Analysis of Net Erosion Using a Physics-Based Erosion Model for the Doam Dam Basin in Korea
Abstract
:1. Introduction
2. Methodology
2.1. R-SSEM
2.2. Modified R-SSEM
2.3. Calibration Method
3. Model Application
3.1. Study Site
3.2. Data Sets
3.3. Field Survey
4. Modeling Results
4.1. R-SSEM Result
4.2. MR-SSEM Result
4.3. Calibration of MR-SSEM
4.4. Calibrated MR-SSEM Result
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lal, R.; Stewart, B.A. Soil Degradation: A Global Threat; Springer: New York, NY, USA, 1990; Volume 11. [Google Scholar] [CrossRef] [Green Version]
- Mineo, C.; Ridolfi, E.; Moccia, B.; Russo, F.; Napolitano, F. Assessment of Rainfall Kinetic-Energy–Intensity Relationships. Water 2019, 11, 1994. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, C.; De Cleen, M.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Jentsch, A.; Beierkuhnlein, C. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. Comptes Rendus Geosci. 2008, 340, 621–628. [Google Scholar] [CrossRef]
- Mun, J.; Gang, S.; Lee, J. National Precipitation Analysis of Floods in 2020; Water for Future; Korea Water Resources Association: Seoul, Korea, 2020; pp. 135–143. [Google Scholar]
- Kim, S.; Lee, D.; Jung, S.; Lee, G. Assessment of Soil Erosion and Sedimentation in Cheoncheon Basin Considering Hourly Rainfall. J. Korean GEO-Environ. Soc. 2020, 21, 5–17. [Google Scholar] [CrossRef]
- OECD. Environmental Performance of Agriculture in OECD Countries Since 1990; OECD: Paris, France, 2008. [Google Scholar] [CrossRef]
- Shin, K. Case Study of EIA for Soil Resource Conservation; Korea Environment Institute: Sejong, Korea, 2013; pp. 1–87. Available online: http://kiss.kstudy.com/thesis/thesis-view.asp?g=kissmeta&m=exp&enc=13BA5457B08C96678BE597DDA9EFFEEE (accessed on 10 October 2020).
- Cerdà, A.; Terol, E.; Daliakopoulos, I.N. Weed cover controls soil and water losses in rainfed olive groves in Sierra de Enguera, eastern Iberian Peninsula. J. Environ. Manag. 2021, 290, 112516. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Terol, E.; Mora, G.; Giménez-Morera, A.; Cerdà, A. Vicia sativa Roth. Can Reduce Soil and Water Losses in Recently Planted Vineyards (Vitis vinifera L.). Earth Syst. Environ. 2020, 4, 827–842. [Google Scholar] [CrossRef]
- Raza, A.; Ahrends, H.; Habib-Ur-Rahman, M.; Gaiser, T. Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops. Land 2021, 10, 422. [Google Scholar] [CrossRef]
- Yang, D.; Kim, J.; Kim, J.; Kim, M. The Effects of Surface Condition on Soil Erosion. J. Korean Geomorphol. Assoc. 2005, 12, 63–72. [Google Scholar]
- Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Cerdà, A.; Novara, A.; Dlapa, P.; López-Vicente, M.; Úbeda, X.; Popović, Z.; Mekonnen, M.; Terol, E.; Janizadeh, S.; Mbarki, S.; et al. Rainfall and water yield in Macizo del Caroig, Eastern Iberian Peninsula. Event runoff at plot scale during a rare flash flood at the Barranco de Benacancil. Cuad. Investig. Geográfica 2021, 47, 25. [Google Scholar] [CrossRef]
- Yu, W.; Park, J.; Yang, J.-E.; Lim, K.; Kim, S.; Park, Y.; Hwang, S.; Lee, G. Development and Application of a Physics-based Soil Erosion Model. J. Soil Groundw. Environ. 2017, 22, 66–73. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1965.
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; No, 537; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Son, K. Applicability Examination of the RUSLE Sediment Yield Prediction Equations in Korea. J. Korea Water Resour. Assoc. 2001, 34, 199–207. [Google Scholar]
- Son, K. Applicability Examination of the MUSLE Sediment Yield Prediction Equations in Korea. J. Korea Water Resour. Assoc. 2001, 34, 209–216. [Google Scholar]
- Trimble, S.W.; Crosson, P.U.S. Soil Erosion Rates--Myth and Reality. Science 2000, 289, 248–250. [Google Scholar] [CrossRef] [Green Version]
- Beasley, D.B.; Huggins, L.F.; Monke, E.J. Modeling sediment yields from agricultural watersheds. J. Soil Water Conserv. 1982, 37, 113–117. [Google Scholar]
- Nearing, M.; Ascough, L.; Chaves, H. WEPP model sensitivity analysis. In Water Erosion Prediction Project Landscape Profile Model Documentation; NSERL Report; National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1989. [Google Scholar]
- Smith, R.; Goodrich, D.; Quinton, J.N. Dynamic, distributed simulation of watershed erosion: The KINEROS2 and EUROSEM models. J. Soil Water Conserv. 1995, 50, 517–520. [Google Scholar]
- Lee, G.; Yu, W.; Jung, K.; APIP. Catchment-scale soil erosion and sediment yield simulation using a spatially distributed erosion model. Environ. Earth Sci. 2013, 70, 33–47. [Google Scholar] [CrossRef]
- Igwe, P.U.; Onuigbo, A.A.; Chinedu, O.C.; Ezeaku, I.I.; Muoneke, M.M. Soil Erosion: A Review of Models and Applications. Int. J. Adv. Eng. Res. Sci. 2017, 4, 138–150. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, G.; Lee, D.; Noh, S. Parameter Estimation and Uncertainty Assessment of a Soil Erosion Model Using Data Assimilation Method. J. Korean Soc. Hazard Mitig. 2015, 15, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Kim, S. Estimation of Topsoil Erosion Considering Physical Characteristics of Rainfall Intensity and Overland Flow; Chungnam National University: Daejeon, Korea, 2019. [Google Scholar]
- Jang, C.; Shin, Y.; Kum, D.; Kim, R.; Yang, J.E.; Kim, S.C.; Hwang, S.I.; Lim, K.J.; Yoon, J.-K.; Park, Y.S.; et al. Assessment of soil loss in South Korea based on land-cover type. Stoch. Environ. Res. Risk Assess. 2015, 29, 2127–2141. [Google Scholar] [CrossRef]
- Li, Z.-W.; Zhang, G.-H.; Geng, R.; Wang, H. Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China. Biosyst. Eng. 2015, 129, 248–257. [Google Scholar] [CrossRef]
- Tachikawa, Y.; NAGATANI, G.; TAKARA, K. Development of Stage-Discharge Relationship Equation Incorporationg Saturated-Unsaturated Flow Mechanism. Proc. Hydraul. Eng. 2004, 48, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landf. 1998, 23, 527–544. [Google Scholar] [CrossRef]
- Torri, D.; Sfalanga, M.; Del Sette, M. Splash detachment: Runoff depth and soil cohesion. Catena 1987, 14, 149–155. [Google Scholar] [CrossRef]
- Vanoni, V.A. Sedimentation Engineering; American Society of Civil Engineers: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Engelund, F.; Hansen, E. A Monograph on Sediment Transport in Alluvial Streams; Technical University of Denmark: Copenhagen K, Denmark, 1967. [Google Scholar]
- Sorooshian, S.; Gupta, V. Model calibration. Comput. Models Watershed Hydrol. 1995, 1, 23–68. [Google Scholar]
- Schlueter, M.; Erb, S.O.; Gerdts, M.; Kemble, S.; Rückmann, J.-J. MIDACO on MINLP space applications. Adv. Space Res. 2013, 51, 1116–1131. [Google Scholar] [CrossRef]
- Hagedorn, B. Hydrograph separation through multi objective optimization: Revealing the importance of a temporally and spatially constrained baseflow solute source. J. Hydrol. 2020, 590, 125349. [Google Scholar] [CrossRef]
- Hagedorn, B.; Meadows, C. Trend Analyses of Baseflow and BFI for Undisturbed Watersheds in Michigan—Constraints from Multi-Objective Optimization. Water 2021, 13, 564. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.; Park, M.; Kim, K.; Kim, J.; Park, J.; Ryu, I.; Hwang, S.; Yu, S.; Lee, J.; et al. A Study on Management and Reduction Plan of Non-Point Source in Doam Lake Watershed (2); National Institute of Environmental Research: Incheon, Korea, 2016. [CrossRef]
- MOE. The Doam Lake Basin Non-Point Pollution Source Management Measures; Ministry of Environment: Sejong, Korea, 2007.
- Heo, S.; Kim, K.; Sa, G.; Ahn, J.; Lim, K. Evaluation of SWAT applicability to simulate soil erosion at highland agricultural lands. J. Korean Soc. Rural Plan. 2005, 11, 67–74. [Google Scholar]
- MOE. The Doam Lake Basin Non-Point Pollution Source Management Measures; Ministry of Environment: Sejong, Korea, 2019.
- WREO. Lake Doam Nonpoint Pollution Source Management Area Monitoring and Evaluation Program; Wonju Regional Environmental Office: Wonju, Korea, 2016.
Land Use | Soil Erodibility by [31] | Soil Erodibility Used in This Study |
---|---|---|
Farmland | 0.193 | 1 |
Bare land | 0.14 | 0.725389 |
Forest | 0.011 | 0.056995 |
Grassland | 0.01 | 0.051813 |
Waters | 0.0001 | 0.000518 |
Urban | 0.0001 | 0.000518 |
Wetland | 0.0001 | 0.000518 |
Paddy | 0.0001 | 0.000518 |
Data Layer | Description | Data Source |
---|---|---|
Meteorological data | Hourly precipitation (Daegwallyeong station) | Korea Meteorological Administration (http://data.kma.go.kr) (accessed on 17 October 2020) |
Topography | DEM (Cell size: 90 m) | National Geographic Information Institute of Korea (http://ngii.go.kr) (accessed on 10 October 2020) |
Land use | 1:25,000 (Resampled to 90 m) | Environmental Geographic Information Service of Korea (http://egis.me.go.kr) (accessed on 10 October 2020) |
Land Use | Percentage of Land Use | Total Erosion (m3) | Rank of Total Erosion | Erosion Depth per Unit Area (cm) | Rank of Unit Erosion |
---|---|---|---|---|---|
Total | 100 | 6516.8 | - | 0.04 | - |
Water body | 1.20 | 54.78 | 6 | 0.03 | 8 |
Urban | 1.78 | 121.16 | 5 | 0.05 | 2 |
Bare land | 4.61 | 317.89 | 3 | 0.05 | 1 |
Wetland | 0.19 | 12.90 | 7 | 0.05 | 3 |
Grassland | 3.55 | 225.99 | 4 | 0.04 | 6 |
Forest | 78.72 | 5136.10 | 1 | 0.04 | 5 |
Paddy | 0.23 | 11.17 | 8 | 0.03 | 7 |
Farmland | 9.72 | 635.86 | 2 | 0.04 | 4 |
Land Use | Percentage of Land Use | Total Deposition (m3) | Rank of Total Deposition | Deposition Depth per Unit Area (cm) | Rank of Unit Deposition |
---|---|---|---|---|---|
Total | 100 | 19.03 | - | 0.01 | - |
Water body | 1.20 | - | - | - | - |
Urban | 1.78 | - | - | - | - |
Bare land | 4.61 | - | - | - | - |
Wetland | 0.19 | - | - | - | - |
Grassland | 3.55 | - | - | - | - |
Forest | 78.72 | 19.03 | 1 | 0.01 | 1 |
Paddy | 0.23 | - | - | - | - |
Farmland | 9.72 | - | - | - | - |
Land Use | Percentage of Land Use | Total Erosion (m3) | Rank of Total Erosion | Erosion Depth per Unit Area (cm) | Rank of Unit Erosion |
---|---|---|---|---|---|
Total | 100 | 6051.5 | - | 0.004 | - |
Water body | 1.20 | 0 | - | 0 | - |
Urban | 1.78 | 98.8 | 4 | 0.004 | 4 |
Bare land | 4.61 | 1813.6 | 2 | 0.027 | 1 |
Wetland | 0.19 | 0 | - | 0 | - |
Grassland | 3.55 | 497.3 | 3 | 0.009 | 3 |
Forest | 78.72 | 0 | - | 0 | - |
Paddy | 0.23 | 0 | - | 0 | - |
Farmland | 9.72 | 3740.6 | 1 | 0.026 | 2 |
Land Use | Percentage of Land Use | Total Deposition (m3) | Rank of Total Deposition | Deposition Depth per Unit Area (cm) | Rank of Unit Deposition |
---|---|---|---|---|---|
Total | 100 | 1628.1 | - | 0.001 | - |
Water body | 1.20 | 51 | 3 | 0.003 | 4 |
Urban | 1.78 | 311 | 2 | 0.012 | 1 |
Bare land | 4.61 | 0 | - | 0 | - |
Wetland | 0.19 | 13 | 5 | 0.005 | 2 |
Grassland | 3.55 | 3.2 | 6 | 0.000 | 6 |
Forest | 78.72 | 1192.3 | 1 | 0.001 | 5 |
Paddy | 0.23 | 13.8 | 4 | 0.004 | 3 |
Farmland | 9.72 | 0 | - | 0 | - |
Parameter | Description | The Range of Value | R-SSEM [26] | MR-SSEM |
---|---|---|---|---|
Hydraulic conductivity (m s−1) | 0.001–0.1 | 0.007 | 0.006 | |
Effective soil depth (mm) | 1–1000 | 1000 | 950 | |
Water depth corresponding to maximum water content in the capillary pore (mm) | 20–300 | 31.88 | 95 | |
Water depth corresponding to water content (mm) | 1–700 | 60.03 | 570 | |
Non-linear exponent for the unsaturated soil layer | 2–10 | 7.0 | 3.0 | |
Median grain size (mm) | 1–10 | 9.5 | 1.0 | |
Soil detachability (kg J−1) | 0.0001–1 | 0.002 | 0.068 | |
Soil erodibility coefficient | 0.1–1.0 | 0.86 | - | |
Kinetic energy of net rainfall (J m−2) | 1–30 | 2.29 | - |
Land Use | Percentage of Land Use | Total Erosion (m3) | Rank of Total Erosion | Erosion Depth per Unit Area (cm) | Rank of Unit Erosion |
---|---|---|---|---|---|
Total | 100 | 36,689.0 | - | 0.025 | - |
Water body | 1.20 | 122.3 | 6 | 0.007 | 6 |
Urban | 1.78 | 639.9 | 5 | 0.024 | 4 |
Bare land | 4.61 | 10,961.7 | 2 | 0.161 | 1 |
Wetland | 0.19 | 8.9 | 8 | 0.003 | 8 |
Grassland | 3.55 | 1662.1 | 4 | 0.032 | 3 |
Forest | 78.72 | 3937.4 | 3 | 0.003 | 7 |
Paddy | 0.23 | 26.7 | 7 | 0.008 | 5 |
Farmland | 9.72 | 19,798.8 | 1 | 0.138 | 2 |
Land Use | Percentage of Land Use | Total Deposition (m3) | Rank of Total Deposition | Deposition Depth per Unit Area (cm) | Rank of Unit Deposition |
---|---|---|---|---|---|
Total | 100 | 9893.3 | - | 0.007 | - |
Water body | 1.20 | 294.8 | 3 | 0.017 | 4 |
Urban | 1.78 | 2168.4 | 2 | 0.082 | 1 |
Bare land | 4.61 | 5.7 | 8 | 0.000 | 8 |
Wetland | 0.19 | 50.2 | 6 | 0.018 | 3 |
Grassland | 3.55 | 55.1 | 5 | 0.001 | 6 |
Forest | 78.72 | 7098.0 | 1 | 0.006 | 5 |
Paddy | 0.23 | 64.8 | 4 | 0.019 | 2 |
Farmland | 9.72 | 31.6 | 7 | 0.000 | 7 |
Land Use | Percentage of Land Use | Total Erosion (m3) | Rank of Total Erosion | Erosion Depth per Unit Area (cm) | Rank of Unit Erosion |
---|---|---|---|---|---|
Total | 100 | 142,476.6 | - | 0.096 | - |
Water body | 1.20 | 362.1 | 6 | 0.02 | 5 |
Urban | 1.78 | 2613.9 | 5 | 0.099 | 4 |
Bare land | 4.61 | 38,991.8 | 2 | 0.571 | 1 |
Wetland | 0.19 | 37.3 | 7 | 0.013 | 7 |
Grassland | 3.55 | 7200.9 | 4 | 0.137 | 3 |
Forest | 78.72 | 20,441.2 | 3 | 0.018 | 6 |
Paddy | 0.23 | 37.3 | 8 | 0.011 | 8 |
Farmland | 9.72 | 74,962.3 | 1 | 0.521 | 2 |
Land Use | Percentage of Land Use | Total Deposition (m3) | Rank of Total Deposition | Deposition Depth per Unit Area (cm) | Rank of Unit Deposition |
---|---|---|---|---|---|
Total | 100 | 44,806.77 | - | 0.03 | - |
Water body | 1.20 | 1069.2 | 3 | 0.06 | 4 |
Urban | 1.78 | 7746.8 | 2 | 0.293 | 1 |
Bare land | 4.61 | 817.3 | 4 | 0.012 | 6 |
Wetland | 0.19 | 274.6 | 6 | 0.097 | 2 |
Grassland | 3.55 | 86.7 | 7 | 0.002 | 7 |
Forest | 78.72 | 33,625.5 | 1 | 0.029 | 5 |
Paddy | 0.23 | 282.7 | 5 | 0.083 | 3 |
Farmland | 9.72 | 0 | 8 | 0 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeon, M.; Kim, S.; Shin, H.; An, H.; Lee, D.; Jung, S.; Lee, G. Analysis of Net Erosion Using a Physics-Based Erosion Model for the Doam Dam Basin in Korea. Water 2021, 13, 2663. https://doi.org/10.3390/w13192663
Yeon M, Kim S, Shin H, An H, Lee D, Jung S, Lee G. Analysis of Net Erosion Using a Physics-Based Erosion Model for the Doam Dam Basin in Korea. Water. 2021; 13(19):2663. https://doi.org/10.3390/w13192663
Chicago/Turabian StyleYeon, Minho, Seongwon Kim, Hongjoon Shin, Hyunuk An, Daeeop Lee, Sungho Jung, and Giha Lee. 2021. "Analysis of Net Erosion Using a Physics-Based Erosion Model for the Doam Dam Basin in Korea" Water 13, no. 19: 2663. https://doi.org/10.3390/w13192663
APA StyleYeon, M., Kim, S., Shin, H., An, H., Lee, D., Jung, S., & Lee, G. (2021). Analysis of Net Erosion Using a Physics-Based Erosion Model for the Doam Dam Basin in Korea. Water, 13(19), 2663. https://doi.org/10.3390/w13192663