | 32.2 | MODERATE | 0.77 | GOOD OR MORE | |
Ag2 | 9.70 | 14.18 | 160.1 | 20.5 | 2.2 | 0.04 | 0.7 | 0.03 | 1.57 | 27.7 | MODERATE | 0.37 | POOR | ||
Ag3 | 8.99 | 12.39 | 141.0 | 20.7 | 3.3 | 0.05 | <0.5 | 0.08 | 1.33 | 28.9 | MODERATE | 0.33 | POOR | ||
Ag4 | 9.40 | 13.28 | 156.5 | 22.4 | 0.6 | 0.01 | <0.5 | 0.03 | 0.63 | 24.7 | MODERATE | 0.61 | GOOD OR MORE | ||
Alqueva (main course) | Al1 | Spring 19 | 8.54 | 9.64 | 114.4 | 23.0 | <0.5 | 0.01 | 0.6 | 0.01 | <0.01 | 2.7 | GOOD | 0.85 | GOOD OR MORE |
Al2 | 8.71 | 9.39 | 112.8 | 23.7 | <0.5 | 0.02 | 0.6 | <0.01 | <0.01 | 1.0 | GOOD | 1.36 | GOOD OR MORE | ||
Al3 | 8.79 | 9.99 | 118.2 | 23.1 | 0.6 | 0.04 | 0.6 | 0.01 | <0.01 | 4.1 | GOOD | 0.83 | GOOD OR MORE | ||
Al4 | 8.54 | 12.72 | 152.6 | 23.8 | 0.7 | 0.07 | 0.7 | 0.01 | 0.14 | 1.2 | MODERATE | 0.58 | GOOD OR MORE | ||
Al5 | 9.05 | 16.93 | 199.5 | 23.0 | 0.9 | 1.70 | 2.1 | 0.09 | <0.01 | 3.2 | MODERATE | 0.08 | MODERATE OR LESS | ||
Al1 | Autumn 19 | 8.23 | 8.05 | 83.7 | 16.6 | <0.5 | 0.02 | <0.5 | 0.07 | 0.04 | 6.1 | GOOD | 0.73 | GOOD OR MORE | |
Al2 | 8.33 | 8.04 | 83.3 | 16.9 | <0.5 | 0.04 | 0.5 | 0.05 | 0.02 | 5.9 | GOOD | 0.55 | GOOD OR MORE | ||
Al3 | 8.32 | 8.54 | 88.8 | 16.9 | <0.5 | 0.04 | 0.7 | 0.04 | 0.04 | 5.4 | GOOD | 0.79 | GOOD OR MORE | ||
Al4 | 8.26 | 7.51 | 77.6 | 16.9 | 0.5 | 0.66 | 1.0 | 0.05 | 0.06 | 8.3 | MODERATE | 0.78 | GOOD OR MORE | ||
Al5 | 8.38 | 10.96 | 108.6 | 14.6 | 1.7 | 0.12 | 1.6 | 0.07 | 0.02 | 6.3 | GOOD | 0.12 | MODERATE OR LESS | ||
Al1 | Spring 20 | 8.78 | 8.29 | 114.0 | 32.0 | <0.5 | 0.02 | <0.5 | 0.04 | 4.78 | 691 | MODERATE | 0.87 | GOOD OR MORE | |
Al2 | 8.87 | 8.48 | 119.1 | 33.3 | <0.5 | 0.02 | <0.5 | 0.05 | 2.20 | 89.2 | MODERATE | 0.86 | GOOD OR MORE | ||
Al3 | 8.96 | 8.43 | 115.2 | 31.7 | 0.8 | 0.09 | 0.6 | 0.03 | 2.37 | 51.3 | MODERATE | 0.72 | GOOD OR MORE | ||
Al4 | 9.21 | 10.01 | 133.6 | 32.0 | <0.5 | 0.09 | 0.8 | 0.06 | 2.37 | 41.2 | MODERATE | 0.22 | GOOD OR MORE | ||
Al5 | 8.59 | 7.04 | 97.0 | 32.0 | <0.5 | 0.04 | 1.0 | 0.18 | 2.04 | 51.4 | MODERATE | 0.10 | MODERATE OR LESS |
Classes of Ecotoxicity | Non Perturbed | Slightly Perturbed | Marginally Perturbed | Moderately Perturbed | Highly Perturbed | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
percent inhibition in yield (% Iy) | ≥−10 | ≥−10 to −30 | ≥−30 to −60 | ≥−60 to −90 | <−90 | ||||||||||||||||||||||||||||
M | P | Ag1 | Ag2 | Ag3 | Ag4 | Al1 | Al2 | Al3 | Al4 | Al5 | |||||||||||||||||||||||
Spr19 | Aut19 | Spr20 | Spr19 | Aut19 | Spr20 | Spr19 | Aut19 | Spr20 | Spr19 | Aut19 | Spr20 | Spr19 | Aut19 | Spr20 | Spr19 | Aut19 | Spr20 | Spr19 | Aut19 | Spr20 | Spr19 | Aut19 | Spr20 | Spr19 | Aut19 | Spr20 | Spr19 | Aut19 | Spr20 | Spr19 | Aut19 | Spr20 | |
NF | −42.2 | −72.0 | −79.5 | −48.4 | −59.2 | −89.9 | −47.3 | −47.0 | −45.0 | −51.8 | −23.1 | −29.3 | −35.2 | −28.3 | −73.6 | −69.6 | −55.0 | −73.1 | −55.9 | −62.9 | −64.5 | −69.7 | −89.3 | −76.1 | −78.2 | −86.4 | −83.5 | −86.4 | −86.3 | −81.5 | −71.2 | −79.3 | −85.0 |
F1 | −33.4 | −65.2 | −71.9 | −53.7 | −54.6 | −81.3 | −43.2 | −41.3 | −39.2 | −52.6 | −22.4 | −26.0 | −26.0 | −23.4 | −71.1 | −53.1 | −45.0 | −63.0 | −47.0 | −56.4 | −55.8 | −58.2 | −50.1 | −76.3 | −77.9 | −76.7 | −79.8 | −78.2 | −88.3 | −87.5 | −65.1 | −77.8 | −78.1 |
F2 | −74.3 | −70.3 | −69.2 | −67.8 | −45.1 | −62.5 | −47.8 | −48.2 | −31.9 | −53.6 | 3.8 | 1.8 | −17.2 | 27.3 | −65.5 | −54.7 | −45.4 | −56.1 | −41.1 | −56.6 | −49.1 | −76.7 | −56.3 | −72.2 | −97.5 | −125.8 | −76.7 | −105.7 | −93.6 | −79.8 | −69.5 | −89.3 | −77.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, S.; Pinto, I.; Formigo, N.; Antunes, S.C. Microalgae Growth Inhibition-Based Reservoirs Water Quality Assessment to Identify Ecotoxicological Risks. Water 2021, 13, 2605. https://doi.org/10.3390/w13192605
Rodrigues S, Pinto I, Formigo N, Antunes SC. Microalgae Growth Inhibition-Based Reservoirs Water Quality Assessment to Identify Ecotoxicological Risks. Water. 2021; 13(19):2605. https://doi.org/10.3390/w13192605
Chicago/Turabian StyleRodrigues, Sara, Ivo Pinto, Nuno Formigo, and Sara C. Antunes. 2021. "Microalgae Growth Inhibition-Based Reservoirs Water Quality Assessment to Identify Ecotoxicological Risks" Water 13, no. 19: 2605. https://doi.org/10.3390/w13192605
APA StyleRodrigues, S., Pinto, I., Formigo, N., & Antunes, S. C. (2021). Microalgae Growth Inhibition-Based Reservoirs Water Quality Assessment to Identify Ecotoxicological Risks. Water, 13(19), 2605. https://doi.org/10.3390/w13192605