Identification of Potential Surface Water Resources for Inland Aquaculture from Sentinel-2 Images of the Rwenzori Region of Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology Workflow
2.2. Study Area
2.3. Image Acquisition and Pre-Processing
2.4. Derivation of Water Indices
2.5. Derivation of the Optimum Threshold and Binary Classification
2.6. Accuracy Assessment
- True-positive (TP): Number of correctly extracted water pixels.
- False-negative (FN): Number of undetected water pixels.
- False-positive (FP): Number of incorrectly extracted water pixels.
- True-negative (TN): Number of correctly rejected non-water pixels.
- Total (T): The total number of pixels in the accuracy assessment.
3. Results
3.1. Qualitative Analysis
3.2. Quantitative Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Nsubuga, F.N.W.; Namutebi, E.N.; Nsubuga-Ssenfuma, M. Water Resources of Uganda: An Assessment and Review. JWARP 2014, 6, 1297–1315. [Google Scholar] [CrossRef] [Green Version]
- FAO. Aquaculture Growth Potential in Africa. WAPI. Rome. 2020. Available online: http://www.fao.org/3/ca8179en/ca8179en.pdf (accessed on 18 April 2021).
- Morton, S.; Pencheon, D.; Squires, N. Sustainable Development Goals (SDGs), and their implementation. Br. Med. Bull. 2017, 124, 81–90. [Google Scholar] [CrossRef] [PubMed]
- UNAP. Scaling up Multi-Sectoral Efforts to Establish a Strong Nutrition Foundation for Uganda’s Development. Uganda Nutr Action Plan 2011–2016. Kampala. 2011. Available online: https://www.health.go.ug/docs/UNAP_11_16.pdf (accessed on 24 February 2021).
- Uganda Bureau of Statistics. Uganda Demographic and Health Survey 2016. 2016 UDHS. Kampala. 2018. Available online: www.DHSprogram.com (accessed on 9 September 2020).
- Masereka, E.M.; Kiconco, A.; Katsomyo, E.; Munguiko, C. The Prevalence and Determinants of Stunting among Children 6–59 Months of Age in One of the Sub-Counties in the Rwenzori Sub-Region, Western Uganda. OJN 2020, 10, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Biondi, D.; Kipp, W.; Jhangri, G.S.; Alibhai, A.; Rubaale, T.; Saunders, L.D. Risk factors and trends in childhood stunting in a district in Western Uganda. J. Trop. Pediatr. 2011, 57, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Musonge, P.S.L. Ecological Assessment of Rivers and Streams in the Rwenzori Region, Uganda. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2020. [Google Scholar]
- Musonge, P.L.S.; Boets, P.; Lock, K.; Ambarita, M.N.D.; Forio, M.A.E.; Goethals, P.L.M. Rwenzori score (RS): A benthic macroinvertebrate index for biomonitoring rivers and streams in the Rwenzori Region, Uganda. Sustainability 2020, 12, 10473. [Google Scholar] [CrossRef]
- Musonge, P.S.L.; Boets, P.; Lock, K.; Goethals, P.L.M. Drivers of benthic macroinvertebrate assemblages in equatorial alpine rivers of the Rwenzoris (Uganda). Water 2020, 12, 1668. [Google Scholar] [CrossRef]
- Lefebvre, G.; Davranche, A.; Willm, L.; Campagna, J.; Redmond, L.; Merle, C.; Guelmami, A.; Poulin, B. Introducing WIW for Detecting the Presence of Water in Wetlands with Landsat and Sentinel Satellites. Remote Sens. 2019, 11, 2210. [Google Scholar] [CrossRef] [Green Version]
- Acharya, T.D.; Lee, D.H.; Yang, I.T.; Lee, J.K. Identification of water bodies in a landsat 8 OLI image using a J48 decision tree. Sensors 2016, 16, 1075. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the swir band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- City, L.; Mondejar, J.P.; Tongco, A.F. Near infrared band of Landsat 8 as water index: A case study around Cordova and. Sustain. Environ. Res. 2019, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, J.; Li, J.; Zhang, D.D. Multi-SpectralWater Index (MuWI): A Native 10-m Multi-SpectralWater Index for accurate water mapping on sentinel-2. Remote Sens. 2018, 10, 1643. [Google Scholar] [CrossRef] [Green Version]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of urban surface water bodies from sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Haq, M.; Akhtar, M.; Muhammad, S.; Paras, S.; Rahmatullah, J. Techniques of Remote Sensing and GIS for flood monitoring and damage assessment: A case study of Sindh province, Pakistan. Egypt J. Remote Sens. Space Sci. 2012, 15, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Santillan, J.R.; Marqueso, J.T.; Makinano-Santillan, M.; Serviano, J.L. Beyond flood hazard maps: Detailed flood characterization with remote sensing, gis and 2D modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2016, 42, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Dottori, F.; Salamon, P.; Bianchi, A.; Alfieri, L.; Hirpa, F.A.; Feyen, L. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 2016, 94, 87–102. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Z.; Wang, D. Measuring and mapping the flood vulnerability based on land-use patterns: A case study of Beijing, China. Nat. Hazards. 2016, 83, 1545–1565. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Finlay, J.C.; Bauer, M.E. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sens. Environ. 2016, 185, 119–128. [Google Scholar] [CrossRef]
- Vanham, D.; Hoekstra, A.; Wada, Y.; Bouraoui, F.; de Roo, A.; Mekonnen, M.; van de Bund, W.; Batelaan, O.; Pavelic, P.; Bastiaanssen, W.; et al. Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress”. Sci. Total Environ. 2018, 613–614, 218–232. [Google Scholar] [CrossRef]
- Pahlevan, N.; Schott, J.R.; Franz, B.A.; Zibordi, G.; Markham, B.; Bailey, S.; Schaaf, C.; Ondrusek, M.; Greb, S.; Strait, C.M. Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements. Remote Sens. Environ. 2017, 190, 289–301. [Google Scholar] [CrossRef]
- Urbanski, J.A.; Wochna, A.; Bubak, I.; Grzybowski, W.; Lukawska-Matuszewska, K.; Łącka, M.; Śliwińska, S.; Wojtasiewicz, B.; Zajączkowski, M. Application of Landsat 8 imagery to regional-scale assessment of lake water quality. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 28–36. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Puliti, S.; Saarela, S.; Gobakken, T.; Ståhl, G.; Næsset, E. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference. Remote Sens. Environ. 2018, 204, 485–497. [Google Scholar] [CrossRef]
- Brezonik, P.L.; Olmanson, L.G.; Finlay, J.C.; Bauer, M.E. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens. Environ. 2015, 157, 199–215. [Google Scholar] [CrossRef]
- Lu, S.; Ma, J.; Ma, X.; Tang, H.; Zhao, H.; Baig, M.H.A. Time series of the Inland Surface Water Dataset in China (ISWDC) for 2000–2016 derived from MODIS archives. Earth Syst. Sci. Data 2019, 11, 1099–1108. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.F.; Voth, M.L. Application of MODIS imagery for intra-annual water clarity assessment of Minnesota lakes. Remote Sens. 2012, 4, 2181–2198. [Google Scholar] [CrossRef] [Green Version]
- ESA. Sentinel-3: ESA’s Global Land and Ocean Mission for GMES Operational Services; ESA, SP-132; Fletcher, K., Ed.; ESA Special Publication: Noordwijk, The Netherlands, 2012; Available online: https://sentinel.esa.int/documents/247904/351187/S3_SP-1322_3.pdf (accessed on 20 September 2021).
- Desai, S. Surface Water and Ocean Topography Mission Project Science Requirements Document. In Jet Propuls. Lab; 2018. Available online: https://swot.jpl.nasa.gov/system/documents/files/2176_2176_D-61923_SRD_Rev_B_20181113.pdf (accessed on 20 September 2021).
- Tortini, R.; Noujdina, N.; Yeo, S.; Ricko, M.; Birkett, C.M.; Khandelwal, A.; Kumar, V.; Marlier, M.E.; Lettenmaier, D.P. Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018. Earth Syst. Sci. Data 2020, 12, 1141–1151. [Google Scholar] [CrossRef]
- Cahalane, C.; Magee, A.; Monteys, X.; Casal, G.; Hanafin, J.; Harris, P. A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical predictions of satellite-derived bathymetry. Remote Sens. Environ. 2019, 233, 111414. [Google Scholar] [CrossRef]
- Bao, W.; Wang, W.; Zhu, Y. Pleiades Satellite Remote Sensing Image Fusion Algorithm Based on Shearlet Transform. J. Indian Soc. Remote Sens. 2018, 46, 19–29. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Yang, L.; Tian, S.; Yu, L.; Ye, F.; Qian, J.; Qian, Y. Deep learning for extracting water body from landsat imagery. Int. J. Innov. Comput. Inf. Control. 2015, 11, 1913–1929. [Google Scholar]
- Kaplan, G.; Avdan, U. Mapping and Monitoring Wetlands Using Sentinel-2 Satellite Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of machine learning algorithms for surface water extraction in a landsat 8 scene of Nepal. Sensors 2019, 19, 2769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Wang, L.; Jing, L.; Xu, J. An effective modified water extraction method for Landsat-8 OLI imagery of mountainous plateau regions. IOP Conf. Ser. Earth Environ. Sci. 2016, 34, 012010. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, Q.; Wang, Q.; Yang, F.; Wang, S.; Li, J.; Zhang, F.; Yao, Y. Recognition of water colour anomaly by using hue angle and sentinel 2 image. Remote Sens. 2020, 12, 716. [Google Scholar] [CrossRef] [Green Version]
- Capó, M.; Pérez, A.; Lozano, J.A. An efficient approximation to the K-means clustering for massive data. Knowl.-Based Syst. 2017, 117, 56–69. [Google Scholar] [CrossRef] [Green Version]
- Lara, M.S.; Cruz, E.; Anderson, A. Baseline Report Rwenzori Region Case Study. AFROMAISON Proj.Rep. 2013. Available online: www.afromaison.net (accessed on 3 March 2020).
- ESA. SENTINEL-2 User Handbook. 2015. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 13 March 2020).
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing, Warsaw, Poland, 4 October 2017; p. 3. [Google Scholar] [CrossRef] [Green Version]
- Obregón, M.Á.; Rodrigues, G.; Costa, M.J.; Potes, M.; Silva, A.M. Validation of ESA Sentinel-2 L2A aerosol optical thickness and columnar water vapour during 2017–2018. Remote Sens. 2019, 11, 1649. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Li, J.; Zhang, H.K.; Yan, L. Best practices for the reprojection and resampling of Sentinel-2 Multi Spectral Instrument Level 1C data. Remote Sens. Lett. 2016, 7, 1023–1032. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Yang, I.T.; Lee, D.H. Combining Water Indices for Water and Background Threshold in Landsat Image. Proceedings 2018, 2, 143. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Vattani, A. k-means Requires Exponentially Many Iterations Even in the Plane. Discret. Comput. Geom. 2011, 45, 596–616. [Google Scholar] [CrossRef] [Green Version]
- Sibaruddin, H.I.; Shafri, H.Z.M.; Pradhan, B.; Haron, N.A. UAV-based Approach to Extract Topographic and As-built Information by Utilising the OBIA Technique. J. Geosci. Geomat. 2018, 6, 103–123. [Google Scholar] [CrossRef]
- Padilla, M.; Stehman, S.V.; Ramo, R.; Corti, D.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.V.; Tansey, K.; Mota, B.; et al. Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sens. Environ. 2015, 160, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Padilla, M.; Stehman, S.V.; Chuvieco, E. Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling. Remote Sens. Environ. 2014, 144, 187–196. [Google Scholar] [CrossRef]
- MWE. Uganda National Water Resources Assessment. Kampala: Government of Uganda Ministry of Water and Environment. 2013. Available online: http://www.mwe.go.ug (accessed on 16 July 2020).
- Steffens, W. Fish: Important source of essential fatty acids for human nutrition. J. Aquac. Mar. Biol. 2018, 7, 223. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Sampels, S. Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Rev. Fish. Sci. Aquac. 2018, 26, 243–253. [Google Scholar] [CrossRef]
- Reantaso, M.B. Freshwater Seed as Global Resource for Aquaculture. FAO Aquaculture Newsletter. Mar 2006: 16–18. Available online: http://www.fao.org/3/a0435e/A0435E09.htm (accessed on 6 June 2021).
- Boyd, C.E.; Tucker, C.; McNevin, A.; Bostick, K.; Clay, J. Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Rev. Fish. Sci. 2007, 15, 327–360. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Nankabirwa, A.; De Crop, W.; Van der Meeren, T.; Cocquyt, C.; Plisnier, P.-D.; Balirwa, J.; Verschuren, D. Phytoplankton communities in the crater lakes of western Uganda, and their indicator species in relation to lake trophic status. Ecol. Indic. 2019, 107, 105563. [Google Scholar] [CrossRef]
- WWF. Hydrological and Agronomic Study for a Payment for Watershed Services Scheme in Rwenzori Mountains National Park, Uganda. WWF Rep UG. Kampala. 2018. Available online: https://wwfafrica.awsassets.panda.org/downloads/rwenzori_hydrological_and_agronomic_study_report.pdf (accessed on 23 May 2021).
- Helfrich, L.A.; Libey, G. Fish Farming in Recirculating Aquaculture Systems (RAS). Virginia. 1990. Available online: https://fisheries.tamu.edu/files/2013/09/Fish-Farming-in-Recirculating-Aquaculture-Systems-RAS.pdf (accessed on 19 June 2021).
- Zweig, R.D.; Morton, J.D.; Stewart, M.M. Source Water Quality for Aquaculture—A Guide for Assessment; The World Bank: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Kasozi, N.; Rutaisire, J.; Nandi, S.; Sundaray, J.K. A review of Uganda and Indias freshwater aquaculture: Key practices and experience from each country. J. Ecol. Nat. Environ. 2017, 9, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Lulijwa, R.; Mununuzi, D.; Mwesigwa, R.; Kajobe, R. Aquaculture production and its contribution to development in the Rwenzori region Uganda. Afr. J. Trop. Hydrobiol. Fish. 2018, 16, 56–62. [Google Scholar]
- Safina, N.; Gertrude, A.; Lawrance, O.; Ronald, W.; Alphonse, C.; Samuel, O.; Mbilingi, B.; Izaara, A.A. Profitability and Viability Analysis of Aquaculture Production in Central Uganda: A Case of Urban and Peri-Urban Areas. Asian J. Agric. Extension Econ. Sociol. 2018, 22, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ballares, L.D.; Masangkay, F.R.; Dionisio, J.; Villaflores, O.; Pineda-Cortel, M.R.; Milanez, G.D. Molecular detection of Acanthamoeba spp. in Seven Crater Lakes of Laguna, Philippines. J. Water Health 2020, 18, 776–784. [Google Scholar] [CrossRef]
- Adachi, T.; Ishikawa, A.; Mori, S.; Makino, W.; Kume, M. Shifts in morphology and diet of non-native sticklebacks. Ecol. Evol. 2012, 2, 1083–1098. [Google Scholar] [CrossRef]
Index | Equation | References |
---|---|---|
NDWI | (B3 − B8)/(B3 + B8) | [12,14,15,41,43,47] |
MNDWI1 | (B3 − B11)/(B3 + B11) | [13,15,43,44,47] |
MNDWI2 | (B3 − B12)/(B3 + B12) | [16,43] |
AWEIsh | B2 + 2.5 × B3 − 1.5 × (B8 + B11) − 0.25 × B12 | [16,43] |
AWEInsh | 4 × (B12− B11) − (0.25 × B8 + 2.75 × B11) | [16,43] |
MuWI_C | −16.4ND(B2, B3) − 6.9ND(B2, B4) − 8.2ND(B2, B8) − 8.8ND(B2, B11) + 9.6ND(B2, B12) + 10.8ND(B3, B8) + 6.1ND(B3, B11) + 13.6ND(B3, B12) − 0.28ND(B4, B8) − 3.9ND(B4, B11) − 2.1ND(B4, B12) − 5.3ND(B8, B11) − 5.3ND(B8, B12) − 5.3ND(B11, B12) − 0.33 | [15,47] |
MuWI_R | −4ND(B2, B3) + 2ND(B3, B8) + 2ND(B3,B12) − ND(B3, B11) | [15,47] |
AWEIsh | AWEInsh | ||||||
---|---|---|---|---|---|---|---|
Site 1 | Site 2 | Site 3 | Site 4 | Site 1 | Site 2 | Site 3 | Site 4 |
−5926.58 | −2928.46 | −2665.28 | −127.87 | −16,209.74 | −11,783.30 | −16,286.55 | −6280.94 |
−3166.10 | −5199.38 | −5022.17 | −1936.92 | −11,294.86 | −270.36 | −18,559.13 | −953.94 |
−4349.30 | −6411.62 | −4593.32 | −4496.02 | −12,176.02 | −8336.82 | −12,848.25 | −12,050.34 |
−5493.35 | −4740.54 | −5394.81 | −4835.96 | −8619.31 | −13,910.72 | −13,819.54 | −15,416.24 |
−5000.62 | −5596.51 | 881.26 | 1525.60 | −14,344.24 | −10,132.42 | −9000.94 | −14,205.73 |
−6839.84 | 276.99 | −6182.35 | −5178.02 | −13,159.25 | −7201.59 | 876.09 | −9030.85 |
73.44 | −5986.37 | −7837.49 | −4069.98 | −7050.44 | −12,700.91 | −10,494.63 | −17,050.71 |
−8286.82 | −4140.40 | −5761.15 | −6299.19 | −9596.69 | −10,951.91 | −11,801.94 | −13,076.04 |
−6359.41 | −7658.28 | −3949.14 | −5562.80 | −10,458.41 | −15,888.88 | −14,897.65 | −10,825.84 |
−7410.16 | −6929.70 | −6758.48 | −3141.01 | −444.37 | −9276.21 | −7571.75 | 2183.85 |
Site 1 | |||||||
NDWI | MNDWI1 | MNDWI2 | AWEIsh | AWEInsh | MuWI_C | MuWI_R | |
PA (%) | 44.00 | 61.30 | 61.30 | 84.20 | 84.20 | 59.80 | 69.90 |
UA (%) | 95.90 | 92.10 | 93.10 | 94.90 | 93.70 | 99.40 | 97.40 |
OA (%) | 80.80 | 85.40 | 85.60 | 93.20 | 92.90 | 86.50 | 89.40 |
OE (%) | 56.02 | 38.72 | 38.72 | 15.79 | 15.79 | 40.23 | 30.08 |
CE (%) | 4.10 | 7.91 | 6.86 | 5.08 | 6.28 | 0.63 | 2.62 |
Kappa | 0.50 | 0.64 | 0.65 | 0.84 | 0.84 | 0.66 | 0.74 |
Site 2 | |||||||
NDWI | MNDWI1 | MNDWI2 | AWEISH | AWEInSH | MuWI_C | MuWI_R | |
PA (%) | 30.50 | 42.00 | 53.20 | 78.10 | 81.40 | 53.90 | 57.00 |
UA (%) | 91.10 | 98.30 | 87.20 | 95.50 | 98.60 | 99.30 | 98.70 |
OA (%) | 75.40 | 80.10 | 81.50 | 91.30 | 93.30 | 84.20 | 85.40 |
OE (%) | 69.52 | 57.99 | 46.84 | 21.93 | 18.59 | 46.10 | 42.38 |
CE (%) | 8.89 | 1.74 | 12.80 | 4.55 | 1.35 | 0.68 | 1.27 |
Kappa | 0.35 | 0.48 | 0.54 | 0.80 | 0.84 | 0.60 | 0.64 |
Site 3 | |||||||
NDWI | MNDWI1 | MNDWI2 | AWEIsh | AWEInsh | MuWI_C | MuWI_R | |
PA (%) | 73.90 | 43.70 | 41.70 | 70.50 | 72.20 | 38.60 | 38.60 |
UA (%) | 65.10 | 73.70 | 74.10 | 92.90 | 84.50 | 73.10 | 69.90 |
OA (%) | 75.80 | 73.50 | 73.10 | 87.00 | 84.90 | 72.10 | 71.20 |
OE (%) | 26.10 | 56.27 | 58.31 | 29.49 | 27.80 | 61.36 | 61.36 |
CE (%) | 34.93 | 26.29 | 25.90 | 7.14 | 15.48 | 26.92 | 30.06 |
Kappa | 0.49 | 0.38 | 0.36 | 0.71 | 0.66 | 0.34 | 0.32 |
Site 4 | |||||||
NDWI | MNDWI1 | MNDWI2 | AWEIsh | AWEInsh | MuWI_C | MuWI_R | |
PA (%) | 22.40 | 36.80 | 35.10 | 54.60 | 67.20 | 52.30 | 54.00 |
UA (%) | 53.40 | 86.50 | 85.90 | 87.20 | 75.50 | 78.40 | 85.50 |
OA (%) | 78.90 | 85.00 | 84.60 | 88.40 | 88.10 | 86.50 | 88.00 |
OE (%) | 77.59 | 63.22 | 64.94 | 45.40 | 32.76 | 47.70 | 45.98 |
CE (%) | 46.58 | 13.51 | 14.08 | 12.84 | 24.52 | 21.55 | 14.55 |
Kappa | 0.21 | 0.44 | 0.43 | 0.61 | 0.64 | 0.55 | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ssekyanzi, A.; Nevejan, N.; Van der Zande, D.; Brown, M.E.; Van Stappen, G. Identification of Potential Surface Water Resources for Inland Aquaculture from Sentinel-2 Images of the Rwenzori Region of Uganda. Water 2021, 13, 2657. https://doi.org/10.3390/w13192657
Ssekyanzi A, Nevejan N, Van der Zande D, Brown ME, Van Stappen G. Identification of Potential Surface Water Resources for Inland Aquaculture from Sentinel-2 Images of the Rwenzori Region of Uganda. Water. 2021; 13(19):2657. https://doi.org/10.3390/w13192657
Chicago/Turabian StyleSsekyanzi, Athanasius, Nancy Nevejan, Dimitry Van der Zande, Molly E. Brown, and Gilbert Van Stappen. 2021. "Identification of Potential Surface Water Resources for Inland Aquaculture from Sentinel-2 Images of the Rwenzori Region of Uganda" Water 13, no. 19: 2657. https://doi.org/10.3390/w13192657
APA StyleSsekyanzi, A., Nevejan, N., Van der Zande, D., Brown, M. E., & Van Stappen, G. (2021). Identification of Potential Surface Water Resources for Inland Aquaculture from Sentinel-2 Images of the Rwenzori Region of Uganda. Water, 13(19), 2657. https://doi.org/10.3390/w13192657